CN106361367A - 一种检测器的校正方法和使用该校正方法的装置及设备 - Google Patents

一种检测器的校正方法和使用该校正方法的装置及设备 Download PDF

Info

Publication number
CN106361367A
CN106361367A CN201611096516.6A CN201611096516A CN106361367A CN 106361367 A CN106361367 A CN 106361367A CN 201611096516 A CN201611096516 A CN 201611096516A CN 106361367 A CN106361367 A CN 106361367A
Authority
CN
China
Prior art keywords
detector
ratio
bearing calibration
grating sheet
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611096516.6A
Other languages
English (en)
Other versions
CN106361367B (zh
Inventor
刘炎炎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201611096516.6A priority Critical patent/CN106361367B/zh
Publication of CN106361367A publication Critical patent/CN106361367A/zh
Application granted granted Critical
Publication of CN106361367B publication Critical patent/CN106361367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors

Abstract

本发明涉及一种检测器的校正方法和使用该校正方法的装置及设备,该校正方法包括以下两个步骤:步骤1是通过测量栅格片倾斜角度或者利用CT机的不同焦点计算,而得到探测器的遮挡比例,步骤2是利用遮挡比例进行散焦校正。该方法可以有效避免因栅格片倾斜导致的图像产生弧状或条状伪影而引起的重新拆解和安装,从而快速、便捷地检测栅格片的倾斜角度并实现图像校正,避免伪影的产生。

Description

一种检测器的校正方法和使用该校正方法的装置及设备
技术领域
本发明涉及CT设备用光学元器件的校准方法,特别提供了一种检测器的校正方法以及使用该校正方法的装置及设备。
背景技术
CT机主要包括X射线管和探测器系统,如附图1所示,分别用于发射和接收X射线。对于CT机来说,成像利用的是直线传输的X射线,因此需要对改变了传输方向的X射线进行抑制。这些改变了传输方向的X射线就是散射X射线,散射X射线主要包括两种:一种是CT机本身固有的,即X射线管内的散射,也叫离焦散射(off-focal radiation),另一种是与成像样品有关的散射(scattering)。不管哪种散射,都可以使用防散射栅格片(Anti-scattering grid,ASG)来抑制。防散射栅格片是放置在探测器前方,正对焦点的一组金属片。在CT机的装配中,栅格片的安装要求比较精细,如果不能正对焦点,就会遮挡探测器,而且导致探测器的遮挡范围不均匀,进而导致伪影。然而,在CT机的生产实践中,栅格片非常难以保证在安装时正对焦点,很容易存在一些栅格片倾斜的情况。为了尽量克服该问题,CT设备在出厂前,一般都会检测栅格片的安装情况,如果发现栅格片倾斜角度较大,只能返工重新安装,否则会导致图像产生弧状或条状伪影。
发明内容
本发明所要解决的技术问题是通过算法解决栅格片安装不良导致的伪影,从而避免因栅格片倾斜引起图像伪影而导致的重复调整栅格片和返工安装,提高了生产效率。
为了克服现有技术中的不足,本发明提供了一种检测器的校正方法,是通过对X射线管内的散射(off-focal radiation)校正来进行,包括以下两个步骤:步骤1是通过测量栅格片倾斜角度或者利用CT机的不同焦点计算,而得到探测器的遮挡比例,步骤2是利用遮挡比例进行散焦校正(off-focal correction)。
进一步地,步骤1可以利用CT机提供的不同焦点,通过CT机的原始数据直接计算得到遮挡比例。具体地说,可以使用飞焦点(Flying focal spots)的两个焦点或单焦点的大小焦点。飞焦点是CT机通常提供的配置,通过对球管添加不同大小的高压,控制焦点在两个位置之间来回切换。对于没有提供飞焦点的CT机,一般提供两种焦点选项,两种焦点的尺寸不同,位置不同,可以满足不同剂量的需求。由于两个焦点的位置略有偏差,将两个焦点下的探测器响应做除法,如公式1,就可以发现有跳变的探测器通道。这些通道的栅格片安装有倾斜,而且正负号可以反映栅格片的倾斜方向。
公式1:Ratio=(A1/A2-1)
A1和A2分别为两个焦点下的探测器响应。
如附图2所示,(a)示意栅格片安装良好,两个焦点遮挡范围一致,(b)示意栅格片安装不佳,导致左侧探测器没有遮挡,而右侧探测器完全遮挡。对于(a)图,A1=A2,因此Ratio为0,表示栅格片对两侧探测器遮挡均匀。对于(b)图,A1=0,ratio=-1,表示栅格片将右侧探测器完全遮挡,由于栅格片向一侧倾斜,因此左侧探测器完全无遮挡。
或者,步骤1也可以采取角度仪器测量的方法得到栅格片倾斜角度,进而计算遮挡比例。
如附图3所示,使用角度仪器测量每个探测器两侧的栅格片倾斜角度α和β,则探测器遮挡比例可由公式3计算得到。
公式3:Ratio=(L*tanα+L*tanβ)/Width
其中L为栅格片的高度,Width为探测器宽度。
步骤2是利用遮挡比例来修正散焦校正的卷积核。散焦校正的常见方法是根据遮挡比例生成一系列卷积核,对每个探测器的响应进行卷积运算。
具体地说,在生成卷积核时,需要考虑探测器的遮挡情况,对于遮挡偏小的探测器,更多的散焦X射线可以进入,因此卷积核的长度需要增加;对于遮挡偏大的探测器,更少的散焦X射线可以进入,因此卷积核的长度需要减少。计算卷积核的公式为公式2。
公式2:Kernel=Iofffocus*Attfiltration*SASG*k*(1+ratio)
其中Iofffocus为散焦强度,Attfiltration为CT机滤过的衰减,SASG为防散射栅格片的理论遮挡,ratio为第一步得到的遮挡比例,k为比例系数,与系统的固有性质相关,可用于调节校正效果。
此外,本申请还提供了一种使用了上述校正方法的装置及设备。
进一步地,该装置及设备可以是非均匀遮挡检测器,也可以是能够使用上述校正方法的其他装置及设备。
经实践验证和对比后发现,采用上述校正方法可以有效避免因栅格片倾斜导致的图像产生弧状或条状伪影而引起的重新拆解和安装,从而快速、便捷地检测栅格片的倾斜角度并实现图像校正,避免伪影的产生。
同时,本发明还提供了将上述校正方法作为一项软件功能集成到装置及设备中,从而使得该装置及设备相比于现有装置及设备具有以下优势:采用本发明校正方法的装置及设备能够有效避免因栅格片倾斜导致的图像产生弧状或条状伪影,并能够快速、便捷地检测栅格片的倾斜角度来实现图像校正,避免伪影的产生。
附图说明
下面结合附图及实施方式对本发明作进一步详细的说明:
图1为本发明实施例中的CT设备基本原理示意图;
图2为利用焦点测量探测器遮挡比例示意图;
图3为利用角度仪器测量遮挡比例示意图;
图4为栅格片造成的探测器遮挡测量结果示意图;
图5为典型的散焦强度和滤过分布曲线图;
图6为卷积核修正效果图;
图7为校正效果图;
图8为根据角度仪器测量得到的遮挡比例分布图;
图9为根据角度分布得到的典型卷积核变化图;
图10为校正前后对比图。
具体实施方式
下面结合附图与实施例对本发明作进一步详细描述,但本领域技术人员根据以下实施例中具体方案的替换、转用或组合均包含于本发明的保护范围之内。
实施例1
一种检测器的校正方法,包括以下两个步骤:步骤1是通过测量栅格片倾斜角度或者利用CT机的不同焦点计算,而得到探测器的遮挡比例,步骤2是利用遮挡比例进行散焦校正(off-focal correction)。
步骤1是利用CT机提供的不同焦点,可以通过CT机的原始数据直接计算得到遮挡比例。比如使用飞焦点(Flying focal spots)的两个焦点或单焦点的大小焦点。由于两个焦点的位置略有偏差,将两个焦点下的探测器响应做除法,如公式1,就可以发现有跳变的探测器通道。这些通道的栅格片安装有倾斜,而且正负号可以反映栅格片的倾斜方向。
公式1:Ratio=(A1/A2-1)
A1和A2分别为两个焦点下的探测器响应。
如附图2所示,(a)示意栅格片安装良好,两个焦点遮挡范围一致,(b)示意栅格片安装不佳,导致左侧探测器没有遮挡,而右侧探测器完全遮挡。对于(a)图,A1=A2,因此Ratio为0,表示栅格片对两侧探测器遮挡均匀。对于(b)图,A1=0,ratio=-1,表示栅格片将右侧探测器完全遮挡,由于栅格片向一侧倾斜,因此左侧探测器完全无遮挡。
如附图4所示,一台装配完成的CT机依据步骤1测量得到的遮挡比例。图中的遮挡比例按照每个探测器模块进行平均,并展示出每个切片层的计算结果,从中可以观察到每个模块的栅格片安装情况。
步骤2是利用遮挡比例修正散焦校正的卷积核。散焦校正的常见方法是根据遮挡比例生成一系列卷积核,对每个探测器的响应进行卷积运算。在生成卷积核时,需要考虑探测器的遮挡情况,对于遮挡偏小的探测器,更多的散焦X射线可以进入,因此卷积核的长度需要增加,对于遮挡偏大的探测器,更少的散焦X射线可以进入,因此卷积核的长度需要减少。计算卷积核的公式为公式2。
公式2:Kernel=Iofffocus*Attfiltration*SASG*k*(1+ratio)
其中Iofffocus为散焦强度,Attfiltration为CT机滤过的衰减,SASG为防散射栅格片的理论遮挡,ratio为第一步得到的遮挡比例,k为比例系数,与系统的固有性质相关,可用于调节校正效果。
散焦强度可以通过金属板逐步遮挡X射线管测量得到,也可以根据X射线管的靶结构和射线窗尺寸理论计算得到,典型的散焦强度分布如附图5中的(a)所示。CT机滤过的衰减主要包括平板滤过和蝶形滤过,可通过滤过的尺寸计算得到,典型的滤过衰减分布如附图5中的(b)所示。防散射栅格片的理论遮挡是根据栅格片的设计角度计算而来。比例系数k是一个接近1的数值,由于X射线管散焦的程度不同,对于不同的CT机型,可能需要根据校正效果微调k。
卷积核变化效果如附图6所示,图中实线为考虑栅格片遮挡修正的卷积核,虚线为原始卷积核。
校正效果如附图7所示,(a)图圆圈处可见黑色条伪影,(b)图圆圈处伪影消失。
通过上述技术分析和图像对比后可以确认,采用上述校正方法可以有效避免因栅格片倾斜导致的图像产生弧状或条状伪影,能够快速、便捷地检测栅格片的倾斜角度并实现图像校正,避免伪影的产生。
实施例2
本实施例的步骤1中是通过使用单焦点的大小焦点来计算遮挡比例的,其他内容同于实施例1。计算中间结果和校正效果与实施例1一致。
实施例3
本实施例的步骤1中是通过角度仪器测量的方法得到栅格片倾斜角度,进而计算遮挡比例。其他内容同于实施例1。
如图3所示,使用角度仪器测量每个探测器两侧的栅格片倾斜角度α和β,则探测器遮挡比例可由公式3计算得到:
Ratio=(L*tanα+L*tanβ)/Width (公式3)
其中L为栅格片的高度,Width为探测器宽度。栅格片的倾斜角度α、β也可以通过x1、x2与栅格片高度L来计算得出。
如附图8所示,为根据角度仪器测量得到的遮挡比例分布。根据此角度分布得到的典型卷积核变化如附图9所示,校正前后的图像如附图10所示。
通过上述技术分析和图像对比后可以确认,采用上述校正方法可以有效避免因栅格片倾斜导致的图像产生弧状或条状伪影,能够快速、便捷地检测栅格片的倾斜角度并实现图像校正,避免伪影的产生。
实施例4
一种使用了实施例1、2或3中所述校正方法的装置及设备,该装置及设备可以是一种检测器,尤其可以是非均匀遮挡检测器,也可以是能够使用上述校正方法的其他装置及设备。本实施例中的装置及设备是将实施例1、2或3中所述的校正方法作为一项软件功能集成在该装置及设备中的,从而使得该装置及设备具有有效避免因栅格片倾斜导致的图像产生弧状或条状伪影,并能够快速、便捷地检测栅格片的倾斜角度来实现图像校正,避免伪影的产生。

Claims (10)

1.一种检测器的校正方法,其特征在于:是通过对X射线管内的散射校正来进行,包括以下两个步骤:步骤1是通过测量栅格片倾斜角度或者利用CT机提供的不同焦点计算,而得到探测器的遮挡比例,步骤2是利用遮挡比例进行散焦校正。
2.如权利要求1所述的校正方法,其特征在于:步骤1是利用CT机提供的不同焦点,通过CT机的原始数据直接计算得到遮挡比例。
3.如权利要求2所述的校正方法,其特征在于:步骤1中是使用飞焦点的两个焦点或使用单焦点的大小焦点来计算得到遮挡比例。
4.如权利要求1所述的校正方法,其特征在于:步骤1是采取角度仪器测量的方法得到栅格片倾斜角度,进而计算遮挡比例。
5.如权利要求1至4任一项所述的校正方法,其特征在于:步骤2是根据遮挡比例生成一系列卷积核,对每个探测器的响应进行卷积运算来进行散焦校正。
6.如权利要求5所述的校正方法,其特征在于:步骤2中用来计算卷积核的公式为:
Kernel=Iofffocus*Attfiltration*SASG*k*(1+ratio)
其中Iofffocus为散焦强度,Attfiltration为CT机滤过的衰减,SASG为防散射栅格片的理论遮挡,ratio为遮挡比例,k为比例系数。
7.如权利要求1至3任一项所述的校正方法,其特征在于:步骤1中用于计算遮挡比例的公式为:
Ratio=(A1/A2-1)
其中A1和A2分别为两个焦点下的探测器响应。
8.如权利要求1或4所述的校正方法,其特征在于:步骤1中用于计算探测器遮挡比例的公式为:
Ratio=(L*tanα+L*tanβ)/Width
其中L为栅格片的高度,Width为探测器宽度,α和β为使用角度仪器测量每个探测器两侧栅格片的倾斜角度。
9.使用如权利要求1至8任一项所述校正方法的装置及设备。
10.如权利要求9所述的装置及设备,其特征在于,该装置及设备是非均匀遮挡检测器,或者是能够使用该校正方法的其他装置及设备。
CN201611096516.6A 2016-12-01 2016-12-01 一种检测器的校正方法和使用该校正方法的装置及设备 Active CN106361367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611096516.6A CN106361367B (zh) 2016-12-01 2016-12-01 一种检测器的校正方法和使用该校正方法的装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611096516.6A CN106361367B (zh) 2016-12-01 2016-12-01 一种检测器的校正方法和使用该校正方法的装置及设备

Publications (2)

Publication Number Publication Date
CN106361367A true CN106361367A (zh) 2017-02-01
CN106361367B CN106361367B (zh) 2019-10-08

Family

ID=57892642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611096516.6A Active CN106361367B (zh) 2016-12-01 2016-12-01 一种检测器的校正方法和使用该校正方法的装置及设备

Country Status (1)

Country Link
CN (1) CN106361367B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110559001A (zh) * 2019-09-03 2019-12-13 明峰医疗系统股份有限公司 一种ct扫描仪散焦辐射强度分布测量方法
CN110621985A (zh) * 2017-07-03 2019-12-27 株式会社岛津制作所 X线计算机断层装置
WO2020206657A1 (zh) * 2019-04-11 2020-10-15 清华大学 多能量ct成像系统及其应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207888A (zh) * 1997-05-22 1999-02-17 西门子公司 用于生成x射线投影的计算机x射线断层造影机
US6052434A (en) * 1996-12-27 2000-04-18 Toth; Thomas L. X-ray tube target for reduced off-focal radiation
US6628744B1 (en) * 2002-09-26 2003-09-30 Koninklijke Philips Electronics N.V. Off-focal radiation correction in CT
CN101028195A (zh) * 2005-10-10 2007-09-05 西门子公司 对计算机断层造影系统进行辐射校正的方法
US20110235780A1 (en) * 2010-03-29 2011-09-29 Fujifilm Corporation Radiation imaging system and offset correction method thereof
JP2012070858A (ja) * 2010-09-28 2012-04-12 Fujifilm Corp 散乱x線除去用グリッド
JP2012192031A (ja) * 2011-03-16 2012-10-11 Shimadzu Corp 位置合わせ装置
CN103800025A (zh) * 2012-11-05 2014-05-21 上海联影医疗科技有限公司 Ct扫描仪及其散焦强度测量方法及散焦校正方法
CN103987320A (zh) * 2011-12-12 2014-08-13 株式会社日立医疗器械 X线ct装置以及散射x线校正方法
CN104166962A (zh) * 2014-07-29 2014-11-26 南京邮电大学 一种使用散射核方法的锥束ct散射校正方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052434A (en) * 1996-12-27 2000-04-18 Toth; Thomas L. X-ray tube target for reduced off-focal radiation
CN1207888A (zh) * 1997-05-22 1999-02-17 西门子公司 用于生成x射线投影的计算机x射线断层造影机
US6628744B1 (en) * 2002-09-26 2003-09-30 Koninklijke Philips Electronics N.V. Off-focal radiation correction in CT
CN101028195A (zh) * 2005-10-10 2007-09-05 西门子公司 对计算机断层造影系统进行辐射校正的方法
US20110235780A1 (en) * 2010-03-29 2011-09-29 Fujifilm Corporation Radiation imaging system and offset correction method thereof
JP2012070858A (ja) * 2010-09-28 2012-04-12 Fujifilm Corp 散乱x線除去用グリッド
JP2012192031A (ja) * 2011-03-16 2012-10-11 Shimadzu Corp 位置合わせ装置
CN103987320A (zh) * 2011-12-12 2014-08-13 株式会社日立医疗器械 X线ct装置以及散射x线校正方法
CN103800025A (zh) * 2012-11-05 2014-05-21 上海联影医疗科技有限公司 Ct扫描仪及其散焦强度测量方法及散焦校正方法
CN104166962A (zh) * 2014-07-29 2014-11-26 南京邮电大学 一种使用散射核方法的锥束ct散射校正方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110621985A (zh) * 2017-07-03 2019-12-27 株式会社岛津制作所 X线计算机断层装置
CN110621985B (zh) * 2017-07-03 2022-03-11 株式会社岛津制作所 X线计算机断层装置
WO2020206657A1 (zh) * 2019-04-11 2020-10-15 清华大学 多能量ct成像系统及其应用
CN110559001A (zh) * 2019-09-03 2019-12-13 明峰医疗系统股份有限公司 一种ct扫描仪散焦辐射强度分布测量方法

Also Published As

Publication number Publication date
CN106361367B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
Thomas et al. X-ray pinhole camera resolution and emittance measurement
CN109917445B (zh) X射线成像的散射估计和/或校正
CN107427271B (zh) X射线摄影装置
US9075153B2 (en) Method for correcting count rate drift in a quantum-counting detector, an X-ray system with a quantum-counting detector and a circuit arrangement for a quantum-counting detector
CN106687042B (zh) 用于生成对象的x射线投影的系统和方法
JP2007309930A (ja) X線検出器およびx線検出器の作動方法
US7626174B2 (en) X-ray detector with correction for scattered radiation
CN106255901B (zh) 校准光子探测器的方法、吸收滤波器组件和成像装置
CN106361367A (zh) 一种检测器的校正方法和使用该校正方法的装置及设备
JP4510823B2 (ja) 電磁放射線をコリメートするための装置
US9405021B2 (en) Detector for detecting x-ray radiation parameters
Lange et al. Numerical correction of X-ray detector backlighting
Cho et al. Measurements of x-ray imaging performance of granular phosphors with direct-coupled CMOS sensors
WO2015146691A1 (ja) X線撮影装置
US8917811B2 (en) Apparatus and method for dynamic calibration of spectral CT with rotating X-ray source and stationary energy discriminating detectors
Lewandowski et al. Noise evaluation of a digital neutron imaging device
Gopal et al. Validity of the line‐pair bar‐pattern method in the measurement of the modulation transfer function (MTF) in megavoltage imaging
Zhao et al. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis
Després et al. Physical characteristics of a low‐dose gas microstrip detector for orthopedic x‐ray imaging
Cao et al. The measurement of the presampled MTF of a high spatial resolution neutron imaging system
CN108078580B (zh) 放射成像方法及其系统
JP2008237835A (ja) 放射線撮像装置及び方法
Thomas et al. Pinhole camera resolution and emittance measurement
Bloomer et al. Measurements of small vertical beamsize using a coded aperture at diamond light source
US20210364663A1 (en) Method for correcting a spectral image

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 201807 2258 Chengbei Road, Jiading District, Shanghai

Patentee after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 2258 Chengbei Road, Jiading District, Shanghai

Patentee before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

CP01 Change in the name or title of a patent holder