CN106352864A - 硅微机械四通道循环流式平面双轴角速度传感器 - Google Patents

硅微机械四通道循环流式平面双轴角速度传感器 Download PDF

Info

Publication number
CN106352864A
CN106352864A CN201510415597.0A CN201510415597A CN106352864A CN 106352864 A CN106352864 A CN 106352864A CN 201510415597 A CN201510415597 A CN 201510415597A CN 106352864 A CN106352864 A CN 106352864A
Authority
CN
China
Prior art keywords
silicon plate
angular velocity
pet
jet
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510415597.0A
Other languages
English (en)
Inventor
朴林华
朴然
田文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201510415597.0A priority Critical patent/CN106352864A/zh
Publication of CN106352864A publication Critical patent/CN106352864A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/567Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
    • G01C19/5677Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
    • G01C19/5684Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Micromachines (AREA)

Abstract

本申请公开了一种硅微机械四通道循环流式平面双轴角速度传感器,该气流式角速度传感器包括四通道循环流式平面双轴角速度芯片、PCB电路板、底座、外壳、缓冲硅胶片和引线,角速度芯片包括PET上盖、上硅板、下硅板、PET底盖和压电陶瓷圆振子;压电陶瓷圆振子嵌入PET上盖上;上硅板上设置有射流网络;下硅板上设置有射流网络和四对分别位于不同射流敏感室的平行热线;PET上盖、上硅板、下硅板和PET底盖依次粘接构成所述四通道循环流式平面双轴角速度芯片。本申请的气流式角速度传感器的热线独立设置在四个不同的射流敏感室内分别与四个正交的射流敏感体进行热量交换,彼此独立,互不影响,不仅敏感的角速度稳定性好,而且能同时测量敏感轴平行于角速度芯片表面的两个正交(x、y)方向的角速度,双轴一体,两个方向上的角速度灵敏度几乎一致,便于实际应用。

