CN106369892B - 一种应用于微型节流制冷器的回流稳压结构 - Google Patents

一种应用于微型节流制冷器的回流稳压结构 Download PDF

Info

Publication number
CN106369892B
CN106369892B CN201611009333.6A CN201611009333A CN106369892B CN 106369892 B CN106369892 B CN 106369892B CN 201611009333 A CN201611009333 A CN 201611009333A CN 106369892 B CN106369892 B CN 106369892B
Authority
CN
China
Prior art keywords
refrigerator
voltage regulation
micro
throttling
dewar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611009333.6A
Other languages
English (en)
Other versions
CN106369892A (zh
Inventor
周建
陈军
李家鹏
刘燕
环健
赵琳珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN201611009333.6A priority Critical patent/CN106369892B/zh
Publication of CN106369892A publication Critical patent/CN106369892A/zh
Application granted granted Critical
Publication of CN106369892B publication Critical patent/CN106369892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

本发明公开一种应用于微型节流制冷器的回流稳压结构,由集气法兰、出气接头、排气喷管、密封圈等组成,回流稳压结构布置在杜瓦和微型节流制冷器的尾端。本发明公开的回流稳压结构充分利用了杜瓦‑制冷组件尾端的空间,当节流制冷器工作时,回流稳压结构将节流后的已逆流回热的制冷工质收集并流经所预设的流道,再排出到外界。由于所预设的流道存在一定的流动阻尼,即使大气环境压力降低(低气压环境),也可使节流膨胀腔内压力保持相对稳定,从而稳定制冷工作温度,克服了传统微型节流制冷器的工作温度在大气压力变化情况下不稳定的缺点。本发明可以不改变封装杜瓦和节流制冷器的结构,特别适合在高空、外太空环境下应用于红外器件的冷却。

Description

一种应用于微型节流制冷器的回流稳压结构
技术领域
本发明涉及一种微型节流制冷器的回流稳压结构,具体是涉及一种应用于红外探测器组件的回流稳压结构。
背景技术
制冷型红外探测器的多种制冷方式中,采用高压工质的微型节流制冷器是其中的一类。微型节流制冷器具有启动功率大,降温时间短,储存年限长,工作可靠等优点。在微型节流制冷器内引入温度敏感的流量调节器后,可以大幅降低节流制冷器启动完成后制冷工质的消耗量。具有流量调节功能的微型节流制冷器进一步扩展了微型节流制冷器在红外探测器中的应用。
对于包含温度敏感的流量调节器的节流制冷器,制冷工质在流量调节器的作用下,工作时流量很小(1NL/min~5NL/min),并且经换热后直接排出到外界大气中。由于膨胀腔(冷端)与外界大气直接相通,膨胀腔(冷端)内的压力接近于外界大气压力,制冷工作温度为工质的沸点温度。例如采用氮气作为制冷工质时,节流制冷器的稳定工作温度为氮气在所处外界环境大气压力下的沸点,标准大气压力下的值约为77K。通常情况下由于海拔高度不同引起的大气压的改变相对较小,对节流制冷器的工作温度和工作温度稳定性影响有限。但是当红外探测器处于接近外太空环境时,外界大气压力将仅为数千帕(低气压环境),节流制冷器制冷工作时膨胀腔内的压力同步减小,制冷工质温度也将降低并可能出现凝固的情况,制冷工质将阻塞节流制冷器内的毛细肋片管(热交换器),导致节流制冷器制冷工作不稳定,影响了节流制冷器在低气压环境下的应用
发明内容
本发明的目的是克服微型节流制冷器在外界大气环境压力变化时制冷工作温度不稳定的缺点。提供了一种回流稳压结构,使微型节流制冷器即使在外界大气环境压力变化时仍然可以保持稳定的制冷工作温度。
本发明应用于微型节流制冷器的回流稳压结构技术方案为:回流稳压结构由集气法兰(3)、外密封圈(4)、内密封圈(5)、排气喷管(7)、锁紧螺母(8) 和回气座(9)组成,回流稳压结构整体布置在节流制冷器的进气接头(6)外侧,其中集气法兰(3)安装在杜瓦外管(10)和微型节流制冷器尾端,集气法兰(3) 通过外密封圈(4)与杜瓦外管(10)密封连接,同时集气法兰(3)还锁固杜瓦内管(12)内的节流制冷器;集气法兰(3)通过内密封圈(5)与进气接头(6) 密封连接,回气座(9)密封固定在集气法兰(3)上,回气座(9)的进气口与杜瓦外管(10)出气口相通,在回气座(9)出气口上安装有排气喷管(7)。
所述排气喷管(7)是采用长度为70毫米至300毫米、内径为0.8毫米至1.2 毫米的细长管。
所述排气喷管(7)是入口为2毫米至3毫米、出口为1毫米至2毫米、中段内径约20毫米至30毫米、喷管内壁呈光滑过渡的变径管。
所述排气喷管(7)扩展为一个排气组合件,引入外界压力控制排气流道开口大小。
本发明有益效果是:克服了传统微型节流制冷器的工作温度在大气压力变化情况下不稳定的缺点,在不改变红外探测器组件结构的条件下,仅在在红外探测器外、杜瓦和微型节流制冷器的尾端布置结构灵活的回流稳压结构,就可以确保节流制冷器在低气压环境下稳定工作。特别适合于红外探测器在高空、外太空环境下的应用。
附图说明
下面结合附图及实施例对本发明的具体实施方式作进一步详细说明。
图1是本发明采用内径不变 的细长管作为排气喷管的示意图。
图2是本发明采用变径管作为排气喷管的示意图。
图3是本发明采用排气组合件作为排气喷管的示意图。
图中,1—节流阀、2—肋片管、3—集气法兰、4—外密封圈、5—内密封圈、 6—进气接头、7—排气喷管、8—锁紧螺母、9—回气座、10—杜瓦外管、11—真空腔、12—杜瓦内管、13—芯轴、14—膨胀腔。
具体实施方式
本发明所采用的应用于微型节流制冷器的回流稳压结构,由集气法兰3、外密封圈4、内密封圈5、排气喷管7、锁紧螺母8、回气座9组成,布置在节流制冷器的进气接头6外侧,其中集气法兰3固定在杜瓦外管10上并与杜瓦外管 10通过外密封圈4密封;同时集气法兰3还锁固杜瓦内管12内的节流制冷器并通过内密封圈5与进气接头6密封,回气座9固定在集气法兰3上并与集气法兰 3密封,排气喷管7安装在回气座9上。
本发明将节流制冷器工作中在膨胀腔内节流制冷并经热交换器完成热交换的已回热的制冷工质收集并流经所预设的流道,再排出到外界。制冷工质在流经所预设的流道时产生流动阻尼,在节流膨胀腔与外界之间建立压力差,即使外界大气环境压力降低(低气压环境),也可使膨胀腔内压力保持相对稳定,从而稳定制冷工作温度。
节流制冷器工作时,高压工质经节流制冷器上的进气接头6从P1处进入,经肋片管2的毛细管内到达节流阀1处完成节流制冷,并经过肋片管2的外壁回流完成换热后,转变为已回热的低压工质。已回热的低压工质由于杜瓦和微型节流制冷器尾端的集气法兰3的存在,只能由固定在集气法兰3上的回气座9处经过排气喷管7排出。排气喷管7内所预设的流道使低压工质流过时产生流动阻尼,在节流制冷器的膨胀腔12与外界之间建立压力差。
当大气环境压力降低(低气压环境)时,由于节流制冷器的膨胀腔12与外界大气环境之间的压力差仍然存在,使节流制冷器工作时膨胀腔12内至多仅下降1个大气压,保持了相对稳定(例如膨胀腔12内气压如果为5个大气压,在低气压环境下工作时至多下降为4个大气压,此时制冷工质的沸点变化较小),从而达到稳定制冷工作温度的效果。
排气喷管7内所预设的流道可根据所需要适应的大气环境的不同和具体的空间位置设计为不同的方式,较为简单的方式是采用长度为70毫米至300毫米、内径为0.8毫米至1.2毫米的细长管。排气喷管合理采用一定长度的入口为2毫米至3毫米、出口为1毫米至2毫米、中段内径约20毫米至30毫米的内壁光滑过渡的变径管可以获得更好的效果。也可根据需要将排气喷管7扩展为一个排气组合件,引入外界压力控制排气流道开口大小,进一步排除外界大气压力的变化对节流制冷器工作时膨胀腔12内的压力的影响。
如图1所示,本发明所采用的应用于微型节流制冷器的回流稳压结构,由集气法兰3、外密封圈4、内密封圈5、排气喷管7、锁紧螺母8、回气座9组成,回流稳压结构布置在红外探测器外、杜瓦和微型节流制冷器的尾端,其中集气法兰3固定在杜瓦外管10上,通过外密封圈4实现与杜瓦外管10密封的同时,还压紧并通过内密封圈5密封节流制冷器进气接头6,回气座9固定在集气法兰3 上并密封,排气喷管7与回气座9采用锁紧螺母8紧固并密封。
节流制冷器正常插入杜瓦内管12后,由于杜瓦内管12杜瓦外管10之间形成的真空腔11的存在,节流制冷器头部(冷端)与杜瓦内管12底部之间形成绝热的膨胀腔14。
节流制冷器工作时,高压工质经节流制冷器上的进气接头6从P1处进入,流经肋片管2(换热器)后在节流阀1处喷出,产生节流制冷效应。节流后的低温、低压工质在杜瓦内管12内壁与芯轴13间的环形缝隙中流动并完成与肋片管 2内的高压工质的热交换。完成热交换已回热的低压工质由于集气法兰2上密封圈4和密封圈5的存在,只能由固定在集气法兰3上的回气座9处经过排气喷管 7在P2处排出。
在节流制冷器进入稳定的小流量自调工作状态以后,完成热交换已回热的低压工质在排气喷管7内所预设的流道内流动由于存在流动阻尼而产生压差,使得膨胀腔12内的压力将高于节流制冷器工作时所处大气环境压力,节流制冷器的稳定工作温度将提高。
在排气喷管7内所预设的流道可分为三类,简单的第一类直接采用一定长度的内径不变的细长管(图1所示);第二类采用可变内径细长管(见图2所示),能有效减小节流制冷器工作流量波动对膨胀腔压力的影响,从而进一步稳定制冷工作温度;第三类是将排气喷管7扩展为一个组合件(见图3所示)。除采用可变内径的流道外,还引入外界压力值作为反馈控制排气流道开口大小,即在外界压力减小时排气流道开口也减小,在外界压力提高时排气流道开口也变大,进一步排除外界大气压力的变化对节流制冷器工作时膨胀腔12内的压力的影响。在大气环境压力降低(低气压环境)的情况下,节流制冷器膨胀腔12与所处的低气压环境间的压差仍然存在。由于标准大气压力约为0.1MPa,因此即使节流制冷器在很高的真空环境下工作时膨胀腔12内的压力最多只降低0.1MPa。相对应的沸点温度将保持相对稳定。
以氮气作为制冷工质为例,假设制冷工质在排气喷管内流动的过程中压差为0.4MPa,那么节流制冷器在标准大气压下以氮气为工质工作时的稳定工作温度为94K(0.5MPa时的沸点)。当大气环境压力降至接近真空(<1000Pa)时,由于膨胀腔12与节流制冷器工作时所处的低气压环境间的压差仍然存在,节流制冷器工作时膨胀腔12内的压力降低为0.4MPa,相对应的沸点约为92K,保持了节流制冷器工作温度的相对稳定。
也就是说,在采用了本发明回流稳压结构以后,如果节流制冷器采用氮气作为制冷工质并稳定工作在94K,在大气环境转变为低气压环境后,仍然可以稳定工作在92K附近。在没有采用回流稳压结构的情况下,节流制冷器采用氮气作为制冷工质的稳定工作温度为77K。在大气环境转变为低气压环境后,例如0.01MPa的低气压环境,节流制冷器理论上制冷工作温度是接近于熔点的63K。试验证明在上述环境下节流制冷器制冷工作温度大幅波动且不稳定,实际上已不能适应低气压环境下的制冷工作。

