CN106339295A - 一种基于云服务监测的计算机实现方法 - Google Patents

一种基于云服务监测的计算机实现方法 Download PDF

Info

Publication number
CN106339295A
CN106339295A CN201610782004.9A CN201610782004A CN106339295A CN 106339295 A CN106339295 A CN 106339295A CN 201610782004 A CN201610782004 A CN 201610782004A CN 106339295 A CN106339295 A CN 106339295A
Authority
CN
China
Prior art keywords
sla
quantum
monitoring
computing environment
cloud computing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610782004.9A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610782004.9A priority Critical patent/CN106339295A/zh
Publication of CN106339295A publication Critical patent/CN106339295A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3006Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3055Monitoring arrangements for monitoring the status of the computing system or of the computing system component, e.g. monitoring if the computing system is on, off, available, not available
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • G06F9/45533Hypervisors; Virtual machine monitors
    • G06F9/45558Hypervisor-specific management and integration aspects
    • G06F2009/45595Network integration; Enabling network access in virtual machine instances

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:利用处理器识别服务水平协议(SLA)规则、使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息、识别数学模型、通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中、基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。本发明的有益效果为:提高了监测的计算机化水平。

Description

一种基于云服务监测的计算机实现方法
技术领域
本发明涉及云服务领域,具体涉及一种基于云服务监测的计算机实现方法。
背景技术
传统上,单位的计算资源存在于由该单位所拥有并由该单位直接控制的固定基础架构上。然而,利用计算资源的虚拟化以及共享的计算环境(例如,云计算),计算资源消费者的应用和计算服务请求可以驻留在各种动态虚拟系统和资源上以及使用它们,以及使用任何数量的服务提供者来满足用户服务水平协议。
量子通信是量子信息学的一个重要分支,其理论是基于量子力学和经典通信,即量子通信是量子力学和经典通信相结合的产物。量子通信通过量子信道传递信息,并能够确保所传输信息的绝对安全。将量子通信技术运用到环境监测中,将大大提高生产环境监测数据传输的安全性。
发明内容
为解决上述问题,本发明旨在提供一种基于云服务监测的计算机实现方法。
本发明的目的采用以下技术方案来实现:
一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
本发明的有益效果为:提高了监测的计算机化水平。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1本发明计算机实现方法流程示意图;
图2是本发明监测方法的流程示意图。
具体实施方式
结合以下应用场景对本发明作进一步描述。
应用场景1
参见图1、图2,本应用场景的一个实施例的一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
优选地,其中观察包括:
使用所述网络来获取由所述云计算环境提供的被动状态信息;
使用所述网络、通过探测所述云计算环境来获取检测的状态信息。
本优选实施获取信息速度快。