Description

硅微机械四通道循环流式平面双轴角速度传感器
技术领域
本发明属于利用哥氏力偏转射流敏感体检测运动体角速度姿态参数的技术领域,尤其是涉及一种硅微机械四通道循环流式平面双轴角速度传感器。
背景技术
目前,以微机械振动陀螺为代表的微型角速度传感器,角速度芯片是由不同结构的振动部件构成,不仅在稍高加速冲击下容易断裂或损坏,而且在制作过程中为了减少阻尼需要真空封装使得其工艺复杂,造成长时间工作时会产生疲劳损坏。相比之下,气流式角速度传感器不需要振动部件,结构简单,有能承受高过载、寿命长和成本低等其它角速度传感器难以媲美的优点,其应用范围更广泛。中国专利89105999.7提出的高灵敏度压电射流角速度传感器,它由敏感器件的壳体、喷嘴体、敏感元件、压电泵、泵座、碟簧、锁紧螺母和外部电路系统以及机械系统组成,这种角速度传感器的敏感元件是用铜、铝或不锈钢等材料利用传统机械加工制作,敏感元件体积大,功率高,不能用于微型载体姿态测量和控制领域,它的热线是手工焊接,很难保证热线的平行度和垂直度,因此交叉耦合大,一致性差,很难批量生产,成本高。现有技术中用硅片制作射流网络,通常采用MEMS工艺在一个硅圆片的表面腐蚀出气流通道,由于硅片的厚度只有300μm左右,因此射流网络深度一般不及硅片厚度的一半,因此射流网络的尺度很小,气体容量小,与热线的热交换少,角速度传感器灵敏度会很小,无法实用化;它在硅圆片上实现压电泵驱动气体流动通常将压电泵振子有效变形面积与气流通道的截面积相对应,以便使压电泵振子的变形方向(振动方向)沿着硅圆片横向方向(与硅圆片表面垂直的截面积方向)与气流通道的长度方向一致,因此压电泵振子的大小往往小于1×1mm,这在实际工艺中很难实现粘接,同时由于压电泵振子尺寸过小,驱动气体的能力弱,气流速度小,角速度传感器灵敏度小。在现有技术中采用MEMS工艺在硅片上很难实现二维热线(热敏电阻)的制作,同时也很难形成二维维射流敏感体,因此一个微机械气流式角速度传感器不能同时敏感两个方向的角速度,只能敏感一个方向上的角速度,如构成双轴测量需要组合安装,由安装距离引起的误差大,成本也高。
因此,如何克服上述问题成为本领域技术人员亟需解决的技术难题。
发明内容
针对背景技术中存在的问题,本发明的目的在于提供一种硅微机械四通道循环流式平面双轴角速度传感器(平面双轴角速度传感器是指两个正交的角速度敏感轴x、y平行于角速度芯片表面的角速度传感器),该气流式角速度传感器不仅实现了压电陶瓷圆振子变形方向和射流网络平面的转向,压电陶瓷圆振子的面积大,驱动能力强,射流速度大,气流式角速度传感器的灵敏度高,而且热线独立设置在四个不同的射流敏感室内分别与四个正交的射流敏感体进行热量交换,彼此独立,互不影响,不仅敏感的角速度稳定性好,而且能同时测量敏感轴平行于角速度芯片表面的两个正交(x、y)方向的角速度,双轴一体,两个方向上的角速度灵敏度几乎一致,便于实际应用。
本发明的目的是通过以下技术方案来实现的:
一种硅微机械四通道循环流式平面双轴角速度传感器,所述气流式角速度传感器由四通道循环流式平面双轴角速度芯片、PCB电路板、底座、外壳、缓冲硅胶片、引线组成,所述的缓冲硅胶片、四通道循环流式平面双轴角速度芯片和与其实现电气连接的PCB电路板依次装在底座上,扣上外壳密封,电源和信号经底座上玻璃灌装的引线引出,所述四通道循环流式平面双轴角速度芯片包括PET盖板、硅板和PET底座;其中,
所述压电陶瓷圆振子嵌入至所述PET上盖上;所述上硅板上设置有射流网络;所述下硅板上设置有射流网络和热线;所述PET上盖、上硅板、下硅板和PET底盖依次粘接构成所述角速度芯片。
进一步,所述PET上盖的中心开设一圆形泵槽,在所述泵槽的中心开设一圆形泵孔,泵槽的边缘为一高度为PET上盖厚度1/2的台阶,将所述压电陶瓷圆振子粘接在所述台阶上。