Claims (2)

1.一种应用于微型节流制冷器的回流稳压结构,其特征在于回流稳压结构由集气法兰(3)、外密封圈(4)、内密封圈(5)、排气喷管(7)、锁紧螺母(8)和回气座(9)组成,回流稳压结构整体布置在节流制冷器的进气接头(6)外侧,其中集气法兰(3)安装在杜瓦外管(10)和微型节流制冷器尾端,集气法兰(3)通过外密封圈(4)与杜瓦外管(10)密封连接,同时集气法兰(3)还锁固杜瓦内管(12)内的节流制冷器;集气法兰(3)通过内密封圈(5)与进气接头(6)密封连接,回气座(9)密封固定在集气法兰(3)上,回气座(9)的进气口与杜瓦外管(10)出气口相通,在回气座(9)出气口上安装有排气喷管(7);
所述排气喷管(7)是入口管径为2~3毫米、出口管径为1~2毫米、中段内径20~30毫米,喷管内壁呈光滑过渡的变径管;或者
所述排气喷管(7)采用长度为70~300毫米、内径为0.8~1.2毫米的细长管的较为简单方式。
2.根据权利要求1所述的应用于微型节流制冷器的回流稳压结构,其特征在于所述排气喷管(7)扩展为一个排气组合件,引入外界压力控制排气流道开口大小。
CN201611009333.6A 2016-11-16 2016-11-16 一种应用于微型节流制冷器的回流稳压结构 Active CN106369892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611009333.6A CN106369892B (zh) 2016-11-16 2016-11-16 一种应用于微型节流制冷器的回流稳压结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611009333.6A CN106369892B (zh) 2016-11-16 2016-11-16 一种应用于微型节流制冷器的回流稳压结构