优选地,其中调整所述SLA规则包括:
通过向经由所述网络连接至所述云计算环境的协调工具传达所述SLA规则改变来改变所述SLA规则,以便对于在所述云资源中的选定云资源具有不同的请求时间,其中所述协调工具实现所述SLA规则改变。
本优选实施例工作效率高。
优选地,云服务监测方法,包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测系统的模块架构以及监测流程。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
T L ≤ 1 ϵ 2 π e - x - γ 2 ϵ 2 ≤ 1
其中
ϵ = Σ i = 1 N ( RSSI i - γ ) 2 N - 1
γ = Σ i = 1 N RSSI i N
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
α = 2 ( x 1 - x k ) 2 ( y 1 - y k ) 2 ( x 2 - x k ) 2 ( y 2 - y k ) ... ... 2 ( x k - 1 - x k ) 2 ( y k - 1 - y k )
β = x 1 2 - x k 2 + y 1 2 - y k 2 + d k 2 - d 1 2 x 2 2 - x k 2 + y 2 2 - y k 2 + d k 2 - d 2 2 ... x k - 1 2 - x k 2 + y k - 1 2 - y k 2 + d k 2 - d m - 1 2
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
D = 1 2 Σ j Σ m ( Y m ^ - Y m )
Y m = Σ j w m j 1 + exp ( - Σ i w i j x i + T i ) + T m
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.4,传感器节点定位的精度提高了8%,监测精度提高了10%。
应用场景2
参见图1、图2,本应用场景的一个实施例的一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
优选地,其中观察包括:
使用所述网络来获取由所述云计算环境提供的被动状态信息;
使用所述网络、通过探测所述云计算环境来获取检测的状态信息。
本优选实施获取信息速度快。
优选地,其中调整所述SLA规则包括:
通过向经由所述网络连接至所述云计算环境的协调工具传达所述SLA规则改变来改变所述SLA规则,以便对于在所述云资源中的选定云资源具有不同的请求时间,其中所述协调工具实现所述SLA规则改变。
本优选实施例工作效率高。
优选地,云服务监测方法,包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测系统的模块架构以及监测流程。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
T L ≤ 1 ϵ 2 π e - x - γ 2 ϵ 2 ≤ 1
其中
ϵ = Σ i = 1 N ( RSSI i - γ ) 2 N - 1
γ = Σ i = 1 N RSSI i N
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
α = 2 ( x 1 - x k ) 2 ( y 1 - y k ) 2 ( x 2 - x k ) 2 ( y 2 - y k ) ... ... 2 ( x k - 1 - x k ) 2 ( y k - 1 - y k )
β = x 1 2 - x k 2 + y 1 2 - y k 2 + d k 2 - d 1 2 x 2 2 - x k 2 + y 2 2 - y k 2 + d k 2 - d 2 2 ... x k - 1 2 - x k 2 + y k - 1 2 - y k 2 + d k 2 - d m - 1 2
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
D = 1 2 Σ j Σ m ( Y m ^ - Y m )
Y m = Σ j w m j 1 + exp ( - Σ i w i j x i + T i ) + T m
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.45,传感器节点定位的精度提高了9%,监测精度提高了11%。
应用场景3
参见图1、图2,本应用场景的一个实施例的一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
优选地,其中观察包括:
使用所述网络来获取由所述云计算环境提供的被动状态信息;
使用所述网络、通过探测所述云计算环境来获取检测的状态信息。
本优选实施获取信息速度快。
优选地,其中调整所述SLA规则包括:
通过向经由所述网络连接至所述云计算环境的协调工具传达所述SLA规则改变来改变所述SLA规则,以便对于在所述云资源中的选定云资源具有不同的请求时间,其中所述协调工具实现所述SLA规则改变。