进一步,所述上硅板与所述圆形泵孔对应处开设一形状尺寸与圆形泵孔相同的圆柱形泵腔,在所述泵腔圆周上等距离开口形成四个截面为倒梯形的排气孔,所述排气孔的末端为四个排气口;所述排气口外设置一圆环形排气室;以所述排气室的圆心为中心,在圆环形排气室的圆周上放射状交替均匀开设两组共八个长方形孔;其中,四个所述排气孔对应四个集流槽;与四个所述集流槽相邻的是四个上敏感射流孔,所述上敏感射流孔的始端与所述排气室相通;所述集流槽的末端和所述上敏感射流孔的末端由圆环形回流槽连通。
进一步,所述集流槽与所述排气室相通处做倒梯形过渡,与所述排气口对应,并在所述梯形过渡的短边扩张形成四个正方形的储气井,所述储气井的边长为倒梯形过渡的长边,所述集流槽的末端的宽度大于集流槽始端的宽度;所述上敏感射流孔的宽度为所述集流槽的2倍,其末端向所述圆环形回流槽延伸形成四个长方形喷嘴孔,所述长方形喷嘴孔的长度为上敏感射流孔长度的1/11。
进一步,所述下硅板上开设与所述上硅板上的四个上射流敏感孔位置相互对应、大小形状完全相同的四个下敏感射流孔,在下硅板的表面设置两对平行热线,所述两对平行热线用于敏感x、y两个方向角速度;所述上硅板和下硅板粘接以后形成的气体空间为射流网络,粘接上所述PET上盖和所述PET底盖后构成封闭的射流网络;所述泵腔、泵孔和泵槽构成泵室。
进一步,所述射流网络由所述泵室、四个排气口、排气室、四个集流槽的始端的进口、储气井、圆环形回流槽、四个喷嘴孔末端的喷嘴口、四个上敏感射流孔和四个下敏感射流孔组成的四个射流敏感室A、B、C、D以及所述射流敏感室A、B、C、D的末端的出口构成。
进一步,敏感x方向角速度的一对平行热线分别设置在两个对称的射流敏感室B、D内中间的下硅板表面;敏感y方向角速度的一对平行热线分别设置与射流敏感室B、D正交的两个对称的射流敏感室A、C内中间的下硅板表面;两对热线的长度方向分别与射流敏感室A、B、C、D的轴线垂直。
进一步,所述压电陶瓷圆振子的激励电压由所述PCB电路板上的压电泵驱动电路提供。
进一步,所述热线由高温度系数的金属钨、SiO2和Si构成,所述下硅板的边缘被覆电极,所述PET上盖和上硅板开相应的开口以便露出下硅板的电极,便于与PCB电路板实现电气连接。
进一步,所述PET上盖和PET底盖利用PET薄板采用高精度激光切割成型加工工艺制作,所述上硅板和下硅板采用标准的MEMS工艺制作。
进一步,所述压电陶瓷圆振子的直径略大于所述圆形泵槽的直径,便于粘接在所述台阶上。
本发明具有以下积极的技术效果:
(1)能同时敏感两个正交方向(X、Y)角速度,双轴一体。
(2)热线独立设置在四个不同的射流敏感室内分别与四个正交的射流敏感体进行热量交换,彼此独立,互不影响,角速度稳定性好。
(3)用一个压电陶瓷圆振子驱动四通道循环流,不仅结构简单,寿命长,功耗低,同时实现了压电陶瓷圆振子变形方向和射流网络平面的转向,压电陶瓷圆振子的面积大,驱动能力强,射流速度大,气流式角速度传感器的灵敏度高。
(4)采用的光刻技术能保证角速度芯片中热线的正交性和垂直度,交叉耦合小,一致性好。
附图说明
图1为本申请的立体图;
图2为本申请的循环流式平面双轴角速度芯片分体状态的立体图;
图3为本申请的PET上盖的立体图;
图4为本申请的上硅板的立体图;
图5为本申请的下硅板的立体图;
图6为本申请的信号处理电路的示意图;
图7为本申请的惠斯登电桥的示意图;
图8为本申请的硅微机械四通道循环流式平面双轴角速度传感器的灵敏度曲线。
图中标号说明:1-双通道循环流式平面双轴角速度芯片;2-PCB电路板;3-底座;4-外壳;5-缓冲硅胶片;6-引线;7-PET上盖;8-上硅板;9-下硅板;10-PET底盖;11-压电陶瓷圆振子;12-泵槽;13-泵孔;14-台阶;15-泵腔;16a、16b、16c、16d-排气孔;17a、17b、17c、17d-排气口;18-排气室;19a、19b、19c、19d-集流槽;20a、20b、20c、20d-上敏感射流孔;21a、21b、21c、21d-储气井;22a、22b、22c、22d-喷嘴孔;23-回流槽;24a、24b、24c、24d-下敏感射流孔;25a和25b、26a和26b-两对平行热线;27泵室;28a、28b、28c、28d-排气孔末端排气口;29a、29b、29c、29d-进口;30a、30b、30c、30d-喷嘴口;A、B、C、D-射流敏感室;31a、31b、31c、31d-出口;32-压电泵驱动电路;33a、33b-惠斯登电桥。