Publications (2)

Publication Number Publication Date
CN106369892A CN106369892A (zh) 2017-02-01
CN106369892B true CN106369892B (zh) 2019-06-14

Family

ID=57891089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611009333.6A Active CN106369892B (zh) 2016-11-16 2016-11-16 一种应用于微型节流制冷器的回流稳压结构

Country Status (1)

Country Link
CN (1) CN106369892B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405328A (zh) * 2017-08-17 2019-03-01 北京遥感设备研究所 一种提高j-t制冷红外探测器低气压下温度稳定性装置
CN113418726B (zh) * 2021-05-25 2023-03-03 中国电子科技集团公司第十一研究所 一种制冷器流量测试装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314473A (en) * 1965-07-16 1967-04-18 Gen Dynamics Corp Crystal growth control in heat exchangers
US3645113A (en) * 1969-02-17 1972-02-29 Hymatic Eng Co Ltd Cooling appartus of the joule thomson type
EP0582817A1 (de) * 1992-08-13 1994-02-16 BODENSEEWERK GERÄTETECHNIK GmbH Kühlsystem zum Abkühlen eines Kühlobjektes auf tiefe Temperaturen mittels eines Joule-Thomson-Kühlers
US5598711A (en) * 1995-12-20 1997-02-04 Lockheed Martin Corporation Fluid deflection method using a skirt
CN103423911A (zh) * 2012-06-25 2013-12-04 上海理工大学 制冷器
CN204268747U (zh) * 2014-12-01 2015-04-15 洪霖 一种具有盘管式换热管的微型节流制冷器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588645B2 (ja) * 2000-03-24 2004-11-17 住友重機械工業株式会社 ジュールトムソン型冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314473A (en) * 1965-07-16 1967-04-18 Gen Dynamics Corp Crystal growth control in heat exchangers
US3645113A (en) * 1969-02-17 1972-02-29 Hymatic Eng Co Ltd Cooling appartus of the joule thomson type
EP0582817A1 (de) * 1992-08-13 1994-02-16 BODENSEEWERK GERÄTETECHNIK GmbH Kühlsystem zum Abkühlen eines Kühlobjektes auf tiefe Temperaturen mittels eines Joule-Thomson-Kühlers
US5598711A (en) * 1995-12-20 1997-02-04 Lockheed Martin Corporation Fluid deflection method using a skirt
CN103423911A (zh) * 2012-06-25 2013-12-04 上海理工大学 制冷器
CN204268747U (zh) * 2014-12-01 2015-04-15 洪霖 一种具有盘管式换热管的微型节流制冷器

Also Published As

Publication number Publication date
CN106369892A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
CN106369892B (zh) 一种应用于微型节流制冷器的回流稳压结构
CN101592411B (zh) 冷冻循环装置
CN112213355B (zh) 一种超临界二氧化碳可视化流动传热实验系统
CN109733644A (zh) 一种低温推进剂空间在轨挤压分离的热力学排气系统
CN106766315B (zh) 一种具有两个节流孔的微型汉普逊节流制冷器
CN104704220A (zh) 用于排气再循环装置的真空绝热文氏管流量计
CN104359246A (zh) 涡流分离液体与喷射器引射的co2双温制冷系统
CN103727697B (zh) 高压气体涡流膨胀的二氧化碳低温制冷系统
CN105823282A (zh) 一种用于二氧化碳热泵系统优化运行的排气压力控制方法
CN112413917B (zh) 一种双层结构涡流管
CN103032134A (zh) 蒸汽动力热气体自身冷却系统
CN112082174A (zh) 燃油喷嘴、燃烧室、燃气轮机以及防止燃油喷嘴内燃油结焦的方法
CN104654647A (zh) 一种全冷流率范围自适应防冻堵涡流管
CN104406324B (zh) 一种改进的双级喷射式制冷系统
CN204254927U (zh) 涡流分离液体与喷射器引射的co2双温制冷系统
CN108168136B (zh) 一种用于声能制冷机的充气均压装置
CN103868294A (zh) 一种气液分离器及压缩机
CN109405328A (zh) 一种提高j-t制冷红外探测器低气压下温度稳定性装置
CN202195069U (zh) 多级阻尼取样阀
CN209638768U (zh) 新型闪蒸汽(bog)增压冷凝器
CN113418726B (zh) 一种制冷器流量测试装置
CN101995114A (zh) 利用高沸点物质引射预冷低沸点物质的节流制冷系统
CN209943067U (zh) 一种超临界二氧化碳压缩系统的分级调压系统
CN103615826B (zh) 内燃机余热双工质引射制冷系统
CN103615830B (zh) 内燃机余热两级引射制冷系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant