CN106365345A - 一种油气田压裂返排液的处理方法 - Google Patents

一种油气田压裂返排液的处理方法 Download PDF

Info

Publication number
CN106365345A
CN106365345A CN201610785954.7A CN201610785954A CN106365345A CN 106365345 A CN106365345 A CN 106365345A CN 201610785954 A CN201610785954 A CN 201610785954A CN 106365345 A CN106365345 A CN 106365345A
Authority
CN
China
Prior art keywords
tank
oil
gas field
discharge opeing
returns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610785954.7A
Other languages
English (en)
Other versions
CN106365345B (zh
Inventor
赵进官
张燚
李建山
陶新良
付秋
董淼
李蓓蓓
崔健
王永强
肖伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Oilfield Engineering Technology Co.,Ltd.
Original Assignee
HENAN OILFIELD ENGINEERING CONSULTING Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HENAN OILFIELD ENGINEERING CONSULTING Corp filed Critical HENAN OILFIELD ENGINEERING CONSULTING Corp
Priority to CN201610785954.7A priority Critical patent/CN106365345B/zh
Publication of CN106365345A publication Critical patent/CN106365345A/zh
Application granted granted Critical
Publication of CN106365345B publication Critical patent/CN106365345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

本发明公开了一种油气田压裂返排液的处理方法,包括以下步骤:(1)将返排液加入含有磁性材料的絮凝反应池中,然后加入包含氧化剂、助氧化剂、絮凝剂、助凝剂和杀菌剂的复合处理药剂,进行沉淀处理,得到固液混合物;(2)将经步骤(1)沉淀处理得到的固液混合物通过进水管进入沉淀池中,固体悬浮物沉降进入沉淀池底锥形沉泥斗中形成沉淀浆,液体从溢流堰流向缓冲水池,通过缓冲水池后,进入过滤装置,然后从过滤装置流出得到净化水。

Description

一种油气田压裂返排液的处理方法
技术领域
本发明涉及油气田压裂返排液处理领域,具体涉及一种油气田压裂反排液的处理方法。
背景技术
压裂是油气井增产、水井增注的有效措施之一。压裂液类型主要有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液和酸基压裂液等体系。目前国内压裂施工最常用的是水基压裂液,它具有高黏度、低摩阻、悬砂性好、对地层伤害小等优点。压裂液组成复杂,通常包括增黏剂、减阻剂、交联剂、破胶剂及调节剂、高温稳定剂、支撑剂、杀菌剂、表面活性剂等多种化学添加剂。
压裂作业排出的残余压裂液中,含有胍胶、石油类及其它各种添加剂,如果返排至地面的压裂液不经过处理而外排,将会对周围环境,尤其是农作物及地表水系造成污染。众多添加剂的加入使压裂返排液具有高COD值、高稳定性、高粘度等特点,其成分包括原油、地层水、难生物降解的水溶性高分子聚合物等有害物质。由于添加剂种类繁多,使COD的降低难度加大。特别是一些不易净化的亲水性有机添加剂,难以从废水中除去。压裂废液组成复杂,与压裂液种类、地层性质等有关。总的来说,压裂废液具有以下特点:①间歇排放,每口井排放量在n×102~n×103m3之间;②由于含有大量高分子有机物,COD浓度高,一般从数千到上万mg/L不等,且难以降解;③废液中石油类含量在10~1000mg/L之间。另外,根据现场施工状况,压裂废液还具有粘度大、浊度高、含盐量高等特点。
压裂返排液的处理方法有填埋法、焚烧法、固化法、混凝法、化学氧化法、微电解法和活性炭吸附等方法。填埋法只能应用在对环境要求不高、离人烟并且因难于集中回收的地带,这种只顾眼前的方法正在日益被淘汰。焚烧法要求压裂返排液能够具有燃烧性,即有机物含量达到足够高,并且这种方法会污染大气,形成二次污染。固化法采用生石灰、水泥等无机高分子物质为固化剂,将压裂返排液中的有害组分转化为固态,但将产生较大量的固体废物。混凝法通常需要先对压裂返排液进行破胶破乳,再用氯化铝、聚丙烯酰胺进行混凝处理,除去压裂返排液中的悬浮物。化学氧化法利用氧化反应将还原性的污染物断链分解,但完成深度氧化药剂加入量大,成本高,可在氧化破胶、破乳后与混凝等方法配合使用以降低成本。微电解法是利用金属腐蚀原理,在Fe和C之间形成无数的微电池系统,对废水中有机物进行氧化的工艺。但因为电位差很小,停留时间太长,针对性不强,作用效果很有限。且污水含硫时腐蚀生成的FeS可能在后续工序中结垢,影响正常生产。
综上可知,现有压裂返排液处理工艺普遍存在工艺流程复杂、操作不方便、劳动强度大、处理效果不稳定、处理效率低、药剂药效低及电耗高致使处理成本居高不下、处理站固定建站建设投资大、不能满足随油气田区块滚动开发拆迁转移要求等问题。因此,非常需要开发一种低成本、高效且节能环保的油气田压裂反排液的处理方法。
发明内容
为了解决上述问题,本发明提供了一种油气田压裂返排液的处理方法,包括以下步骤:
(1)将返排液加入含有磁性材料的絮凝反应池中,然后加入包含氧化剂、助氧化剂、絮凝剂、助凝剂和杀菌剂的复合处理药剂,进行沉淀处理,得到固液混合物;
(2)将经步骤(1)沉淀处理得到的固液混合物通过进水管进入沉淀池中,固体悬浮物沉降进入沉淀池底锥形沉泥斗中形成沉淀浆,液体从溢流堰流向缓冲水池,通过缓冲水池后,进入过滤装置,然后从过滤装置流出得到净化水。
在一种实施方式中,所述的油气田压裂返排液的处理方法,还包括将所述步骤(2)得到的沉淀浆输送到磁分离装置中,经过磁鼓吸附回收磁性材料,剩余的沉淀浆进入集水池内;回收的磁性材料经剥离装置剥离后,收入回收区内,然后将进入回收区的磁性材料再次加入到絮凝反应池中完成再利用;进入集水池的剩余沉淀浆进入脱水装置,经脱水机脱水形成浓缩沉淀浆。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述磁性材料为平均粒径为1~100微米的铁粉。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述絮凝反应池依次包含第一、第二以及第三区间,每个区间内各设置有一个搅拌装置,所述第一、第二以及第三区间通过隔板分隔,所述隔板的高度小于所述絮凝反应池侧壁的高度,返排液进口位于所述第一区间,所述第二区间内含有所述磁性材料。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述第一以及第三区内加入所述复合处理药剂。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述缓冲水池中间设置3个挡板,所述3个挡板相对于所述缓冲水池倾斜设置,位于中间的挡板底部设置有可以使水流通过的孔且顶部高于所述缓冲水池正常使用时液面的高度。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述缓冲水池底部设置有斜坡且所述斜坡沿水流方向降低。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述过滤装置由1-5个过滤罐并列连接组成。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述磁分离装置包括磁鼓和集水池。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述集水池上部设有进水区和回收区。
在一种实施方式中,所述絮凝反应池、沉淀池、缓冲水池、磁分离单元和脱水装置均安装于一个撬装式箱体内
总体而言,实施本发明具有以下优点:通过引入磁分离设备,优化处理设备结构,减少设备体积;合理的布置和集成设备、实现设备的撬装化。
附图说明
图1所示为本发明所述压裂返排液处理装置的示意图;
图2所示为本发明所述缓冲水池的主视图;
图3所示为本实发明所述缓冲水池的位于中间的隔板的结构示意图。
图中:1-絮凝反应池,111-隔板,112-隔板,121-区间,122-区间,123-区间,131-搅拌装置,132-搅拌装置,133-搅拌装置,2-沉淀池,21-进水管,22-挡板,23-溢流堰,24-沉泥斗,3-缓冲水池,31-挡板,32-挡板,33-挡板,321-孔,4-过滤装置,41-过滤罐,42-过滤罐,5-磁分离装置,51-磁鼓,52-集水池,521-进水区,522-回收区,6-脱水装置。
具体实施方式
如本文所用术语“由…制备”与“包含”同义。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
连接词“由…组成”排除任何未指出的要素、步骤或组分。如果用于权利要求中,此短语将使权利要求为封闭式,使其不包含除那些描述的材料以外的材料,但与其相关的常规杂质除外。当短语“由…组成”出现在权利要求主体的子句中而不是紧接在主题之后时,其仅限定在该子句中描述的要素;其它要素并不被排除在作为整体的所述权利要求之外。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1至5”时,所描述的范围应被解释为包括范围“1至4”、“1至3”、“1至2”、“1至2和4至5”、“1至3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
单数形式包括复数讨论对象,除非上下文中另外清楚地指明。“任选的”或者“任意一种”是指其后描述的事项或事件可以发生或不发生,而且该描述包括事件发生的情形和事件不发生的情形。
说明书和权利要求书中的近似用语用来修饰数量,表示本发明并不限定于该具体数量,还包括与该数量接近的可接受的而不会导致相关基本功能的改变的修正的部分。相应的,用“大约”、“约”等修饰一个数值,意为本发明不限于该精确数值。在某些例子中,近似用语可能对应于测量数值的仪器的精度。在本申请说明书和权利要求书中,范围限定可以组合和/或互换,如果没有另外说明这些范围包括其间所含有的所有子范围。
此外,本发明要素或组分前的不定冠词“一种”和“一个”对要素或组分的数量要求(即出现次数)无限制性。因此“一个”或“一种”应被解读为包括一个或至少一个,并且单数形式的要素或组分也包括复数形式,除非所述数量明显旨指单数形式。
本发明提供了一种油气田压裂返排液的处理方法,包括以下步骤:
(1)将返排液加入含有磁性材料的絮凝反应池中,然后加入包含氧化剂、助氧化剂、絮凝剂、助凝剂和杀菌剂的复合处理药剂,进行沉淀处理,得到固液混合物;
(2)将经步骤(1)沉淀处理得到的固液混合物通过进水管进入沉淀池中,固体悬浮物沉降进入沉淀池底锥形沉泥斗中形成沉淀浆,液体从溢流堰流向缓冲水池,通过缓冲水池后,进入过滤装置,然后从过滤装置流出得到净化水。
在一种实施方式中,所述的油气田压裂返排液的处理方法,还包括将所述步骤(2)得到的沉淀浆输送到磁分离装置中,经过磁鼓吸附回收磁性材料,剩余的沉淀浆进入集水池内;回收的磁性材料经剥离装置剥离后,收入回收区内,然后将进入回收区的磁性材料再次加入到絮凝反应池中完成再利用;进入集水池的剩余沉淀浆进入脱水装置,经脱水机脱水形成浓缩沉淀浆。
具体地,本发明的处理方法通过压裂返排液处理装置实现,如图1所示,它包括絮凝反应池1、沉淀池2、缓冲水池3、过滤装置4、磁分离装置5和脱水装置6;所述絮凝反应池1、所述沉淀池2、所述缓冲水池3和所述过滤装置4通过连接管道依次连通;所述沉淀池2、磁分离装置5和脱水装置6通过连接管道依次连通;所述磁分离装置5与所述絮凝反应池1通过连接管道连通。除此之外,每个所述连接管道上均沿液体流动方向依次设置有开关阀门和计量泵。
磁性材料
用于本申请的磁性材料并无特别限定,例如可以选自铁、钴以及镍中的一种或几种,优选地,所述磁性材料为平均粒径为1~100微米的铁粉;更优选地,所述磁性材料为平均粒径为10~80微米的铁粉;最优选地,所述磁性材料为平均粒径为60微米的铁粉。
复合处理药剂
用于本申请的复合处理药剂包含氧化剂、助氧化剂、絮凝剂、助凝剂和杀菌剂,并无特别限定,优选地,所述高效复合药剂,其包含:
100重量份的氧化剂;
10~30重量份的助氧化剂;
200~500重量份的絮凝剂;
100~150重量份的助凝剂;和
5~10重量份的杀菌剂;
其中,所述杀菌剂为同时接枝有哌嗪二酮酸以及季铵盐的改性低聚壳聚糖。
氧化剂
氧化技术是指在水处理过程中产生具有强氧化能力的自由基(·OH)氧化分解有机污染物的新型氧化技术。·OH的标准氧化还原电位高达2.8V,高于常见氧化剂(F2除外)的氧化能力。·OH能把水体中难降解的大分子有机物转化成低毒或无毒的小分子物质,或直接降解为CO2和H2O,改善其生化性,使水中的有机物接近于完全矿化。与常规氧化技术相比,高级氧化技术具有很多优点:①反应条件温和,大多数反应可以在常温下进行;②反应过程中产生大量的·OH;③反应速度快;④既可以单独进行,也可以作为生物处理前的预处理;⑤适用范围广。目前,用于压裂返排液处理的高级氧化技术主要有化学氧化、光催化氧化、电催化氧化、Fenton氧化、湿式空气氧化、超临界水氧化和超声波氧化等。
使用化学强氧化剂,能将难降解的有机物和无机物转化为微毒、无毒或易于分解的物质,主要有ClO2、H2O2、NaClO2、KMnO4、Cl2、O3和NaClO等。试验证明,这些氧化剂产生的氧化反应主要是自由基反应。本申请中,选择使用化学强氧化剂,并可得到更好的氧化效果。
在一种实施方式中,所述氧化剂选自次氯酸钠、亚氯酸钠、二氯异氰尿酸钠、二水二氯异氰尿酸钠、三氯异氰尿酸钠以及三氯异氰尿酸中的任意一种或多种;优选地,所述氧化剂选自二水二氯异氰尿酸钠、三氯异氰尿酸钠以及三氯异氰尿酸中的任意一种或多种;更优选地,所述氧化剂为二水二氯异氰尿酸钠以及三氯异氰尿酸钠按重量比1:1的混合物。
助氧化剂
用于本申请的助氧化剂并无特别限定,可以选自铁盐、锰盐以及铜盐中的任意一种或多种;优选地,所述助氧化剂为铁盐;更优选地,所述助氧化剂为氯化铁。
絮凝剂
絮凝作为废液处理的一种重要方法,是一种应用最广泛、最经济简便的水处理技术。絮凝达到高效能的关键在于投加性能优良的絮凝剂。由于有机合成高分子絮凝剂存在毒性及价格昂贵等原因,其在国内的应用受到一定限制。无机絮凝剂以其高效、适应性强、无毒、价廉的特点,在各种污水和废水的处理中得到了广泛的应用。无机絮凝剂主要是增加混凝固体的碰撞,使其水解产物附聚、架桥絮凝形成可沉降的或可过滤的絮凝物。常用的有铝盐、铁盐和氯化钙等,如硫酸铝钾(明矾)、氯化铝、硫酸铁、氯化铁。
本申请中,在一种实施方式中,所述絮凝剂为聚合氯化铝、碱式硫酸铝以及硫酸亚铁中的任意一种或多种;优选地,所述絮凝剂为聚合氯化铝与硫酸亚铁按重量比1:2的混合物。
助凝剂
助凝剂可用以改善絮凝体的结构,利用高分子助凝剂的强烈吸附架桥作用.使细小松散的絮凝体变得粗大而紧密,常用的有聚丙烯酰胺、活化硅酸、骨胶、海藻酸钠、红花树等。水溶性高分子聚合物如具有能与胶粒和细微悬浮物发生吸附的活性部位,那么它就能通过静电引力、范德华引力和氢键力等,将微粒搭桥联结为一个个絮凝体(俗称矾花)。这种作用就称为吸附桥联。聚合物的链状分子在其中起了桥梁和纽带的作用。这种网状结构的表面积很大,吸附能力很强,能够吸附粘土、有机物、细菌甚至溶解物质。
本申请中,在一种实施方式中,所述助絮凝剂为聚丙烯酰胺或聚季铵盐改性超支化磺化聚酰亚胺中的一种或两种;优选地,所述助絮凝剂为聚季铵盐改性超支化磺化聚酰亚胺。
在一种实施方式中,所述聚季铵盐改性磺化超支化聚酰亚胺由以下方法制备而成:
(1)聚季铵盐的制备
在100ml三颈瓶中,加入对二苄基溴0.1mol、1,4-二甲基哌嗪0.08~0.099mol以及溶剂N,N-二甲基甲酰胺250ml,40~60℃下反应10~24小时后,减压蒸馏去除溶剂,并用丙酮反复洗涤后,于真空烘箱中40℃下干燥得到聚季铵盐;
(2)磺化超支化聚酰亚胺的制备
在完全干燥的三口烧瓶中加入0.1摩尔的1,3,5-三(4-萘氧基-1,8-二酸)苯三酐以及300ml间甲酚,在氮气保护下搅拌,当1,3,5-三(4-萘氧基-1,8-二酸)苯三酐完全溶解后,加入0.2摩尔的磺化二胺、3摩尔的三乙胺以及2.0~4.0摩尔的苯甲酸,在室温下搅拌30min后,加热至75~85℃,反应3.5~4.5h,再在175~185℃下,反应3.5~4.5h;反应结束后,降至室温,即得磺化超支化聚酰亚胺反应溶液;
(3)聚季铵盐改性磺化超支化聚酰亚胺
往上述步骤(2)得到的磺化超支化聚酰亚胺反应溶液中加入0.1摩尔步骤(1)得到的聚季铵盐以及150ml二甲基亚砜,升温至50℃反应3h即得聚季铵盐改性磺化超支化聚酰亚胺。
在一种实施方式中,所述磺化二胺选自4,4'-二氨基二苯基-2,2'-二磺酸、4,4'-二氨基-3,3'-二甲基二苯甲烷-2,2'-二磺酸、4,4'-二氨基-2,2',3,3'-二甲基二苯甲烷-2,2'-二磺酸、4,4'-二氨基-2,2'-二甲基联苯-2,2'-二磺酸、4,4'-二氨基-3,3'-二甲基联苯-2,2'-二磺酸、4,4'-二氨基联苯-3,3'-二磺酸、2,6'-二氨基-1,3,5-三甲基苯磺酸、3,5-二氨基苯磺酸、4,4'-二氨基二苯醚-2,2'-二磺酸、3,4'-二氨基二苯醚-2,3'-二磺酸、4,4'-二氨基-1”,3”二苯氧基苯-5”-磺酸、3,3'-二氨基-1”,3”-二苯氧基苯-5”-磺酸、9,9'-双(4-氨基苯基)芴-2,7'-二磺酸、4,4'-二氨基-4”,4”'-二苯氧基联苯-3”,3”'-二磺酸、4,4'-二氨基-4”,4”'-二苯氧基-二苯基异丙烷-5”,5”'-二磺酸或4,4'-二氨基-1”,4”-二苯氧基-苯-2”-磺酸、2,2’-双(4-磺酸基苯氧基)联苯磺化二胺、3,3’-双(4-磺酸基苯氧基)联苯磺化二胺中任意一种或多种;优选地,所述磺化二胺选自2,2’-双(4-磺酸基苯氧基)联苯磺化二胺、3,3’-双(4-磺酸基苯氧基)联苯磺化二胺中任意一种或两种;更优选地,所述磺化二胺为3,3’-双(4-磺酸基苯氧基)联苯磺化二胺。
通过特殊的超支化结构以及磺化处理,聚季铵盐改性磺化超支化聚酰亚胺具有良好的水溶性,同时由于自身带有大量的磺酸基、季铵基团以及亚胺环,极性很强,可迅速与胶粒和细微悬浮物发生吸附,从而形成絮体快速沉淀,此外,聚季铵盐本身也具有一定的杀菌性能,可以与杀菌剂协同作用,提供本发明的有益技术效果。
杀菌剂
压裂返排液回收利用过程中,由于细菌的存在,常常引起基液粘度下降过快,因此通常需要使用杀菌剂。现有技术中,常规使用的杀菌剂包括羟丙基胍胶、KNF杀菌剂、亚氯酸纳型杀菌剂、季铵盐型表面活性剂杀菌剂以及37%~40%的甲醛溶液等。但是,由于压裂返排液中菌种复杂,使用上述常规杀菌剂往往难以得到良好的效果。
为了解决上述难题,本申请使用新型杀菌剂,所述杀菌剂为同时接枝有哌嗪二酮酸以及季铵盐的改性低聚壳聚糖。
在一种实施方式中,所述同时接枝有哌嗪二酮酸和季铵盐的改性低聚壳聚糖由以下方法制备而成:
(1)低聚壳聚糖接枝哌嗪二酮酸的制备
在100ml三颈瓶中,加入5g重均分子量为20000的低聚壳聚糖,5ml冰醋酸、10ml质量浓度为5%的过氧化氢溶液,搅拌,完全溶解后在55℃条件下保温5h;反应结束后,加入2ml甲醇、0.004g哌嗪二酮酸和0.014g哌嗪二酮磺酸,在室温条件下搅拌反应12h,得到反应液;用10wt%NaOH溶液调节反应液的pH至中性,过滤,用20ml丙酮浸泡10h,5ml丙酮洗涤,过滤,40℃减压干燥12h;
(2)再用哌嗪酮二酸改性的低聚壳聚糖上接枝季铵盐
在100ml三颈瓶中,依次加入0.1mol的1,12-二溴十二烷、0.016mol的N-甲基咪唑、0.011mol的吡啶、0.028mol的N-甲基吗啉、0.045mol的三乙胺以及50ml乙腈,50℃条件下反应8h后,得到含溴季铵盐混合溶液;
往上述反应溶液中,继续加入步骤(1)合成的低聚壳聚糖接枝哌嗪二酮酰胺、30ml丙酮、20wt%的NaOH水溶液,50℃温度下碱化3h,再在55℃条件下反应10h,反应结束后,降温至室温,最后出料浆;再用0.1mol/L的硫酸调节至中性,然后减压蒸馏去除溶剂,得到反应粗产物;将所述粗产物溶解在二甲基亚砜中,然后抽滤,并将滤液再次减压蒸馏去除二甲基亚砜后,得到同时接枝有哌嗪二酮酸和季铵盐的改性低聚壳聚糖。
由于在低聚壳聚糖上同时接枝有哌嗪二酮酸和多种季铵盐,所得的改性低聚壳聚糖对不同菌种均可达到很好的杀灭作用,因此提供了本发明的有益技术效果。
本发明的高效复合药剂可通过简单的混合得到,并无特别限制,但优选地,所述高效复合药剂由以下方法制备得到:
将氧化剂、助氧化剂、絮凝剂、助凝剂和杀菌剂加入固体搅拌机中,室温搅拌30min,搅拌速率为30~60转/分,得到高效复合药剂。
絮凝反应池
用于本申请的絮凝反应池依次包含第一、第二以及第三区间,每个区间内各设置有一个搅拌装置,所述第一、第二以及第三区间通过隔板分隔,所述隔板的高度小于所述絮凝反应池侧壁的高度,返排液进口位于所述第一区间,所述第二区间内含有所述磁性材料。
在一种优选地实施方式中,所述第一以及第三区内加入所述复合处理药剂。
具体地,如图1所示,所述的絮凝反应池1内设置有两个竖直隔板111和112,所述竖直隔板111和112将所述絮凝反应池1分隔为不连通的三区间121、122和123,且所述隔板111和112的高度低于所述絮凝反应池侧壁的高度,以便原水在装满区间121之后溢流进入区间122,区间122满之后可以溢流进入区间123。所述不连通的三个区间121、122和123内分别设置有一个搅拌装置131、132和133,所述搅拌装置由电动机驱动。所述絮凝反应池1侧壁上还设置有原水进口和水出口,所述原水进口和水出口分别设置在相对的侧壁上。
沉降池
本发明所述沉淀池没有特别限制,凡是能使杂质与水分离即可。优选地,如图1所示,所述沉淀池2为竖流沉淀池,在竖流沉淀池的中心设置有进水管21,使用时,水从设置竖流沉淀池中心的进水管21自上而下进入沉淀池2内,管下设置挡板22使水在池中均匀分布后沿整个过水断面缓慢上升,悬浮物沉降进入沉淀池底锥形沉泥斗24中,澄清过后的水从溢流堰23流出。
在竖流式沉淀池中,水流方向与颗粒沉淀方向相反,其截留速度与水流上升速度相等,上升速度等于沉降速度的颗粒将悬浮在混合液中形成一层悬浮层,对上升的颗粒进行拦截和过滤。因而竖流式沉淀池的效率比平流式沉淀池要高,占地面积小,在撬装时,节省空间,排泥系统设计更容易。
缓冲水池
用于本申请的缓冲水池中间设置3个挡板,所述3个挡板相对于所述缓冲水池倾斜设置,位于中间的挡板底部设置有可以使水流通过的孔且顶部高于所述缓冲水池正常使用时液面的高度。
在一种优选地实施方式中,所述的油气田压裂返排液的处理方法,其中,所述缓冲水池底部设置有斜坡且所述斜坡沿水流方向降低。
如图1、2、3所示,本发明所述缓冲水池3中间设置3个挡板31、32和33,所述挡板31、32和33相对与所述缓冲水池倾斜设置,倾斜方向为由进水口方向向出水口方向。在正常使用时,挡板31和挡板33低于所述缓冲水池3的液面高度,所述挡板32高于所述缓冲水池3的液面高度。所述挡板32的底部设置有可以使水流通过的孔321。所述缓冲水池3底部设置有斜坡34,所述斜坡34沿水流方向降低,所述斜坡34的坡度为1-15度。
使用时,水在缓冲水池3内经过挡板31的顶部、挡板32底部和挡板33的顶部到达出水口,增大了水的流动距离,进一步沉降水中杂质,且所述斜坡亦能增强沉淀效果,使所述缓冲水池3不仅具有稳定后续操作的压力和流速的作用还具有进一步沉淀的效果。
过滤装置
用于本申请的过滤装置4由1-5个过滤罐并列连接连接组成,优选地,如图1所示,所述过滤装置4有2-3个过滤罐41并列连接组成,以保证一个过滤罐饱和后进行更换或反冲洗操作时,其他过滤罐能正常工作,放置所述过滤装置4停止工作。
磁分离装置
用于本申请的磁分离装置包括磁鼓和集水池。
在一种实施方式中,所述的油气田压裂返排液的处理方法,其中,所述集水池上部设有进水区和回收区。
具体地,如图1所示,所述磁分离装置5包括磁鼓51和集水池52,所述集水池52上部设有进水区521和回收区522,所述磁鼓51和进水区521与回收区522紧密连接,所述磁鼓51可以转动且其上设置有微孔以使水能够通过,所述回收区522上设有剥离装置。在使用时,水进入集水池52的进水区521内,水必须经过磁鼓上的微孔才能进入集水池52内,在经过磁鼓51时,磁鼓51可以将磁性材料吸附在其表面,经过转动,在经过回收区522时,磁鼓51表面吸附的磁性材料被设置在回收区522上的剥离装置剥离下来,进入回收区522内,进而完成回收。而进入集水池52内的水则流向下一个处理单元。所述磁性材料为铁、钴、镍中的一种或几种。
脱水装置
用于本申请的所述脱水装置6没有特别限制,只要能达到浓缩废液目的的设备均可。优选地,本发明所述脱水装置为叠螺脱水机。
本申请的絮凝反应池、沉淀池、缓冲水池、磁分离单元和脱水装置均安装于一个撬装式箱体内。
总体而言,实施本发明具有以下优点:通过引入高效复合药剂和磁分离设备,优化处理设备结构,减少设备体积并同时提高了返排液的净化效果。
下面通过实施例对本发明进行具体描述。有必要在此指出的是,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,该领域的专业技术人员根据上述本发明的内容做出的一些非本质的改进和调整,仍属于本发明的保护范围。
原料:
A1:次氯酸钠
A2:二水二氯异氰尿酸钠
A3:三氯异氰尿酸钠
A4:二水二氯异氰尿酸钠以及三氯异氰尿酸钠按重量比1:1的混合物
B1:氯化铁
C1:碱式硫酸铝
C2:聚合氯化铝
C3:硫酸亚铁
C4:聚合氯化铝与硫酸亚铁按重量比1:2的混合物
D1:聚丙烯酰胺
D2:聚季铵盐改性磺化超支化聚酰亚胺,由以下方法制备而成:
(1)聚季铵盐的制备
在100ml三颈瓶中,加入对二苄基溴0.1mol、1,4-二甲基哌嗪0.095mol以及溶剂N,N-二甲基甲酰胺250ml,50℃下反应10小时后,减压蒸馏去除溶剂,并用丙酮反复洗涤后,于真空烘箱中40℃下干燥得到聚季铵盐;
(2)磺化超支化聚酰亚胺的制备
在完全干燥的三口烧瓶中加入0.1摩尔的1,3,5-三(4-萘氧基-1,8-二酸)苯三酐以及300ml间甲酚,在氮气保护下搅拌,当1,3,5-三(4-萘氧基-1,8-二酸)苯三酐完全溶解后,加入0.2摩尔的4,4'-二氨基二苯基-2,2'-二磺酸、3摩尔的三乙胺以及4.0摩尔的苯甲酸,在室温下搅拌30min后,加热至85℃,反应4.5h,再在185℃下,反应3.5h;反应结束后,降至室温,即得磺化超支化聚酰亚胺反应溶液;
(3)聚季铵盐改性磺化超支化聚酰亚胺
往上述步骤(2)得到的磺化超支化聚酰亚胺反应溶液中加入0.1摩尔步骤(1)得到的聚季铵盐以及150ml二甲基亚砜,升温至50℃反应3h即得聚季铵盐改性磺化超支化聚酰亚胺。
D3:聚季铵盐改性磺化超支化聚酰亚胺,由以下方法制备而成:
(1)聚季铵盐的制备
在100ml三颈瓶中,加入对二苄基溴0.1mol、1,4-二甲基哌嗪0.095mol以及溶剂N,N-二甲基甲酰胺250ml,50℃下反应10小时后,减压蒸馏去除溶剂,并用丙酮反复洗涤后,于真空烘箱中40℃下干燥得到聚季铵盐;
(2)磺化超支化聚酰亚胺的制备
在完全干燥的三口烧瓶中加入0.1摩尔的1,3,5-三(4-萘氧基-1,8-二酸)苯三酐以及300ml间甲酚,在氮气保护下搅拌,当1,3,5-三(4-萘氧基-1,8-二酸)苯三酐完全溶解后,加入0.2摩尔的4,4'-二氨基-2,2'-二甲基联苯-2,2'-二磺酸、3摩尔的三乙胺以及4.0摩尔的苯甲酸,在室温下搅拌30min后,加热至85℃,反应4.5h,再在185℃下,反应3.5h;反应结束后,降至室温,即得磺化超支化聚酰亚胺反应溶液;
(3)聚季铵盐改性磺化超支化聚酰亚胺
往上述步骤(2)得到的磺化超支化聚酰亚胺反应溶液中加入0.1摩尔步骤(1)得到的聚季铵盐以及150ml二甲基亚砜,升温至50℃反应3h即得聚季铵盐改性磺化超支化聚酰亚胺。
D4:聚季铵盐改性磺化超支化聚酰亚胺,由以下方法制备而成:
(1)聚季铵盐的制备
在100ml三颈瓶中,加入对二苄基溴0.1mol、1,4-二甲基哌嗪0.095mol以及溶剂N,N-二甲基甲酰胺250ml,50℃下反应10小时后,减压蒸馏去除溶剂,并用丙酮反复洗涤后,于真空烘箱中40℃下干燥得到聚季铵盐;
(2)磺化超支化聚酰亚胺的制备
在完全干燥的三口烧瓶中加入0.1摩尔的1,3,5-三(4-萘氧基-1,8-二酸)苯三酐以及300ml间甲酚,在氮气保护下搅拌,当1,3,5-三(4-萘氧基-1,8-二酸)苯三酐完全溶解后,加入0.2摩尔的9,9'-双(4-氨基苯基)芴-2,7'-二磺酸、3摩尔的三乙胺以及4.0摩尔的苯甲酸,在室温下搅拌30min后,加热至85℃,反应4.5h,再在185℃下,反应3.5h;反应结束后,降至室温,即得磺化超支化聚酰亚胺反应溶液;
(3)聚季铵盐改性磺化超支化聚酰亚胺
往上述步骤(2)得到的磺化超支化聚酰亚胺反应溶液中加入0.1摩尔步骤(1)得到的聚季铵盐以及150ml二甲基亚砜,升温至50℃反应3h即得聚季铵盐改性磺化超支化聚酰亚胺。
D5:聚季铵盐改性磺化超支化聚酰亚胺,由以下方法制备而成:
(1)聚季铵盐的制备
在100ml三颈瓶中,加入对二苄基溴0.1mol、1,4-二甲基哌嗪0.095mol以及溶剂N,N-二甲基甲酰胺250ml,50℃下反应10小时后,减压蒸馏去除溶剂,并用丙酮反复洗涤后,于真空烘箱中40℃下干燥得到聚季铵盐;
(2)磺化超支化聚酰亚胺的制备
在完全干燥的三口烧瓶中加入0.1摩尔的1,3,5-三(4-萘氧基-1,8-二酸)苯三酐以及300ml间甲酚,在氮气保护下搅拌,当1,3,5-三(4-萘氧基-1,8-二酸)苯三酐完全溶解后,加入0.2摩尔的2,2’-双(4-磺酸基苯氧基)联苯磺化二胺、3摩尔的三乙胺以及4.0摩尔的苯甲酸,在室温下搅拌30min后,加热至85℃,反应4.5h,再在185℃下,反应3.5h;反应结束后,降至室温,即得磺化超支化聚酰亚胺反应溶液;
(3)聚季铵盐改性磺化超支化聚酰亚胺
往上述步骤(2)得到的磺化超支化聚酰亚胺反应溶液中加入0.1摩尔步骤(1)得到的聚季铵盐以及150ml二甲基亚砜,升温至50℃反应3h即得聚季铵盐改性磺化超支化聚酰亚胺。
D6:聚季铵盐改性磺化超支化聚酰亚胺,由以下方法制备而成:
(1)聚季铵盐的制备
在100ml三颈瓶中,加入对二苄基溴0.1mol、1,4-二甲基哌嗪0.095mol以及溶剂N,N-二甲基甲酰胺250ml,50℃下反应10小时后,减压蒸馏去除溶剂,并用丙酮反复洗涤后,于真空烘箱中40℃下干燥得到聚季铵盐;
(2)磺化超支化聚酰亚胺的制备
在完全干燥的三口烧瓶中加入0.1摩尔的1,3,5-三(4-萘氧基-1,8-二酸)苯三酐以及300ml间甲酚,在氮气保护下搅拌,当1,3,5-三(4-萘氧基-1,8-二酸)苯三酐完全溶解后,加入0.2摩尔的3,3’-双(4-磺酸基苯氧基)联苯磺化二胺、3摩尔的三乙胺以及4.0摩尔的苯甲酸,在室温下搅拌30min后,加热至85℃,反应4.5h,再在185℃下,反应3.5h;反应结束后,降至室温,即得磺化超支化聚酰亚胺反应溶液;
(3)聚季铵盐改性磺化超支化聚酰亚胺
往上述步骤(2)得到的磺化超支化聚酰亚胺反应溶液中加入0.1摩尔步骤(1)得到的聚季铵盐以及150ml二甲基亚砜,升温至50℃反应3h即得聚季铵盐改性磺化超支化聚酰亚胺。
E1:瓜尔胶羟丙基三甲基氯化铵
E2:改性低聚壳聚糖,由以下方法制备而成:
(1)低聚壳聚糖接枝哌嗪二酮酸的制备
在100ml三颈瓶中,加入5g重均分子量为20000的低聚壳聚糖,5ml冰醋酸、10ml质量浓度为5%的过氧化氢溶液,搅拌,完全溶解后在55℃条件下保温5h;反应结束后,加入2ml甲醇、0.004g哌嗪二酮酸和0.014g哌嗪二酮磺酸,在室温条件下搅拌反应12h,得到反应液;用10wt%NaOH溶液调节反应液的pH至中性,过滤,用20ml丙酮浸泡10h,5ml丙酮洗涤,过滤,40℃减压干燥12h;
(2)再用哌嗪酮二酸改性的低聚壳聚糖上接枝季铵盐
在100ml三颈瓶中,依次加入0.1mol的1,12-二溴十二烷、0.016mol的N-甲基咪唑、0.011mol的吡啶、0.028mol的N-甲基吗啉、0.045mol的三乙胺以及50ml乙腈,50℃条件下反应8h后,得到含溴季铵盐混合溶液;
往上述反应溶液中,继续加入步骤(1)合成的低聚壳聚糖接枝哌嗪二酮酰胺、30ml丙酮、20wt%的NaOH水溶液,50℃温度下碱化3h,再在55℃条件下反应10h,反应结束后,降温至室温,最后出料浆;再用0.1mol/L的硫酸调节至中性,然后减压蒸馏去除溶剂,得到反应粗产物;将所述粗产物溶解在二甲基亚砜中,然后抽滤,并将滤液再次减压蒸馏去除二甲基亚砜后,得到同时接枝有哌嗪二酮酸和季铵盐的改性低聚壳聚糖。
实施例1
开动絮凝反应池1内的搅拌装置131、132和133,返排液从进口进入絮凝反应池1的区间121内,同时在区间121内加入复合处理药剂,通过搅拌装置131使絮凝剂与原水混合均匀,当区间121内水的高度高于隔板111时,水便溢流进入区间122内,在区间122内加入平均粒径为20微米的铁粉,经搅拌装置132搅拌混合均匀,当区间122内水的高度高于隔板112时,水便溢流进入区间123,在区间123内加入复合处理药剂,经搅拌装置133与水混合均匀;经过絮凝沉淀1处理后的水经出水口进入沉淀池2中心的进水管21,水从进水管21自上而下进入沉淀池2内,经管下设置的挡板22作用在池中均匀分布后沿整个过水断面缓慢上升,悬浮物沉降进入沉淀池底锥形沉泥斗24中形成沉淀浆,澄清过后的水从溢流堰23流向缓冲水池3;水在缓冲水池3内经过隔板31的顶部、隔板32底部和隔板33的顶部到达出水口,进入过滤单元4,水从过滤罐41和/或42的顶部进入,从过滤罐41和/或42的底部流出,从过滤单元4流出的即为净化水;
沉降进入沉淀池2底部的沉泥斗24中的沉淀浆输送到磁分离单元5的进水区521中,沉淀浆中的铁粉经过磁鼓51的吸附作用附着在磁鼓51的表面,剩余沉淀浆进入集水池52内;铁粉吸附在磁鼓51的表面后,随着磁鼓51的转动到回收区522,被设在回收区522上的剥离装置剥离下来,进入回收区522内;进入回收区522的铁粉可以再次加入到絮凝反应池1的区间122内完成再次利用;进入集水池52内的剩余沉淀浆则流向脱水装置6;进入脱水装置6的剩余沉淀浆经脱水机脱水便形成浓缩沉淀浆;
所述复合处理药剂的组成为100重量份的A1、10重量份的B1、200重量份的C1、100重量份的D1以及5重量份的E1。
实施例2
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为80微米,所述复合处理药剂的组成为100重量份的A1、30重量份的B1、500重量份的C1、150重量份的D1以及10重量份的E1。
实施例3
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A1、20重量份的B1、300重量份的C1、120重量份的D1以及8重量份的E1。
实施例4
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A2、20重量份的B1、300重量份的C1、120重量份的D1以及8重量份的E1。
实施例5
与实施例1的方法相同,其区别在于,所述复合处理药剂的组成为100重量份的A3、20重量份的B1、300重量份的C1、120重量份的D1以及8重量份的E1。
实施例6
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A4、10重量份的B1、200重量份的C1、100重量份的D1以及5重量份的E1。
实施例7
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A4、20重量份的B1、300重量份的C2、120重量份的D1以及8重量份的E1。
实施例8
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A4、20重量份的B1、300重量份的C3、120重量份的D1以及8重量份的E1。
实施例9
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A4、20重量份的B1、300重量份的C4、120重量份的D1以及8重量份的E1。
实施例10
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A4、20重量份的B1、300重量份的C4、120重量份的D2以及8重量份的E1。
实施例11
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A4、20重量份的B1、300重量份的C4、120重量份的D3以及8重量份的E1。
实施例12
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A3、20重量份的B1、300重量份的C4、120重量份的D4以及8重量份的E1。
实施例13
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A3、20重量份的B1、300重量份的C4、120重量份的D5以及8重量份的E1。
实施例14
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A3、20重量份的B1、300重量份的C4、120重量份的D6以及8重量份的E1。
实施例15
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A3、20重量份的B1、300重量份的C4、120重量份的D6以及8重量份的E2。
实施例16
与实施例1的方法相同,其区别在于,所述铁粉的平均粒径为60微米,所述复合处理药剂的组成为100重量份的A3、20重量份的B1、300重量份的C4、120重量份的D6以及8重量份的E2。
测试方法
对上述实施例1~15得到的水样在20℃进行测试,测试结果见表1。
表1
以上数据可以看出,通过絮凝反应池、沉淀池、缓冲水池、过滤单元、磁分离单元以及脱水装置的联合使用,同时改进生产工艺,并配合特定的高效处理药剂,可以在保证低成本且环保的情况下,对反排液进行高效处理,因此提供了本发明的有益技术效果。
前述的实例仅是说明性的,用于解释本公开的特征的一些特征。所附的权利要求旨在要求可以设想的尽可能广的范围,且本文所呈现的实施例仅是根据所有可能的实施例的组合的选择的实施方式的说明。因此,申请人的用意是所附的权利要求不被说明本发明的特征的示例的选择限制。而且在科技上的进步将形成由于语言表达的不准确的原因而未被目前考虑的可能的等同物或子物质替换,且这些变化也应在可能的情况下被解释为被所附的权利要求覆盖。

Claims (10)

1.一种油气田压裂返排液的处理方法,包括以下步骤:
(1)将返排液加入含有磁性材料的絮凝反应池中,然后加入包含氧化剂、助氧化剂、絮凝剂、助凝剂和杀菌剂的复合处理药剂,进行沉淀处理,得到固液混合物;
(2)将经步骤(1)沉淀处理得到的固液混合物通过进水管进入沉淀池中,固体悬浮物沉降进入沉淀池底锥形沉泥斗中形成沉淀浆,液体从溢流堰流向缓冲水池,通过缓冲水池后,进入过滤装置,然后从过滤装置流出得到净化水。
2.权利要求1所述的油气田压裂返排液的处理方法,还包括将所述步骤(2)得到的沉淀浆输送到磁分离装置中,经过磁鼓吸附回收磁性材料,剩余的沉淀浆进入集水池内;回收的磁性材料经剥离装置剥离后,收入回收区内,然后将进入回收区的磁性材料再次加入到絮凝反应池中完成再利用;进入集水池的剩余沉淀浆进入脱水装置,经脱水机脱水形成浓缩沉淀浆。
3.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述磁性材料为平均粒径为1~100微米的铁粉。
4.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述絮凝反应池依次包含第一、第二以及第三区间,每个区间内各设置有一个搅拌装置,所述第一、第二以及第三区间通过隔板分隔,所述隔板的高度小于所述絮凝反应池侧壁的高度,返排液进口位于所述第一区间,所述第二区间内含有所述磁性材料。
5.权利要求4所述的油气田压裂返排液的处理方法,其中,所述第一以及第三区内加入所述复合处理药剂。
6.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述缓冲水池中间设置3个挡板,所述3个挡板相对于所述缓冲水池倾斜设置,位于中间的挡板底部设置有可以使水流通过的孔且顶部高于所述缓冲水池正常使用时液面的高度。
7.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述缓冲水池底部设置有斜坡且所述斜坡沿水流方向降低。
8.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述过滤装置由1-5个过滤罐并列连接组成。
9.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述磁分离装置包括磁鼓和集水池。
10.权利要求1-2任一项所述的油气田压裂返排液的处理方法,其中,所述集水池上部设有进水区和回收区。
CN201610785954.7A 2016-08-30 2016-08-30 一种油气田压裂返排液的处理方法 Active CN106365345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610785954.7A CN106365345B (zh) 2016-08-30 2016-08-30 一种油气田压裂返排液的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610785954.7A CN106365345B (zh) 2016-08-30 2016-08-30 一种油气田压裂返排液的处理方法

Publications (2)

Publication Number Publication Date
CN106365345A true CN106365345A (zh) 2017-02-01
CN106365345B CN106365345B (zh) 2020-01-14

Family

ID=57899490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610785954.7A Active CN106365345B (zh) 2016-08-30 2016-08-30 一种油气田压裂返排液的处理方法

Country Status (1)

Country Link
CN (1) CN106365345B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935248A (zh) * 2017-12-27 2018-04-20 重庆工程职业技术学院 油气田废水处理工艺
CN108046382A (zh) * 2017-12-27 2018-05-18 重庆工程职业技术学院 用于油气田废水处理的复合处理剂
CN108373193A (zh) * 2018-03-30 2018-08-07 青岛理工大学 一种废酸还原水力混合装置
CN109160691A (zh) * 2018-10-09 2019-01-08 中国石油集团川庆钻探工程有限公司 一种页岩气压裂返排液处理方法
CN109209268A (zh) * 2018-10-19 2019-01-15 中国石油集团渤海钻探工程有限公司 利用还原性铁粉处理酸化返排液的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045534A1 (en) * 2001-12-21 2005-03-03 Industrial Technology Research Institute System and method for removing deep sub-micron particles from water
CN101568388A (zh) * 2007-01-09 2009-10-28 剑桥水技术公司 用于去除工业废水中溶解的污染物、颗粒污染物和油类污染物的系统和方法
CN201962164U (zh) * 2010-11-15 2011-09-07 袁光汉 钻井污泥浆处理系统
CN104478020A (zh) * 2014-12-09 2015-04-01 王宝辉 一种用于油田压裂返排液的高效破胶、破乳、脱硫和灭菌的药剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045534A1 (en) * 2001-12-21 2005-03-03 Industrial Technology Research Institute System and method for removing deep sub-micron particles from water
CN101568388A (zh) * 2007-01-09 2009-10-28 剑桥水技术公司 用于去除工业废水中溶解的污染物、颗粒污染物和油类污染物的系统和方法
CN201962164U (zh) * 2010-11-15 2011-09-07 袁光汉 钻井污泥浆处理系统
CN104478020A (zh) * 2014-12-09 2015-04-01 王宝辉 一种用于油田压裂返排液的高效破胶、破乳、脱硫和灭菌的药剂

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935248A (zh) * 2017-12-27 2018-04-20 重庆工程职业技术学院 油气田废水处理工艺
CN108046382A (zh) * 2017-12-27 2018-05-18 重庆工程职业技术学院 用于油气田废水处理的复合处理剂
CN107935248B (zh) * 2017-12-27 2019-04-09 重庆工程职业技术学院 油气田废水处理工艺
CN108046382B (zh) * 2017-12-27 2019-06-14 重庆工程职业技术学院 用于油气田废水处理的复合处理剂
CN108373193A (zh) * 2018-03-30 2018-08-07 青岛理工大学 一种废酸还原水力混合装置
CN109160691A (zh) * 2018-10-09 2019-01-08 中国石油集团川庆钻探工程有限公司 一种页岩气压裂返排液处理方法
CN109209268A (zh) * 2018-10-19 2019-01-15 中国石油集团渤海钻探工程有限公司 利用还原性铁粉处理酸化返排液的方法

Also Published As

Publication number Publication date
CN106365345B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
CN106365345A (zh) 一种油气田压裂返排液的处理方法
CN104710064B (zh) 一种含聚废液和压裂返排液的处理方法及装置
CN101560028B (zh) 一种污水物化处理方法及装置
CN110818184B (zh) 一种双氧水生产装置污水生化处理工艺
CA2248479A1 (en) Starch/cationic polymer combinations as coagulants for the mining industry
US20100032379A1 (en) Method for treatment of sludge or wastewater
CN105084614A (zh) 一种钻井废液处理方法
CN105565459B (zh) 一种聚合氯化铁—造纸污泥基胺化聚合物复合絮凝剂及其制备方法
CN104045179B (zh) 一种处理油气田压裂返排液的方法及其装置
CN109231619A (zh) 一种页岩气压裂返排废水的处理系统及工艺
CN104773880B (zh) 钻井污水处理工艺及设备
CN106145437B (zh) 一种油气田钻井压裂返排液的处理方法及系统
CN106542677A (zh) 一种三元复合驱油田采出水处理工艺
CN114477577A (zh) 一种超声波废水处理的装置及方法
CN105601057B (zh) 处理含亚甲基蓝废水的方法
CN102976535A (zh) 一种膜法脱盐工艺浓盐水处理回用方法
CN209383583U (zh) 一种页岩气压裂返排废水的处理系统
CN218910103U (zh) 一种处理高氟化物废水的化学沉淀吸附装置
CN102774897B (zh) 一种聚驱及二元复合驱-sp-污水的处理方法
CN102276083B (zh) 一种香蕉茎杆造纸浆废水的处理方法
CN107032557A (zh) 一种改性粘土辅助微生物处理高结垢油气田采出水的方法
CN107055919A (zh) 一种基于磁性微珠强化絮凝技术的海上采油污水的处理方法
JP2018061923A (ja) 染料廃水の処理方法
CN206396021U (zh) 一种环氧增塑剂废水的处理装置
CN210528652U (zh) 一种废水氧化混凝沉淀装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 450000 Henan, Zhengzhou, Henan province Henan Free Trade Zone, Zhengzhou area (Zheng Dong) Zhongxing South Road 90, Jiayi Eastern Mansion 21, 1-10.

Applicant after: Henan oilfield engineering consulting Limited by Share Ltd

Address before: 473132 Henan Wancheng Henan Oilfield Engineering Consulting Co., Ltd., Nanyang, China

Applicant before: Henan Oilfield Engineering Consulting Corporation

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 450000 room 0906-0909, 9 / F, building a, Ximei building, No. 6, Changchun Road, high tech Zone, Zhengzhou City, Henan Province

Patentee after: Henan Oilfield Engineering Technology Co.,Ltd.

Address before: 450000 Henan, Zhengzhou, Henan province Henan Free Trade Zone, Zhengzhou area (Zheng Dong) Zhongxing South Road 90, Jiayi Eastern Mansion 21, 1-10.

Patentee before: Henan oilfield engineering consulting Limited by Share Ltd.

CP03 Change of name, title or address