具体实施方式
下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这 里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
为了易于说明,在这里可以使用诸如“上”、“下”“左”“右”等空间相对术语,用于说明图中示出的一个元件或特征相对于另一个元件或特征的关系。应该理解的是,除了图中示出的方位之外,空间术语意在于包括装置在使用或操作中的不同方位。例如,如果图中的装置被倒置,被叙述为位于其他元件或特征“下”的元件将定位在其他元件或特征“上”。因此,示例性术语“下”可以包含上和下方位两者。装置可以以其他方式定位(旋转90度或位于其他方位),这里所用的空间相对说明可相应地解释。
如图1所示,本发明硅微机械四通道循环流式平面双轴角速度传感器由四通道循环流式平面双轴角速度芯片1、PCB电路板2、底座3、外壳4、缓冲硅胶片5、引线6组成,缓冲硅胶片5、四通道循环流式平面双轴角速度芯片1和与其实现电气连接的PCB电路板2依次装在底座上3,扣上外壳4密封,电源和信号经底座3上玻璃灌装的引线6引出。四通道循环流式平面双轴角速度芯片1包括PET(聚对苯二甲酸乙二醇酯)上盖7、上硅板8、下硅板9、PET底盖10和压电陶瓷圆振子11(如图2所示)。
四通道循环流式平面双轴角速度芯片1由嵌入压电陶瓷圆振子11的PET上盖7、有射流网络的上硅板8、有射流网络和表面设置热线的下硅板9和PET底盖10等四层正方形平板粘接而成。
如图3所示,PET上盖7的中心开直径为平板边长1/2的圆形泵槽12,在泵槽12的中心开一圆形泵孔13,直径为泵槽12半径的1/2。在泵槽12的边缘为一高度为PET上盖厚度1/2的台阶14,将压电陶瓷圆振子11粘接在此台阶14上。
如图4所示,上硅板8与PET上盖7圆孔对应处开一形状尺寸与其相同的圆柱形孔为泵腔15,在泵腔15圆周上等距离开口形成四个截面为倒梯形的排气孔16a、16b、16c、16d,其末端为排气口17a、17b、17c、17d。排气口17a、17b、17c、17d与一圆环形排气室18联通。以排气室18的圆心为中心,在圆环形排气室18的圆周上放射状交替均匀开两组共八个长方形孔。其中,四个排气孔16a、16b、16c、16d对应四个集流槽19a、19b、19c、19d。与集流槽19a、19b、19c、19d相邻的是四个上敏感射流孔20a、20b、20c、20d,其始端与排气室18内相通。在集流槽19a、19b、19c、19d与排气室18相通处做倒梯形过 渡,与排气口对应,并在此梯形过渡的短边扩张形成四个正方形的储气井21a、21b、21c、21d,其边长为倒梯形过渡的长边,集流槽19a、19b、19c、19d的末端的宽度略大于其始端。上敏感射流孔20a、20b、20c、20d的宽度为所述集流槽19a、19b、19c、19d的2倍,其末端向所述圆环形回流槽延伸形成四个长方形喷嘴孔22a、22b、22c、22d,长方形喷嘴孔22a、22b、22c、22d的长度为上敏感射流孔长度的1/11。集流槽19a、19b、19c、19d的末端和上敏感射流孔20a、20b、20c、20d的末端由圆环形回流槽23联通,并彼此交替均匀对称地分布在回流槽23上。如图5所示,下硅板9开与上硅板8的四个上敏感射流孔20a、20b、20c、20d位置相互对应的大小形状完全相同彼此对称正交分布四个下敏感射流孔24a、24b、24c、24d,在下硅板9的表面设置两对平行热线25a和25b、26a和26b。