CN106350773A - 一种增大层状钴基氧化物薄膜高温热电势的方法 - Google Patents

一种增大层状钴基氧化物薄膜高温热电势的方法 Download PDF

Info

Publication number
CN106350773A
CN106350773A CN201610811258.9A CN201610811258A CN106350773A CN 106350773 A CN106350773 A CN 106350773A CN 201610811258 A CN201610811258 A CN 201610811258A CN 106350773 A CN106350773 A CN 106350773A
Authority
CN
China
Prior art keywords
thin film
layered cobalt
base oxide
cobalt base
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610811258.9A
Other languages
English (en)
Other versions
CN106350773B (zh
Inventor
宋世金
虞澜
傅佳
倪佳
邱兴煌
陈琪
钟毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201610811258.9A priority Critical patent/CN106350773B/zh
Publication of CN106350773A publication Critical patent/CN106350773A/zh
Application granted granted Critical
Publication of CN106350773B publication Critical patent/CN106350773B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种增大层状钴基氧化物薄膜高温热电势的方法,属于功能薄膜材料领域。其特征在于:通过脉冲激光沉积在c轴倾斜的单晶衬底上制备层状钴基氧化物外延薄膜,从而在薄膜倾斜方向上获得增大的高温热电势。本发明能显著提高层状钴基氧化物薄膜的高温热电势,且重复性好、易于实现。

Description

一种增大层状钴基氧化物薄膜高温热电势的方法
技术领域
本发明公开了一种增大层状钴基氧化物薄膜高温热电势的方法,属于功能薄膜材料领域。
背景技术
错层状结构A3Co4O9 (A=Ca, Sr)由于其高温、氧化环境下物理化学性能稳定,原料成本低、无毒性等优点,受到广泛关注。其晶体结构由传导的CoO2层和绝缘的A2CoO3层沿c轴方向交替堆砌并沿b轴失配,CoO2层中低自旋的Co4+( )提供空穴载流子,将热、电输运强烈局域于ab面内,A2CoO3层作为声子散射中心有效降低材料热导率,使其具有“电子晶体-声子玻璃”的特性,又有显著的热电各向异性。
A3Co4O9 的热电性能主要由热电优值ZT衡量,ZT=S2σTκ-1,其中S、σ、κ和T分别为材料的热电势、电导率、热导率和绝对温度,显然高的热电势对A3Co4O9 的性能至关重要。
目前对于增大A3Co4O9的热电势,主要通过掺杂实现。部分A位或Co位掺杂可提高A3Co4O9的热电势,但其提高效果甚微,且掺杂往往会导致电导率的降低,使ZT提高不大,甚至下降。
发明内容
针对上述技术问题,本发明提供了一种增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)c轴倾斜的单晶衬底的预处理:将c轴倾斜单晶衬底在空气气氛、1000℃下一次退火1h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理2min,再在空气气氛、1000℃下二次退火1h。
(2)通过脉冲激光沉积在步骤(1)得到的c轴倾斜单晶衬底上制备层状钴基氧化物外延薄膜,从而在薄膜倾斜方向上获得增大的高温热电势。
其中,所述层状钴基氧化物为Ca3Co4O9或Sr3Co4O9
其中,所述c轴倾斜的单晶衬底为LaAlO3、SrTiO3、(LaxSr1-x)(AlyTa1-y)O3或Al2O3
其中,所述c轴倾斜的倾斜角度为0<θ<90°。
其中,所述脉冲激光沉积的工艺条件为KrF准分子激光波长248nm,激光脉宽28ns,激光能量175-350mJ,激光频率2-5Hz,背底真空1×10-3Pa-1×10-4Pa,生长温度730-810℃,生长流动氧压5-50Pa,生长时间5-40min。
本发明的原理:当单晶衬底的晶体学c轴与表面法线存在夹角0<θ<90°(如图1所示),即c轴倾斜时,衬底表面会出现高为衬底c轴晶格常数、倾角为α的台阶;台阶经退火、化学处理后,可形成终结层单一、原子级光滑表面;光滑、规则的台阶形貌可加快薄膜的生长动力学过程,提高薄膜/衬底界面附近的层错能,使CoO2层中的Co4+向中、高自旋态转变,提高薄膜热电势。
本发明的有益效果是增大了层状钴基氧化物薄膜的高温热电势(现有技术在1000K时的热电势一般为180~220μV/K)。
附图说明
图1为外延薄膜及其倾斜方向的示意图。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将5°倾斜的LaAlO3(001)单晶衬底在空气气氛、1000℃下一次退火1h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理2min,再在空气气氛、1000℃下二次退火1h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量175mJ、激光频率5Hz、背底真空1×10-3Pa、生长温度780℃、流动氧压30Pa、生长时间5min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。
外延薄膜及其倾斜方向的示意图如图1。所得薄膜在1000K时沿倾斜方向的热电势S≈525μV/K,如表1。
实施例2
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将10°倾斜的LaAlO3(001)单晶衬底在空气气氛、950℃下一次退火2h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理2min,再在空气气氛、950℃下二次退火2h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量200mJ、激光频率4Hz、背底真空1×10-3Pa、生长温度780℃、流动氧压30Pa、生长时间7.5min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈550μV/K,如表1。
实施例3
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将30°倾斜的LaAlO3(001)单晶衬底在空气气氛、1150℃下一次退火0.5h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理2min,再在空气气氛、1150℃下二次退火0.5h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量250mJ、激光频率3Hz、背底真空1×10-3Pa、生长温度780℃、流动氧压30Pa、生长时间10min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈570μV/K,如表1。
实施例4
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将45°倾斜的LaAlO3单晶衬底在空气气氛、1000℃下一次退火1h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理1min,再在空气气氛、1000℃下二次退火1h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量300mJ、激光频率2Hz、背底真空1×10-3Pa、生长温度780℃、流动氧压30Pa、生长时间15min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈590μV/K,如表1。
实施例5
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将60°倾斜的LaAlO3单晶衬底在空气气氛、1000℃下一次退火1h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理5min,再在空气气氛、1000℃下二次退火1h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量175mJ、激光频率3Hz、背底真空1×10-4Pa、生长温度770℃、流动氧压30Pa、生长时间5min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈550μV/K,如表1。
实施例6
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将80°倾斜的LaAlO3单晶衬底在空气气氛、1000℃下一次退火1h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理3min,再在空气气氛、1000℃下二次退火1h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量175mJ、激光频率3Hz、背底真空1×10-4Pa、生长温度730℃、流动氧压5Pa、生长时间7.5min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈520μV/K,如表1。
实施例7
本实施例所述增大层状钴基氧化物薄膜高温热电势的方法,具体包括以下步骤:
(1)将85°倾斜的LaAlO3单晶衬底在空气气氛、1000℃下一次退火1h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理2min,再在空气气氛、1000℃下二次退火1h。
(2)采用脉冲激光沉积技术以波长248nm、激脉宽28ns的KrF准分子激光为光源,以激光能量175mJ、激光频率3Hz、背底真空1×10-4Pa、生长温度810℃、流动氧压5Pa、生长时间15min为生长工艺,在步骤(1)得到的单晶衬底上生长Ca3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈500μV/K,如表1。
表1 衬底倾斜角度及对应薄膜的热电势
实施例8
本实施例其他内容同实施例4,不同在于c轴倾斜的单晶衬底为SrTiO3、(LaxSr1-x)(AlyTa1-y)O3或Al2O3,当c轴倾斜的单晶衬底为SrTiO3,所得薄膜在1000K时沿倾斜方向的热电势S≈580μV/K;当c轴倾斜的单晶衬底为(LaxSr1-x)(AlyTa1-y)O3,所得薄膜在1000K时沿倾斜方向的热电势S≈585μV/K;当c轴倾斜的单晶衬底为Al2O3,所得薄膜在1000K时沿倾斜方向的热电势S≈570μV/K。
实施例9
本实施例其他内容同实施例4,不同在于c轴倾斜的单晶衬底上生长Sr3Co4O9薄膜。所得薄膜在1000K时沿倾斜方向的热电势S≈560μV/K。

Claims (5)

1.一种增大层状钴基氧化物薄膜高温热电势的方法,其特征在于:
(1)c轴倾斜的单晶衬底的预处理:将c轴倾斜单晶衬底在空气气氛、950℃~1150℃下一次退火0.5~2h,之后在室温下依次用丙酮、酒精和去离子水在超声波清洗器中各处理1~5min,再在空气气氛、950℃~1150℃下二次退火0.5~2h;
(2)通过脉冲激光沉积在步骤(1)得到的c轴倾斜单晶衬底上制备层状钴基氧化物外延薄膜,从而在薄膜倾斜方向上获得增大的高温热电势。
2.根据权利要求1所述的增大层状钴基氧化物薄膜高温热电势的方法,其特征在于:所述层状钴基氧化物为Ca3Co4O9或Sr3Co4O9
3.根据权利要求1所述的增大层状钴基氧化物薄膜高温热电势的方法,其特征在于:所述c轴倾斜的单晶衬底为LaAlO3、SrTiO3、(LaxSr1-x)(AlyTa1-y)O3或Al2O3
4.根据权利要求1所述的增大层状钴基氧化物薄膜高温热电势的方法,其特征在于:所述c轴倾斜的倾斜角度为0<θ<90°。
5.根据权利要求1所述的增大层状钴基氧化物薄膜高温热电势的方法,其特征在于:所述脉冲激光沉积的工艺条件为KrF准分子激光波长248nm,激光脉宽28ns,激光能量175-350mJ,激光频率2-5Hz,背底真空1×10-3Pa-1×10-4Pa,生长温度730-810℃,生长流动氧压5-50Pa,生长时间5-40min。
CN201610811258.9A 2016-09-09 2016-09-09 一种增大层状钴基氧化物薄膜高温热电势的方法 Active CN106350773B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610811258.9A CN106350773B (zh) 2016-09-09 2016-09-09 一种增大层状钴基氧化物薄膜高温热电势的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610811258.9A CN106350773B (zh) 2016-09-09 2016-09-09 一种增大层状钴基氧化物薄膜高温热电势的方法

Publications (2)

Publication Number Publication Date
CN106350773A true CN106350773A (zh) 2017-01-25
CN106350773B CN106350773B (zh) 2018-08-10

Family

ID=57859019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610811258.9A Active CN106350773B (zh) 2016-09-09 2016-09-09 一种增大层状钴基氧化物薄膜高温热电势的方法

Country Status (1)

Country Link
CN (1) CN106350773B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513685A (zh) * 2017-07-26 2017-12-26 昆明理工大学 一种立方相Co基氧化物薄膜的制备方法
CN109103324A (zh) * 2018-06-26 2018-12-28 昆明理工大学 一种热感生电压材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769788A (ja) * 1993-09-01 1995-03-14 Oki Electric Ind Co Ltd 酸化物超電導体薄膜の形成方法
JPH09232641A (ja) * 1996-02-21 1997-09-05 Toshiba Corp 超電導素子
US20020157699A1 (en) * 2001-03-19 2002-10-31 Noboru Ichinose Thermoelectric conversion material and thermoelectric conversion device
CN101826594A (zh) * 2010-03-25 2010-09-08 河北大学 一种错配层钴氧化合物热电薄膜光探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769788A (ja) * 1993-09-01 1995-03-14 Oki Electric Ind Co Ltd 酸化物超電導体薄膜の形成方法
JPH09232641A (ja) * 1996-02-21 1997-09-05 Toshiba Corp 超電導素子
US20020157699A1 (en) * 2001-03-19 2002-10-31 Noboru Ichinose Thermoelectric conversion material and thermoelectric conversion device
CN101826594A (zh) * 2010-03-25 2010-09-08 河北大学 一种错配层钴氧化合物热电薄膜光探测器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107513685A (zh) * 2017-07-26 2017-12-26 昆明理工大学 一种立方相Co基氧化物薄膜的制备方法
CN109103324A (zh) * 2018-06-26 2018-12-28 昆明理工大学 一种热感生电压材料及其应用

Also Published As

Publication number Publication date
CN106350773B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
Jang et al. Comparison study of ZnO-based quaternary TCO materials for photovoltaic application
Major et al. Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systematically increased grain size
CN103184513B (zh) 高温超导薄膜的制备方法
Ikhmayies et al. A comparison between different ohmic contacts for ZnO thin films
CN106399937B (zh) 一种制备择优取向碲化铋热电薄膜的方法
CN105679833A (zh) 具有叠层有源层的薄膜晶体管及其制备方法
CN106350773B (zh) 一种增大层状钴基氧化物薄膜高温热电势的方法
CN106350774B (zh) 一种高温热电Sr3Co4O9薄膜电阻率的调控方法
Majumdar et al. Electrical characterization of p-ZnO/p-Si heterojunction
CN113981370A (zh) 一种深紫外透明的高导电性Si掺杂Ga2O3薄膜及其制备方法
Khan et al. High mobility 2-dimensional electron gas at LaAlO3/SrTiO3 interface prepared by spin coating chemical methods
TW201305059A (zh) 新穎的化合物半導體及其應用
Sivakumar et al. Deposition of aluminum-doped zinc oxide thin films for optical applications using rf and dc magnetron sputter deposition
CN110724922A (zh) 一种柔性衬底上晶体取向和极性可控的外延azo薄膜及其制备方法
CN112864300B (zh) 一种碲化铋基合金薄膜-钙钛矿型氧化物异质结复合热电材料及其制备与应用
CN101599363A (zh) 一种氮掺杂氧化锌p型稀磁半导体材料的制备方法
CN104790029A (zh) 一种制备SnO外延薄膜的方法
CN110890280B (zh) 一种利用钯/钯氧化物双层肖特基电极制备氧化物半导体肖特基二极管的方法
Meng et al. Preparation and electrical properties of ZnO/PZT films by radio frequency reactive magnetron sputtering
CN104538113B (zh) 超导涂层用Y2Ce2O7过渡层薄膜的制备方法
CN101698932B (zh) 一种制备p型掺钴氧化锌薄膜的方法
TWI457287B (zh) 新穎的化合物半導體及其應用
Shin et al. Hydrothermally grown ZnO buffer layer for the growth of highly (4 wt%) Ga-doped ZnO epitaxial thin films on MgAl2O4 (1 1 1) substrates
Li et al. Epitaxial growth and magnetic and electric properties of Co-doped thin films: Is nonequilibrium doping an essential for ferromagnetism?
TW201308646A (zh) 新穎化合物半導體及其應用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant