CN106295021B - A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress - Google Patents

A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress Download PDF

Info

Publication number
CN106295021B
CN106295021B CN201610670679.4A CN201610670679A CN106295021B CN 106295021 B CN106295021 B CN 106295021B CN 201610670679 A CN201610670679 A CN 201610670679A CN 106295021 B CN106295021 B CN 106295021B
Authority
CN
China
Prior art keywords
msub
mrow
mfrac
msup
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610670679.4A
Other languages
Chinese (zh)
Other versions
CN106295021A (en
Inventor
陈志平
黄淞
徐烽
郑晨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610670679.4A priority Critical patent/CN106295021B/en
Publication of CN106295021A publication Critical patent/CN106295021A/en
Application granted granted Critical
Publication of CN106295021B publication Critical patent/CN106295021B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Abstract

The invention discloses a kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress, the HELP of this method application hydrogen embrittlement is theoretical, directly predicts that elastic stress of the cylindrical shell under hydrogen environment strains with elastic stress strain of the cylindrical shell under atmospheric environment.Compared to the method for existing prediction hydrogen environment lower structure ess-strain, the present invention has the advantages that principle is simple.Forecasting Methodology is strained compared to existing cylindrical shell elastic stress, the present invention takes into account influence of the hydrogen environment to cylindrical shell ess-strain, has some reference value to engineering design.

Description

A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress
Technical field
The present invention relates to the elastic responses for facing hydrogen bearing structure to predict field, the HELP theoretical predictions specifically based on hydrogen embrittlement The elastic stress strain of heavy wall cylindrical shell.
Background technology
Cylindrical shell is the key that pressure restraining element during hydrogen storage and defeated hydrogen in hydrogen system, determines heavy wall cylindrical shell in hydrogen environment Under elastic response be the problem of design hydrogen container, hydrogenation reactor must take into consideration when hydrogen-contacting equipments.Due to this structure of hydrogen damage The complexity of relation, the method for existing mechanical response of the prediction material under hydrogen environment to the competency profiling of researcher very Height, while need a large amount of programing works, it is difficult to it is promoted in engineering.Also without occurring facing hydrogen cylindrical shell stress dedicated for prediction The method of strain.Therefore propose that a kind of method that hydrogen cylindrical shell ess-strain is faced in simple prediction has engineering significance.The present invention Plasticity localization theoretical (HELP) is promoted to be applied to heavy wall cylindrical shell the hydrogen of hydrogen embrittlement, it is proposed that a kind of to use atmospheric environment cylinder bullet Property ess-strain prediction face hydrogen cylindrical shell elastic stress strain method.
The content of the invention
In view of the above-mentioned deficiencies in the prior art, it is an object of the present invention to providing one kind faces the strain of hydrogen heavy wall cylindrical shell elastic stress Forecasting Methodology, this method strain to predict the elasticity for facing hydrogen cylindrical shell based on the cylindrical shell elastic stress in classical atmospheric environment Ess-strain.
The purpose of the present invention is what is be achieved through the following technical solutions:One kind faces the strain of hydrogen heavy wall cylindrical shell elastic stress Forecasting Methodology, this method comprises the following steps:
Step 1:The circumferential stress σ of heavy wall cylindrical shell is calculated according to the following formulaθAnd radial stress σr
Wherein a is cylindrical shell inside radius, and b is cylindrical shell outer radius, and p is inner pressuring load, and r is to need to ask for ess-strain Position.
Step 2:Below equation group is solved, calculates hydrogen concentration c:
Wherein, E be material elasticity modulus, ν be material Poisson's ratio, VHRepresent partial molar volume of the hydrogen in base material, VM For the molal volume of base material, α is the hydrogen trap number of per unit lattice, the interstitial void binding site number of β per unit lattices, NL= NA/VMFor the metallic atom quantity of per unit volume, NAFor Avgadro constant, NTRepresent the trap number of per unit volume. R is ideal gas constant, and T is Kelvin's thermometric scale, c0For no-load when cylindrical shell in hydrogen concentration, WBIt is combined for the hydrogen trap of material Energy.
Step 3:Calculate axial stress σz
Step 4:Calculate circumferential strain εθAnd radial strain εr
Further, the step 2 uses Newton Algorithm hydrogen concentration c, specifically includes following sub-step:
Step 201:Hydrogen concentration initial value c=c is set0
Step 202:According to current hydrogen concentration c, parameters are calculated according to the following formula:
Step 203:Calculate following functional value g:
Step 204:Judge g value sizes, if | g | >=εerr, then step 205 is performed to step 206, is otherwise terminated to calculate, be obtained To hydrogen concentration c, wherein εerrFor convergence tolorence, ε can useerr=10-6
Step 205:Hydrogen concentration c is calculated according to the following formula1
Wherein
Step 206:Make c=c1, return to step 202.
The present invention has the following advantages:Using the method for solving Nonlinear System of Equations, according to the cylindrical shell being easy to get in air The elastic stress strain of cylindrical shell under hydrogen environment is directly predicted in elastic stress strain in environment, need not write complicated hydrogen loss Hinder the finite element program of material constitutive model, it is relatively low using threshold.
Description of the drawings
Fig. 1 is the objective for implementation schematic diagram of the present invention;
Fig. 2 is distribution of the stress that is calculated of present example on different radii;
Fig. 3 is distribution of the strain that is calculated of present example on different radii.
Specific embodiment
Below using the example shown in Fig. 1 and table 1 as objective for implementation, the invention will be further described.
Example shown in FIG. 1 is the heavy wall cylindrical shell of a both ends constraint, and inside radius and outer radius are respectively a and b, are held By constant internal pressure load p, concentration is c under unstress state0Hydrogen be uniformly distributed in cylindrical shell.The present invention can predict Stress and strain of the cylindrical shell under internal pressure p effects in hydrogen environment.
The material parameter and geometric parameter that 1 example of table is used
The realization process of the method for the present invention is as follows:
Step 1:Choose a radius r (a≤r≤b), such as take r=a, by the inside radius a in table 1, outer radius b and Inner pressuring load p brings the circumferential stress σ that the following formula calculates heavy wall cylindrical shell intoθAnd radial stress σr
Step 2:Below equation group is solved, calculates hydrogen concentration c:
Wherein each parameter is listed in Table 1 below, and step 2 specifically includes following sub-step:
Step 201:Hydrogen concentration initial value c=c is set0
Step 202:Following formula is brought into according to current hydrogen concentration c and calculates parameters:
Step 203:The parameter that step 202 is obtained brings following functional value into, calculates functional value g:
Step 204:Judge g value sizes, if | g | >=εerr, then step 205 is performed to step 206, is otherwise terminated to calculate, be obtained To hydrogen concentration c, wherein convergence tolorence takes εerr=10-6
Step 205:Hydrogen concentration c is calculated according to the following formula1
Wherein
Required each parameter is calculated by step 202;
Step 206:Make c=c1, return to step 202.
Step 3:It brings the hydrogen concentration c that step 2 obtains into following formulas and calculates axial stress σz
Step 4:The circumferential stress σ that step 1 and step 3 are obtainedθ, radial stress σrWith axial stress σzBring following formula meter into Calculate circumferential strain εθAnd radial strain εr
The stress and strain that repeating step 1 to step 4 using different r values can be calculated in whole cross section is distributed, As a result as shown in Figure 2 and Figure 3, in addition it can be seen that distribution of the hydrogen concentration in cylindrical shell is uniform.

Claims (2)