上硅板8和下硅板9粘接以后形成的气体空间为射流网络,加上PET上盖7和PET底盖10从而构成封闭的射流网络。三个圆柱形构成的泵腔15、泵孔13和泵槽12构成泵室27。射流网络由与压电陶瓷圆振子相互对应的泵室27、排气孔末端排气口17a、17b、17c、17d、排气室18、集流槽19a、19b、19c、19d的始端的进口28a、28b、28c、28d、储气井21a、21b、21c、21d、圆环形回流槽23、喷嘴孔22a、22b、22c、22d末端的喷嘴口29a、29b、29c、29d、上敏感射流孔20a、20b、20c、20d和下敏感射流孔24a、24b、24c、24d组成的射流敏感室A、B、C、D以及射流敏感室A、B、C、D的末端的出口30a、30b、30c、30d构成。
敏感x方向角速度的一对平行热线25a和25b分别设置在两个对称的射流敏感B、D室中间的下硅板9表面。敏感y方向角速度的一对平行热线26a和26b分别设置与射流敏感B、D室的正交的两个对称的射流敏感室A、C中间下硅板9表面。两对平行热线25a和25b、26a和26b的长度方向分别与射流敏感室A、B、C、D的轴线垂直。压电陶瓷圆振子11的激励电压由pcb电路板2上的压电泵驱动电路31提供,在交变电压的作用下沿着四通道循环流式平面双轴角速度芯片1厚度方向变形,驱动气体流动,由于进口29a、29b、29c、29d截面小于出口30a、30b、30c、30d截面,利用在相同压力变化条件下进口和出口之间产生的气体阻力代替单向阀的作用,实现气体由进口28a、28b、28c、28d进,从出口30a、30b、30c、30d出的定向流动。气流中心平面和热线不共面,所在平面相距几百微米。热线25a和25b、26a和26b由高温度系数的金属钨、Si02和Si构成,下硅板9的边缘被覆电极,PET上盖7和上硅板8开相应的口以便露 出下硅板9的电极,便于与pcb电路板2实现电气连接。pcb电路板2中有信号处理电路,主要是电源、压电泵驱动电路31、惠斯登电桥32a和32b,如图6、7所示。热线25a和25b分别作为敏感x方向角速度的惠斯登电桥32a的两个臂;热线26a和26b分别作为敏感y方向角速度的惠斯登电桥32b的两个臂;当有角速度输入时,由喷嘴喷出射流发生偏转,与相应的热线发生的热量交换,使热线阻值改变,从而电桥失去平衡,输出与角速度成正比的电压信号VX、VY
本申请的优点是:
(1)成功构建了四个循环流动的能同时敏感两个正交方向(X、Y)角速度的射流敏感体,双轴一体,灵敏度高。
(2)热线独立设置在四个不同的射流敏感室内分别与四个正交的射流敏感体进行热量交换,彼此独立,互不影响,角速度稳定性好。
(3)一一个压电陶瓷圆振子驱动四个通道的气流流动,实现了压电陶瓷圆振子变形方向和射流网络平面的转向,即实现了压电振子可以在硅片平面上设置,而不是在硅片的侧面粘接压电陶瓷圆振子,因此压电陶瓷圆振子的面积可以做得很大,驱动能力强,射流速度大,气流式角速度传感器的灵敏度高。
(4)利用硅片的整体厚度制作射流网络,得到相当于硅片厚度2倍尺度的射流网络,气体容量多,射流与热线的热交换多,角速度传感器的灵敏度高。
优选地,本申请的四通道循环流式平面双轴角速度芯片的PET上盖和PET底盖利用PET薄板采用成熟的高精度激光切割成型加工工艺制作,上硅板、下硅板采用标准的MEMS工艺制作。其工艺如下:
(1)在一个厚为200μm的下硅片9(衬底)上下各形成一个热氧化层SiO2作为绝缘层。
(2)硅片上表面溅射大约0.3μm厚的有高TCR(温度系数)的金属层,如钨,用光刻技术在下硅片的形成四个射流敏感室A、B、C、D和两对悬空的热线25a和25b、26a和26b。
(3)PET上盖7和PET底盖10可以在厚度为1.5mm的PET上通过高精度激光切割成型输入设计好的相应图形加工而成,PET底盖背面的台阶表面溅射一层金属电极,粘贴压电陶瓷圆振子11。
(4)将上硅板8与PET上盖7板粘接,用深反应离子刻蚀在上硅板8上形成射流网络。
(5)将有压电陶瓷圆振子11的PET底盖10倒置和下硅片9的背面粘接。
(6)将含有PET上盖7的上硅板8和下硅板9键合,并将下硅板9和PET底盖10粘接形成角速度芯片。
上述加工方式的优点是:
(1)热线采用的光刻技术能保证角速度芯片中热线的正交性和垂直度,交叉耦合小。
(2)充分利用了两个硅片的厚度构建射流网络,PET上盖和底盖只起到封闭气流网络的作用。两个硅片键合,减小了不同材料失配造成热应力的长期失衡和释放,没有热应力的失配产生的蠕变,气流式角速度传感器的长期稳定性好。这种结构的角速度传感器既充分利用了硅片可以制作热线的优点,又同时考虑了PET制作气流通道的廉价、易加工性,因此角速度传感器的稳定性好、成本低,这种层状结构的微型角速度传感器为全硅结构气流式角速度传感器成本的1/10。
(3)该角速度传感器利用标准体硅MEMS工艺和成熟的微型压电泵制造技术,热线(热敏电阻)与射流中心轴平行,气流通道和热线能在一个硅片上制作,可将多轴角速度传感器兼容并集成在单个芯片上,适合批量生产,成本低,有利于早日商品化。
热线的敏感机理遵循能量交换原理,当输入角速度的方向不同时,偏转的方向也不同,从而对两根热线的影响也不同,这样就可以辨识出角速度的方向。
当有沿着x(y)轴角速度作用传感器时,气流束的偏移量δx、δy
δ x = δ y = ω x × L x 2 V x = ω y × L y 2 V y - - - ( 1 )
式中,Lx(Ly)和Vx(Vy)分别表示喷嘴口到热线25a和25b(26a和26b)的距离、气流在Lx(Ly)段的平均速度。
气流束的偏移量δx、δy两者之差为
Δδ x = ω x ( L x 1 2 V x 1 - L x 1 2 V x 1 ) - - - ( 2 )
Δδ y = ω y ( L y 1 2 V y 1 - L y 1 2 V y 1 ) - - - ( 3 )
灵敏度关系式:
通过对分析热线和层状射流之间的热传递现象,可以得到气流式角速度传 感器灵敏度的性能。一根热线电阻的变化和流速的关系如下:
ΔR = - λπlα I 2 R THO ( λπlNu - I 2 R THO α ) 2 · Nu V nΔV - - - ( 4 )
式中,l是热线(热敏电阻)的长度。
速度增量ΔV和角速度ωi的关系式:
因为气流的偏移量很小,而且热线被设置在流速分布的线性区域,热线上速度增量ΔV和角速度ωi引起的偏移量δω i是成比例的,因此它也和实际角速度ωi成比例,得到:
ΔV = K i δ ωi = K i ω i L i 2 V i - - - ( 5 )
式中,Ki为一常数,由热线Ri的流速分布的梯度决定;Li为从喷嘴口到热线的距离,Vi为气流从喷嘴口到热线段的平均流速。
设热线电流为I,把(5)代入式(4)可得传感器的输出电压为
ΔU = - λπlα I 2 R THO ( λπlNu - I 2 R THO α ) 2 · Nu V nΔV · K i ω i L i 2 V i - - - ( 6 )
式中,l是热敏电阻的长度,λ为气体的导热系数,α为热线的电阻温度系数,I为热线通电电流,RTHO为未加角速度时热线的初始电阻值,Nu为努塞尔数(Nusselt Number),V为气流从喷嘴口流向热线的初始流速,n为经验常数,0.2到0.33之间,ΔV为热线上气流速度增量。
根据式(6)可以计算角速度传感器的灵敏度,图8给出本发明模拟敏感度,从图中可以看出,两个方向灵敏度为SFx=1.8μV/°/s,SFy=1.8μV/°/s。
上述方式的优点是:
(1)两个方向角速度灵敏度几乎一致,便于实际应用。
(2)在射流网络中设置四个喷嘴构建了四个循环流动的能同时敏感三个正交方向(X、Y、Z)角速度的射流敏感体,射流速度大,与热线交换多,比普通非循环流气流角速度传感器的灵敏度高3倍。

Claims (11)

1.一种硅微机械四通道循环流式平面双轴角速度传感器,所述气流式角速度传感器由四通道循环流式平面双轴角速度芯片、PCB电路板、底座、外壳、缓冲硅胶片、引线组成,所述的缓冲硅胶片、四通道循环流式平面双轴角速度芯片和与其实现电气连接的PCB电路板依次装在底座上,扣上外壳密封,电源和信号经底座上玻璃灌装的引线引出,所述四通道循环流式平面双轴角速度芯片包括PET盖板、硅板和PET底座;其中,
所述压电陶瓷圆振子嵌入至所述PET上盖上;所述上硅板上设置有射流网络;所述下硅板上设置有射流网络和热线;所述PET上盖、上硅板、下硅板和PET底盖依次粘接构成所述角速度芯片。
2.根据权利要求1所述的气流角速度传感器,其特征在于,所述PET上盖的中心开设一圆形泵槽,在所述泵槽的中心开设一圆形泵孔,泵槽的边缘为一高度为PET上盖厚度1/2的台阶,将所述压电陶瓷圆振子粘接在所述台阶上。
3.根据权利要求2所述的气流角速度传感器,其特征在于,所述上硅板与所述圆形泵孔对应处开设一形状尺寸与圆形泵孔相同的圆柱形泵腔,在所述泵腔圆周上等距离开口形成四个截面为倒梯形的排气孔,所述排气孔的末端为四个排气口;所述排气口外设置一圆环形排气室;以所述排气室的圆心为中心,在圆环形排气室的圆周上放射状交替均匀开设两组共八个长方形孔;其中,四个所述排气孔对应四个集流槽;与四个所述集流槽相邻的是四个上敏感射流孔,所述上敏感射流孔的始端与所述排气室相通;所述集流槽的末端和所述上敏感射流孔的末端由圆环形回流槽连通。
4.根据权利要求3所述的气流角速度传感器,其特征在于,所述集流槽与所述排气室相通处做倒梯形过渡,与所述排气口对应,并在所述梯形过渡的短边扩张形成四个正方形的储气井,所述储气井的边长为倒梯形过渡的长边,所述集流槽的末端的宽度大于集流槽始端的宽度;所述上敏感射流孔的宽度为所述集流槽的2倍,其末端向所述圆环形回流槽延伸形成四个长方形喷嘴孔,所述长方形喷嘴孔的长度为上敏感射流孔长度的1/11。
5.根据权利要求3所述的气流角速度传感器,其特征在于,所述下硅板上开设与所述上硅板上的四个上射流敏感孔位置相互对应、大小形状完全相同的四个下敏感射流孔,在下硅板的表面设置四对平行热线,所述四对平行热线用于敏感x、y两个方向角速度;所述上硅板和下硅板粘接以后形成的气体空间为射流网络,粘接上所述PET上盖和所述PET底盖后构成封闭的射流网络;所述泵腔、泵孔和泵槽构成泵室。
6.根据权利要求5所述的气流角速度传感器,其特征在于,所述射流网络由所述泵室、四个排气口、排气室、四个集流槽的始端的进口、储气井、圆环形回流槽、四个喷嘴孔末端的喷嘴口、四个上敏感射流孔和四个下敏感射流孔组成的四个射流敏感室A、B、C、D以及所述射流敏感室A、B、C、D的末端的出口构成。
7.根据权利要求6所述的气流角速度传感器,其特征在于,敏感x方向角速度的一对平行热线分别设置在两个对称的射流敏感室B、D内中间的下硅板表面;敏感y方向角速度的一对平行热线分别设置与射流敏感室B、D正交的两个对称的射流敏感室A、C内中间的下硅板表面;两对热线的长度方向分别与射流敏感室A、B、C、D的轴线垂直。
8.根据权利要求1所述的气流角速度传感器,其特征在于,所述压电陶瓷圆振子的激励电压由所述PCB电路板上的压电泵驱动电路提供。
9.根据权利要求1所述的气流角速度传感器,其特征在于,所述热线由高温度系数的金属钨、SiO2和Si构成,所述下硅板的边缘被覆电极,所述PET上盖和上硅板开相应的开口以便露出下硅板的电极,便于与PCB电路板实现电气连接。
10.根据权利要求1所述的气流角速度传感器,其特征在于,所述PET上盖和PET底盖利用PET薄板采用高精度激光切割成型加工工艺制作,所述上硅板和下硅板采用标准的MEMS工艺制作。
11.根据权利要求1所述的气流角速度传感器,其特征在于,所述压电陶瓷圆振子的直径略小于所述圆形泵槽的直径,便于粘接在所述台阶上。
CN201510415597.0A 2015-07-16 2015-07-16 硅微机械四通道循环流式平面双轴角速度传感器 Pending CN106352864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510415597.0A CN106352864A (zh) 2015-07-16 2015-07-16 硅微机械四通道循环流式平面双轴角速度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510415597.0A CN106352864A (zh) 2015-07-16 2015-07-16 硅微机械四通道循环流式平面双轴角速度传感器

Publications (1)

Publication Number Publication Date
CN106352864A true CN106352864A (zh) 2017-01-25

Family

ID=57842367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510415597.0A Pending CN106352864A (zh) 2015-07-16 2015-07-16 硅微机械四通道循环流式平面双轴角速度传感器

Country Status (1)

Country Link
CN (1) CN106352864A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989741A (zh) * 2017-03-17 2017-07-28 北京信息科技大学 一种四丝敏感结构硅微机械三轴射流陀螺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556290A (zh) * 2009-04-23 2009-10-14 上海交通大学 可测量任意方向角速度的气体陀螺仪
JP2010038817A (ja) * 2008-08-07 2010-02-18 Ritsumeikan ガスレートジャイロ
CN102288775A (zh) * 2011-07-05 2011-12-21 北京信息科技大学 气流式角速度传感器
CN102980567A (zh) * 2012-11-23 2013-03-20 北京信息科技大学 一种小型气流式陀螺
CN104457727A (zh) * 2013-09-12 2015-03-25 北京信息科技大学 微机械压电射流陀螺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038817A (ja) * 2008-08-07 2010-02-18 Ritsumeikan ガスレートジャイロ
CN101556290A (zh) * 2009-04-23 2009-10-14 上海交通大学 可测量任意方向角速度的气体陀螺仪
CN102288775A (zh) * 2011-07-05 2011-12-21 北京信息科技大学 气流式角速度传感器
CN102980567A (zh) * 2012-11-23 2013-03-20 北京信息科技大学 一种小型气流式陀螺
CN104457727A (zh) * 2013-09-12 2015-03-25 北京信息科技大学 微机械压电射流陀螺

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DINH T X, OGAMI Y: "A triple-axis fluidic angular rate sensor", 《IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS. IEEE》 *
DINH T X, OGAMI Y: "Design of a triple-axis MEMS-based fluidic gyroscope", 《SENSORS.IEEE》 *
DZUNG VIET DAO,ET AL: "A FULLY INTEGRATED MEMS-BASED CONVECTIVE 3-DOF GYROSCOPE", 《THE 14TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS,ACTUATORS AND MICROSYSTEMS》 *
V. T. DAU,ET AL: "DESIGN AND FABRICATION OF CONVECTIVE INERTIAL SENSOR CONSISTING OF 3DOF GYROSCOPE AND 2DOF ACCELEROMETER", 《TRANSDUCERS 2009, DENVER, CO, USA》 *
罗志增等: "《机器人感觉与多信息融合》", 30 June 2002, 机械工业出版社 *
钱伯章: "《石油化工技术进展与市场分析》", 31 October 2004, 石油工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989741A (zh) * 2017-03-17 2017-07-28 北京信息科技大学 一种四丝敏感结构硅微机械三轴射流陀螺
CN106989741B (zh) * 2017-03-17 2019-10-25 北京信息科技大学 一种四丝敏感结构硅微机械三轴射流陀螺

Similar Documents

Publication Publication Date Title
US20110252882A1 (en) Robust sensor with top cap
CN101344413A (zh) 平膜式气体流量传感器及其制造方法
CN105091876B (zh) 一种微型四通道循环流式三轴硅射流陀螺
CN106052669B (zh) 一种微型双泵双轴循环射流陀螺
CN111623763A (zh) 一种单热源微机械z轴薄膜陀螺
CN214621218U (zh) 全桥式双推挽流z轴薄膜陀螺
CN201247082Y (zh) 平膜式气体流量传感器
CN106352864A (zh) 硅微机械四通道循环流式平面双轴角速度传感器
CN212082392U (zh) 一种单热源“t”字型微机械双轴薄膜陀螺
CN111595315B (zh) 一种t字型推挽流微机械双轴薄膜陀螺
CN112129328A (zh) 一种微型风压风速集成传感器及制作和检测方法
CN214621216U (zh) 四电桥十字流式微机械z轴薄膜陀螺
Tomonori et al. A multi axis fluidic inertial sensor
CN214621217U (zh) 半桥式推挽流z轴薄膜陀螺
CN106338615A (zh) 硅微机械双通道循环流式z轴角速度传感器
CN105043372B (zh) 微型三自由度开放式气流陀螺
CN105066978B (zh) 一种微型单循环气流式平面双轴pet角速度传感器
CN106989741B (zh) 一种四丝敏感结构硅微机械三轴射流陀螺
CN104949668B (zh) 一种微型三自由度单循环式pmma气流陀螺
CN212082388U (zh) 一种单热源微机械z轴薄膜陀螺
CN111595319B (zh) 一种单热源t字型微机械三轴薄膜陀螺
CN106338614B (zh) 微型单循环气流式z轴pet角速度传感器
CN212082389U (zh) 一种单热源“t”字型微机械三轴薄膜陀螺
CN111595318A (zh) 一种单热源“t”字型微机械双轴薄膜陀螺
CN209745339U (zh) 一种气体质量流量传感器及传感器阵列

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125

RJ01 Rejection of invention patent application after publication