本优选实施例工作效率高。
优选地,云服务监测方法,包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测系统的模块架构以及监测流程。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
T L ≤ 1 ϵ 2 π e - x - γ 2 ϵ 2 ≤ 1
其中
ϵ = Σ i = 1 N ( RSSI i - γ ) 2 N - 1
γ = Σ i = 1 N RSSI i N
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
α = 2 ( x 1 - x k ) 2 ( y 1 - y k ) 2 ( x 2 - x k ) 2 ( y 2 - y k ) ... ... 2 ( x k - 1 - x k ) 2 ( y k - 1 - y k )
β = x 1 2 - x k 2 + y 1 2 - y k 2 + d k 2 - d 1 2 x 2 2 - x k 2 + y 2 2 - y k 2 + d k 2 - d 2 2 ... x k - 1 2 - x k 2 + y k - 1 2 - y k 2 + d k 2 - d m - 1 2
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
D = 1 2 Σ j Σ m ( Y m ^ - Y m )
Y m = Σ j w m j 1 + exp ( - Σ i w i j x i + T i ) + T m
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.5,传感器节点定位的精度提高了10%,监测精度提高了12%。
应用场景4
参见图1、图2,本应用场景的一个实施例的一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
优选地,其中观察包括:
使用所述网络来获取由所述云计算环境提供的被动状态信息;
使用所述网络、通过探测所述云计算环境来获取检测的状态信息。
本优选实施获取信息速度快。
优选地,其中调整所述SLA规则包括:
通过向经由所述网络连接至所述云计算环境的协调工具传达所述SLA规则改变来改变所述SLA规则,以便对于在所述云资源中的选定云资源具有不同的请求时间,其中所述协调工具实现所述SLA规则改变。
本优选实施例工作效率高。
优选地,云服务监测方法,包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测系统的模块架构以及监测流程。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
T L ≤ 1 ϵ 2 π e - x - γ 2 ϵ 2 ≤ 1
其中
ϵ = Σ i = 1 N ( RSSI i - γ ) 2 N - 1
γ = Σ i = 1 N RSSI i N
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
α = 2 ( x 1 - x k ) 2 ( y 1 - y k ) 2 ( x 2 - x k ) 2 ( y 2 - y k ) ... ... 2 ( x k - 1 - x k ) 2 ( y k - 1 - y k )
β = x 1 2 - x k 2 + y 1 2 - y k 2 + d k 2 - d 1 2 x 2 2 - x k 2 + y 2 2 - y k 2 + d k 2 - d 2 2 ... x k - 1 2 - x k 2 + y k - 1 2 - y k 2 + d k 2 - d m - 1 2
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
D = 1 2 Σ j Σ m ( Y m ^ - Y m )
Y m = Σ j w m j 1 + exp ( - Σ i w i j x i + T i ) + T m
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.55,传感器节点定位的精度提高了8.5%,监测精度提高了8%。
应用场景5
参见图1、图2,本应用场景的一个实施例的一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
优选地,其中观察包括:
使用所述网络来获取由所述云计算环境提供的被动状态信息;
使用所述网络、通过探测所述云计算环境来获取检测的状态信息。
本优选实施获取信息速度快。
优选地,其中调整所述SLA规则包括:
通过向经由所述网络连接至所述云计算环境的协调工具传达所述SLA规则改变来改变所述SLA规则,以便对于在所述云资源中的选定云资源具有不同的请求时间,其中所述协调工具实现所述SLA规则改变。
本优选实施例工作效率高。
优选地,云服务监测方法,包括以下步骤:
S1构建用于监测的无线传感器监测网络,以及用于监测数据传输的量子通信网络;
S2利用无线传感器监测网络监测并采集监测数据,并将监测数据通过量子通信网络传输至预处理节点;
S3预处理节点根据监测数据的类型进行数据校准及融合预处理,预处理后的监测数据通过量子通信网络传输至云服务中心;
S4云服务中心将接收到的监测数据和预先设置的与该监测数据所对应的设置阈值进行比较,若所述监测数据超出与其对应的设置阈值,则将所述监测数据及比较的结果发送至预设的移动管理终端。
本发明上述实施例构建了监测系统的模块架构以及监测流程。
优选的,所述无线传感器监测网络的构建包括传感器节点的部署和传感器节点的定位,所述传感器节点的部署的方法包括:
(1)进行网络第一次部署,设传感器节点的监测半径和通信半径均为r,将监测区域划分为重点监测区域和一般监测区域,重点监测区域划分为正方形网格,传感器节点部署于正方形网格中心,正方形网格边长一般监测区域划分为正六边形网格,传感器节点部署于正六边形中心,正六边形边长
(2)进行网络第二次部署,在传感器网络中部署一部分通信能力强的功能节点,设功能节点的通信半径为4r,在重点监测区域和在一般监测区域分别按照(1)中的方法对功能节点进行部署。
本优选实施例对传感器网络的部署,实现了监测区域的无缝覆盖,保证了全面监测,在重点区域采用正方形网格部署,在一般检测区域采用正六边形网格部署,既节约了传感器数量,又保证了监测效果;增加功能节点,延长了整个传感器网络寿命,避免了传感器节点过早衰竭。
优选的,所述传感器节点的定位的方法包括:
1)未知传感器节点将收到的各个参考节点的接收信号的强度指示和参考节点坐标发送到上位机;
2)上位机对接收到的接收信号的强度指示值进行预处理,包括:通过自定义的选取规则选取高概率发生区的接收信号的强度指示值,求取选取的接收信号的强度指示值的平均值作为最终的接收信号的强度指示值;所述自定义的选取规则为:
当未知传感器节点收到的参考节点的接收信号的强度指示值满足下述条件时,确定该强度指示值为高概率发生区的接收信号的强度指示值:
T L ≤ 1 ϵ 2 π e - x - γ 2 ϵ 2 ≤ 1
其中
ϵ = Σ i = 1 N ( RSSI i - γ ) 2 N - 1
γ = Σ i = 1 N RSSI i N
式中,RSSIi为未知传感器节点收到每个参考节点第i次的接收信号的强度指示值,i∈[1,N],TL为设定的临界值,TL的取值范围为[0.4,0.6];
3)计算未知传感器节点距离参考节点的距离;
4)计算未知传感器节点的坐标,设k个参考节点的坐标分别为(x1,y1),(x2,y2),…,(xk,yk),未知传感器节点到参考节点的距离分别为d1,d2,…,dk,未知传感器节点X的坐标计算公式为:
X=(αTα)-1αTβ
其中
α = 2 ( x 1 - x k ) 2 ( y 1 - y k ) 2 ( x 2 - x k ) 2 ( y 2 - y k ) ... ... 2 ( x k - 1 - x k ) 2 ( y k - 1 - y k )
β = x 1 2 - x k 2 + y 1 2 - y k 2 + d k 2 - d 1 2 x 2 2 - x k 2 + y 2 2 - y k 2 + d k 2 - d 2 2 ... x k - 1 2 - x k 2 + y k - 1 2 - y k 2 + d k 2 - d m - 1 2
本优选实施例设计了传感器节点的定位的方法,提高了传感器节点的定位精度,从而相对提高了监测的精度。
优选的,所述量子通信网络的构建包括建立量子信道、确定量子密钥分发方案;所述建立量子信道,包括以下步骤:
(1)建立量子信道的表述模型,定义输入量子比特有限集合为I={|i1>,|i2>,…,|iN>},输出量子比特的有限集合为O={|o1>,|o>,…,|oN>}的量子信道C为:将|i>∈I送入信道,信道的输出是由密度算子ρ(|i>)完全决定的量子信息源的输出;
(2)量子态在量子信道的传输过程中,与信道发生关联,并在接收端全部或部分发生改变,成为新的态,信道中与量子态发生关联的有非理想设备和噪声,需对信道进行优化,包括:
令信道矩阵为X,噪声为Z,则接受态Jk为:
Jk=(X+Z)Tk,(k=1,2,…,n)
式中,Tk表示同一测量基下的态矩阵,每列元素表示一个发送态;
用相关系数R1、R2分别表示非理想设备和噪声与量子态的相关情况,通过波动方程理论及热力学公式建模,得出满足不同信道情况的具体信道模型;
所述量子密钥分发方案基于BB84的协议确定,包括以下步骤:
(1)经过激光器、光混合器、衰减器和相位调制器,发送端生成单光子脉冲,以量子偏振态偏振角度作为信息传输的地址码,发送端偏振态角度随机取0,每个单光子脉冲发送前,发送端向接收端发送时钟信号。发送端对每个单光子脉冲的偏振态相位进行编码,发送端相位取0和π组成一组正交归一基,接收端相位取0与其匹配,发送端相位取组成另一组正交归一基,接收端相位取与其匹配;
(2)接收端经过相位调制器、偏振控制器、光分束器、半波片、偏振分束器和单光子探测器接收到光单子脉冲,根据时钟脉冲信号,对接收量子态进行测量,首先通过两组不同基下的探测器读数得出地址码值,再推出相位信息,之后通过经典信道与发送端进行相位及偏振基比对;
(3)接收端筛选测量信息,抛弃错误偏振测量基得出的信息及错误相位测量基得出的信息,分别得出初始密钥。
(4)接收端对对筛选后的测量基计数进行脉冲数比对,如果得到的正确结果的测量基脉冲数小于安全脉冲数门限值,则表明存在窃听,此时,放弃本次密钥协商,重新进行步骤(1)到(4),如果接收端得到的正确结果的测量基脉冲数大于等于门限值,发送端和接收端通过经典信道进行数据协调和密性放大,从而获得最终密钥;
其中,安全脉冲门限值采用如下方法确定,
无窃听时,接收端得到量子比特的正确率
式中,Pr表示正确选择测量基时准确接收量子态的概率,Pw表示错误选择测量基时准确接收量子态的概率;
存在窃听时,安全通信门限根据信道情况确定安全门限,当接收端得到正确量子比特概率低于Pm时,存在窃听。
本优选实施例由于通信设备的非理想性,以及信道中存在噪声,量子信息在传输的过程中会发生改变,通过建立实际信道使得接收端判别通信过程是否安全的标准更为准确;量子偏振态具有相对稳定的固有特性和可区分性,可以在多用户量子通信中有效地进行用户的区分;对信道模型中安全门限进行了分析,推得了实际量子通信中判别窃听的安全门限公式。
优选的,所述无线传感器监测网络包括网关、高能簇头节点、终端节点,所述高能簇头节点负责监测数据的有效采集,所述网关将采集到信息存储到嵌入式数据库中,在需要时将监测数据通过量子通信网络传输到云服务中心;所述高能簇头节点由簇头节点、太阳能电池板、蓄电池、功率放大器和多个监测传感器组成,所述簇头节点的能量由太阳能电池板和蓄电池结合提供。
本优选实施例设置的簇头节点的能量由太阳能电池板和蓄电池结合提供,能够保证簇头节点的能量提供,节省用电消耗,降低监测成本。
优选的,所述根据监测数据的类型进行数据校准及融合预处理,包括:
(1)将每个传感器的监测数据通过BP神经网络进行校准,同时剔除错误的数据,获得更加准确的数据;所述通过BP神经网络进行校准,包括:
1)构建BP神经网络,以传感器的监测值作为BP神经网络的输入层,以标准仪器的测量值作为BP神经网络的输出层;
2)进行BP神经网络训练,具体为:将传感器的监测值从输入层经BP神经网络的隐含层传向输出层,如果在输出层没有得到期望的输出值,则沿原通路将误差返回,并根据误差函数,采用梯度下降法修正各层神经元的权值和阈值,从而使误差最小,最终达到期望效果,所述误差函数定义为:
D = 1 2 Σ j Σ m ( Y m ^ - Y m )
Y m = Σ j w m j 1 + exp ( - Σ i w i j x i + T i ) + T m
式中,wij为前一输出层至隐含层的连接权值,xi为前一输出层的输出值,Ti为隐含层的阈值,wmj为隐含层至后一输出层的连接权值,Tm为后一输出层的阈值;
(2)通过自适应加权融合算法对多个传感器的监测数据进行融合,具体为:根据各传感器的监测值,以自适应的方式寻找各个传感器对应的最优加权因子,在满足总均方误差最小的情况下,使得融合后的结果达到最优。
本优选实施例的预处理节点根据监测数据的类型进行数据校准及融合预处理,解决了一般传感器测量的非线性误差,使监测数据更加准确和可靠。
在此应用场景中,设定TL的值为0.6,传感器节点定位的精度提高了9.5%,监测精度提高了10.5%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.一种基于云服务监测的计算机实现方法,其特征是,包括云服务监测方法和计算机实现方法:其中,计算机实现方法包括:
利用处理器识别服务水平协议(SLA)规则,所述SLA规则用于执行以满足由云计算环境提供的云资源的用户的SLA需求,所述SLA规则由所述处理器使用网络进行访问;
使用连接至所述网络的所述处理器来观察所述云计算环境以收集状态信息;
识别数学模型,所述数学模型通过使用所述处理器向所述收集的状态信息应用所述模型来对所述观察的云计算环境的行为进行建模;
通过利用所述处理器向所述收集的状态信息应用所述模型来确定所述状态信息何时指示所述云计算环境处于不满足所述SLA需求的风险中;
基于确定不满足所述SLA需求的风险,调整所述SLA规则,以改进所述云计算环境将满足所述SLA需求的概率。
2.根据权利要求1所述的一种基于云服务监测的计算机实现方法,其特征是,其中观察包括:
使用所述网络来获取由所述云计算环境提供的被动状态信息;
使用所述网络、通过探测所述云计算环境来获取检测的状态信息。
3.根据权利要求1所述的一种基于云服务监测的计算机实现方法,其特征是,其中调整所述SLA规则包括:
通过向经由所述网络连接至所述云计算环境的协调工具传达所述SLA规则改变来改变所述SLA规则,以便对于在所述云资源中的选定云资源具有不同的请求时间,其中所述协调工具实现所述SLA规则改变。
CN201610782004.9A 2016-08-30 2016-08-30 一种基于云服务监测的计算机实现方法 Pending CN106339295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610782004.9A CN106339295A (zh) 2016-08-30 2016-08-30 一种基于云服务监测的计算机实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610782004.9A CN106339295A (zh) 2016-08-30 2016-08-30 一种基于云服务监测的计算机实现方法

Publications (1)

Publication Number Publication Date
CN106339295A true CN106339295A (zh) 2017-01-18

Family

ID=57823560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610782004.9A Pending CN106339295A (zh) 2016-08-30 2016-08-30 一种基于云服务监测的计算机实现方法

Country Status (1)

Country Link
CN (1) CN106339295A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130060933A1 (en) * 2011-09-07 2013-03-07 Teresa Tung Cloud service monitoring system
US8595353B2 (en) * 2011-06-06 2013-11-26 International Business Machines Corporation Automated recommendations for cloud-computing options
CN104025073A (zh) * 2012-11-13 2014-09-03 英特尔公司 计算环境中的策略实施

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8595353B2 (en) * 2011-06-06 2013-11-26 International Business Machines Corporation Automated recommendations for cloud-computing options
US20130060933A1 (en) * 2011-09-07 2013-03-07 Teresa Tung Cloud service monitoring system
CN104025073A (zh) * 2012-11-13 2014-09-03 英特尔公司 计算环境中的策略实施

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李加念 等: ""基于无线传感器网络的小粒种咖啡园滴灌自动控制系统"", 《传感器与微系统》 *
赵楠 等: ""基于BB84协议的量子密钥分发安全门限研究"", 《物理学报》 *
马艳丽: ""基于无线传感器网络的瓦斯监测系统的定位技术的研究"", 《中国优秀硕士学位论文全文数据库·基础科学辑》 *

Similar Documents

Publication Publication Date Title
CN106453488A (zh) 一种基于量子通信的农产品生产环境监测方法与系统
CN102496069B (zh) 基于模糊层次分析法的电缆多状态安全运行评估方法
CN106383037A (zh) 一种基于大数据理念的桥梁结构健康监测系统及其实现方法
Jiang et al. Monthly streamflow forecasting using ELM-IPSO based on phase space reconstruction
CN106549813A (zh) 一种网络性能的评估方法及系统
CN106204392A (zh) 环境风险源预警系统
CN104461896B (zh) 基于可信属性的航天系统关键软件评价方法
CN105357063A (zh) 一种网络空间安全态势实时检测方法
CN106778883A (zh) 一种基于模糊集合的证据理论智能巡检信息融合方法
CN105022792B (zh) 基于数据挖掘的被动雷达信号分选关联权重计算方法
CN104142142A (zh) 全球植被覆盖度估算方法
CN107180260B (zh) 基于进化神经网络的短波通信频率选择方法
Liu et al. Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction
CN101980056A (zh) 基于m2因子和光闪烁指数确定大气湍流参数方法及装置
CN102938672B (zh) 大气对无线激光通信影响的实验室模拟方法
CN104820204A (zh) 一种减小偏差的加权最小二乘定位方法
CN106441425A (zh) 一种森林环境监测系统
CN106302793A (zh) 一种基于云计算的大棚空气质量监测系统
Shen et al. Robust distributed maximum likelihood estimation with dependent quantized data
CN106331130A (zh) 一种火灾监测控制系统
CN103134433A (zh) 一种利用位移监测鉴别边坡失稳致滑因子的方法
CN106210140A (zh) 一种远程监测移动医疗设备数据异常的方法
CN109669849A (zh) 一种基于未确知深度理论的复杂系统健康状态评估方法
CN106375402A (zh) 一种基于云计算平台的高速公路能见度监测预警系统
CN109215821A (zh) 核电站蒸发器主给水流量冗余测量通道比较方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170118

RJ01 Rejection of invention patent application after publication