1. a kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress, which is characterized in that this method comprises the following steps:
Step 1:The circumferential stress σ of heavy wall cylindrical shell is calculated according to the following formulaθAnd radial stress σr
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msup> <mi>b</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mi>b</mi> <mn>2</mn> </msup> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> </mrow>
WhereinFor cylindrical shell inside radius, b is cylindrical shell outer radius, and p is inner pressuring load, and r is to need to ask for the position of ess-strain It puts;
Step 2:Below equation group is solved, calculates hydrogen concentration c:
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>c</mi> <mo>=</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;beta;K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;alpha;N</mi> <mi>T</mi> </msub> </mrow> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>W</mi> <mi>B</mi> </msub> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>&amp;beta;</mi> </mrow>
Wherein, E be material elasticity modulus, ν be material Poisson's ratio, VHRepresent partial molar volume of the hydrogen in base material, VMFor mother The molal volume of material, α be per unit lattice hydrogen trap number, the interstitial void binding site number of β per unit lattices, NL=NA/VM For the metallic atom quantity of per unit volume, NAFor Avgadro constant, NTRepresent the trap number of per unit volume;R is reason Think gas constant, T is Kelvin's thermometric scale, c0For no-load when cylindrical shell in hydrogen concentration, WBFor the hydrogen trap combination energy of material;
Step 3:Calculate axial stress σz
<mrow> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>=</mo> <mi>v</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
Step 4:Calculate circumferential strain εθAnd radial strain εr
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>&amp;theta;</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>-</mo> <mfrac> <mi>v</mi> <mi>E</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> <msub> <mi>&amp;sigma;</mi> <mi>r</mi> </msub> <mo>-</mo> <mfrac> <mi>v</mi> <mi>E</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;sigma;</mi> <mi>&amp;theta;</mi> </msub> <mo>+</mo> <msub> <mi>&amp;sigma;</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
2. a kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress according to claim 1, which is characterized in that The step 2 uses Newton Algorithm hydrogen concentration c, specifically includes following sub-step:
Step 201:Hydrogen concentration initial value c=c is set0
Step 202:According to current hydrogen concentration c, parameters are calculated according to the following formula:
<mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <msup> <mi>a</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mi>c</mi> <mo>-</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>k</mi> <mi>k</mi> </mrow> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>W</mi> <mi>B</mi> </msub> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> </mrow>
<mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>=</mo> <msub> <mi>c</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>&amp;beta;</mi> </mrow>
Step 203:Calculate following functional value g:
<mrow> <mi>g</mi> <mo>=</mo> <mi>c</mi> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;beta;K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;alpha;N</mi> <mi>T</mi> </msub> </mrow> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
Step 204:Judge g value sizes, if | g | >=εerr, then step 205 is performed to step 206, is otherwise terminated to calculate, is obtained hydrogen Concentration c, wherein εerrFor convergence tolorence, ε can useerr=10-6
Step 205:Hydrogen concentration c is calculated according to the following formula1
<mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>c</mi> <mo>-</mo> <mfrac> <mi>g</mi> <msup> <mi>g</mi> <mo>&amp;prime;</mo> </msup> </mfrac> </mrow>
Wherein
<mrow> <msup> <mi>g</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mo>&amp;lsqb;</mo> <mi>&amp;beta;</mi> <mo>+</mo> <mi>&amp;alpha;</mi> <mfrac> <msub> <mi>N</mi> <mi>T</mi> </msub> <msub> <mi>N</mi> <mi>L</mi> </msub> </mfrac> <mfrac> <msub> <mi>K</mi> <mi>T</mi> </msub> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>T</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>&amp;rsqb;</mo> <mfrac> <mrow> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msub> <mi>K</mi> <mi>L</mi> </msub> <msubsup> <mi>&amp;theta;</mi> <mi>L</mi> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mfrac> <mrow> <msub> <mi>K</mi> <mi>L</mi> </msub> <msub> <mi>V</mi> <mi>H</mi> </msub> </mrow> <mrow> <mn>3</mn> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mfrac> <mi>E</mi> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>V</mi> <mi>H</mi> </msub> <msub> <mi>V</mi> <mi>M</mi> </msub> </mfrac> </mrow>
Step 206:Make c=c1, return to step 202.
CN201610670679.4A 2016-08-15 2016-08-15 A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress Active CN106295021B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610670679.4A CN106295021B (en) 2016-08-15 2016-08-15 A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610670679.4A CN106295021B (en) 2016-08-15 2016-08-15 A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress

Publications (2)

Publication Number Publication Date
CN106295021A CN106295021A (en) 2017-01-04
CN106295021B true CN106295021B (en) 2018-05-29

Family

ID=57670685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610670679.4A Active CN106295021B (en) 2016-08-15 2016-08-15 A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress

Country Status (1)

Country Link
CN (1) CN106295021B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085134B1 (en) * 2018-06-01 2020-03-05 경희대학교 산학협력단 A method for determining average radial stress and pressure vs. volume relationship of a compressible material
CN110727997B (en) * 2019-09-20 2020-06-23 湖北省工业建筑集团有限公司 Method for calculating stability of metal cylindrical shell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342694A (en) * 2001-05-17 2002-11-29 Araco Corp Method and device for structural analysis of elastic material
CN101323247A (en) * 2008-07-11 2008-12-17 清华大学 Dilution device for fuel battery passenger car discharging hydrogen concentration
CN102141466A (en) * 2010-12-21 2011-08-03 浙江大学 Boundary simulation device and method for thin-walled cylindrical shell structure experiment
CN103154703A (en) * 2010-10-05 2013-06-12 株式会社普利司通 Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002342694A (en) * 2001-05-17 2002-11-29 Araco Corp Method and device for structural analysis of elastic material
CN101323247A (en) * 2008-07-11 2008-12-17 清华大学 Dilution device for fuel battery passenger car discharging hydrogen concentration
CN103154703A (en) * 2010-10-05 2013-06-12 株式会社普利司通 Method for predicting elastic response performance of rubber product, method for design, and device for predicting elastic response performance
CN102141466A (en) * 2010-12-21 2011-08-03 浙江大学 Boundary simulation device and method for thin-walled cylindrical shell structure experiment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多层不等厚组合圆柱壳屈曲数值模拟分析;陈志平 等;《浙江大学学报(工学版)》;20090930;第43卷(第9期);第1679-1683页 *

Also Published As

Publication number Publication date
CN106295021A (en) 2017-01-04

Similar Documents

Publication Publication Date Title
Wu et al. A phase-field regularized cohesive zone model for hydrogen assisted cracking
Wierzbicki et al. Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells
Greve et al. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells
Jivkov et al. Pore space and brittle damage evolution in concrete
CN106295021B (en) A kind of Forecasting Methodology for facing the strain of hydrogen heavy wall cylindrical shell elastic stress
Bradford et al. The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting
CN106372273B (en) One kind faces hydrogen heavy wall cylindrical shell elastic limit loading prediction method
Liu et al. Effects of reeling on pipe structural performance—Part II: Analysis
Ando et al. Comparison and assessment of the creep-fatigue evaluation methods with notched specimen made of Mod. 9Cr-1Mo steel
Zheng et al. Damage performance analysis of prestressed concrete containments following a loss of coolant accident considering different external temperatures
Hwang et al. Evaluation of flow stresses of tubular materials considering anisotropic effects by hydraulic bulge tests
Hagihara et al. Finite element analysis for creep failure of coolant pipe in light water reactor due to local heating under severe accident condition
CN105205342A (en) Method of determining limit load of high temperature pressure pipeline
Kwon et al. Optimization of gap sizes for the high performance of annular nuclear fuels
Jinjin et al. Hydrogen-induced attractive force between two partials of edge dislocation in nickel
Fatemi et al. End boundary effects on local buckling response of high strength linepipe
CN109800458A (en) A method of assessment reactor safety operation
Qin et al. Thermal Stress Modeling and Analysis of Packed-bed Thermocline Energy Storage Tank for INL Thermal Energy Distribution System (TEDS)
RU2526856C1 (en) Imitator of fuel element of nuclear reactor
Jiang et al. A noncyclic method for determination of accumulated strain in stainless steel 304 pressure vessels
Perl Thermal simulation of an arbitrary residual stress field in a fully or partially autofrettaged thick-walled spherical pressure vessel
Nicolici et al. Experimental and numerical testing of an innovative steam generator tube plugging procedure
Kuroda et al. Dynamics and generation of stress waves in cracked graphite moderator bricks
Abdelmeguid et al. Modeling Sequence of Earthquakes and Aseismic Slip (SEAS) in Complex Faults Zones Using a Computationally Efficient Numerical Algorithm
Nie et al. Nonlinear seismic correlation analysis of the JNES/NUPEC large-scale piping system tests

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant