CN106338930A - Dynamic simulation based gas management system and method of steel enterprise - Google Patents
Dynamic simulation based gas management system and method of steel enterprise Download PDFInfo
- Publication number
- CN106338930A CN106338930A CN201610957306.5A CN201610957306A CN106338930A CN 106338930 A CN106338930 A CN 106338930A CN 201610957306 A CN201610957306 A CN 201610957306A CN 106338930 A CN106338930 A CN 106338930A
- Authority
- CN
- China
- Prior art keywords
- monitoring data
- node
- coal gas
- gas system
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 35
- 239000010959 steel Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000005094 computer simulation Methods 0.000 title abstract description 39
- 238000012544 monitoring process Methods 0.000 claims abstract description 172
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 50
- 230000000007 visual effect Effects 0.000 claims abstract description 39
- 229910052742 iron Inorganic materials 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 238000010586 diagram Methods 0.000 claims description 15
- 239000003245 coal Substances 0.000 claims description 2
- 239000003034 coal gas Substances 0.000 claims 33
- 241000208340 Araliaceae Species 0.000 claims 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 235000008434 ginseng Nutrition 0.000 claims 1
- 210000003437 trachea Anatomy 0.000 claims 1
- 238000004088 simulation Methods 0.000 abstract description 33
- 238000007726 management method Methods 0.000 description 28
- 238000004364 calculation method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 5
- 230000010365 information processing Effects 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Pipeline Systems (AREA)
Abstract
本发明提供一种基于动态模拟的钢铁企业煤气管理系统及方法,该系统包括:可视化监控层,用于采集煤气系统中监测数据;及将监测数据按节点位置对应显示煤气系统拓扑图;动态模拟层,用于根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成相应的煤气管网模型;以所述煤气管网模型为基础计算煤气系统各个节点的监测数据模拟值;应用管理层,其包含辅助调度模块,用于检测各节点所对应的监测数据是否超过其预设压力阈值和预设流量阈值,根据检测结果发送调度指令至动态模拟层计算所述各节点的监测数据模拟值。本发明不仅动态展示监控的监测数据,还提高了煤气系统的调度效率。
The present invention provides a gas management system and method for iron and steel enterprises based on dynamic simulation. The system includes: a visual monitoring layer for collecting monitoring data in the gas system; layer, which is used to model and generate a corresponding gas pipeline network model according to the gas pipeline network, geographic information and parameter information of gas system equipment; calculate the monitoring data simulation value of each node of the gas system based on the gas pipeline network model; apply management Layer, which includes an auxiliary scheduling module, used to detect whether the monitoring data corresponding to each node exceeds its preset pressure threshold and preset flow threshold, and send scheduling instructions to the dynamic simulation layer to calculate the monitoring data simulation of each node according to the detection results value. The invention not only dynamically displays the monitored monitoring data, but also improves the scheduling efficiency of the gas system.
Description
技术领域technical field
本发明属于能源管理技术领域,特别是涉及一种基于动态模拟的钢铁企业煤气管理系统及方法,更具体地说,该系统针对钢铁行业的煤气具有可视化监控、查询、显示以及煤气管网动态仿真的功能,可基于煤气管网的风险识别与在线运行辅助调度。The invention belongs to the technical field of energy management, and in particular relates to a gas management system and method for iron and steel enterprises based on dynamic simulation. More specifically, the system has the functions of visual monitoring, query, display and dynamic simulation of the gas pipeline network for the gas in the iron and steel industry. The function can be based on the risk identification and online operation of the gas pipeline network to assist scheduling.
背景技术Background technique
钢铁企业生产过程中将会附带产生的大量煤气,副产煤气是企业中最重要的二次能源。该煤气主要通过管网进行输运,一个钢铁企业的煤气管网有数十公里长,覆盖范围很广;且煤气输送总量大,一般可达数百万m3/h。由于煤气介质属于有毒、火灾危险性气体,一旦煤气管网系统发生事故,易造成煤气大量泄漏甚至发生爆炸事故,危及人身安全,也将影响企业生产,造成经济损失。A large amount of gas will be produced incidentally in the production process of iron and steel enterprises, and the by-product gas is the most important secondary energy in the enterprise. The gas is mainly transported through the pipeline network. The gas pipeline network of an iron and steel enterprise is tens of kilometers long and covers a wide area; and the total gas transmission volume is large, generally reaching several million m 3 /h. Since the gas medium is a toxic and fire-hazardous gas, once an accident occurs in the gas pipeline network system, it is easy to cause a large amount of gas leakage or even an explosion accident, endangering personal safety, affecting the production of enterprises, and causing economic losses.
然而,目前,国内许多大型钢厂都建立了煤气能源管理系统,可根据全厂生产需求进行煤气能源调配,实现主干管网及设备的运行状态监控与调整。但无法对监测数据进行深层次的开发应用,导致缺乏风险识别及防控分析等智能管理功能,例如,无法根据监测数据实现管网的动态仿真和监控,识别煤气管网是否存在泄漏风险,或煤气是否需要在线运行辅助调度。However, at present, many large steel mills in China have established gas energy management systems, which can deploy gas energy according to the production needs of the whole plant, and realize the monitoring and adjustment of the operation status of the main pipeline network and equipment. However, the in-depth development and application of monitoring data cannot be carried out, resulting in the lack of intelligent management functions such as risk identification and prevention and control analysis. Whether gas needs to be run online to assist scheduling.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于动态模拟的钢铁企业煤气管理系统及方法,用于解决现有技术中在煤气的监测数据进行动态仿真与监控下,无法为煤气系统提供辅助调度的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a gas management system and method for iron and steel enterprises based on dynamic simulation, which is used to solve the problems in the prior art under dynamic simulation and monitoring of gas monitoring data. The problem of providing auxiliary dispatch for the gas system.
为实现上述目的及其他相关目的,本发明提供一种基于动态模拟的钢铁企业煤气管理系统,包括:In order to achieve the above purpose and other related purposes, the present invention provides a dynamic simulation-based gas management system for iron and steel enterprises, including:
可视化监控层,用于采集煤气系统中监测数据;以及将采集的所述监测数据按节点位置对应显示煤气系统拓扑图;The visual monitoring layer is used to collect the monitoring data in the gas system; and display the gas system topology diagram corresponding to the collected monitoring data according to the node positions;
动态模拟层,用于根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成相应的煤气管网模型;以所述煤气管网模型为基础计算煤气系统各个节点的监测数据模拟值;The dynamic simulation layer is used to model and generate a corresponding gas pipeline network model according to the gas pipeline network, geographic information and parameter information of gas system equipment; calculate the monitoring data simulation value of each node of the gas system based on the gas pipeline network model;
应用管理层,其包含辅助调度模块,所述辅助调度模块,用于检测各节点所对应的监测数据是否超过其预设压力阈值和预设流量阈值,根据检测结果发送调度指令至所述动态模拟层计算所述各节点的监测数据模拟值。The application management layer includes an auxiliary scheduling module, and the auxiliary scheduling module is used to detect whether the monitoring data corresponding to each node exceeds its preset pressure threshold and preset flow threshold, and send scheduling instructions to the dynamic simulation according to the detection results The layer calculates the monitoring data simulation value of each node.
本发明还提供一种基于动态模拟的钢铁企业煤气管理方法,包括:The present invention also provides a dynamic simulation-based gas management method for iron and steel enterprises, including:
步骤1,采集煤气系统中监测数据;以及将采集的所述监测数据按节点位置对应显示煤气系统拓扑图;Step 1, collecting monitoring data in the gas system; and displaying the gas system topological map corresponding to the collected monitoring data according to node positions;
步骤2,根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成相应的煤气管网模型;以所述煤气管网模型为基础计算煤气系统各个节点的监测数据模拟值;Step 2, modeling and generating a corresponding gas pipeline network model according to the gas pipeline network, gas system equipment geographic information and parameter information; calculating the monitoring data simulation values of each node of the gas system based on the gas pipeline network model;
步骤3,检测各节点所对应的监测数据是否超过其预设压力阈值和预设流量阈值,根据检测结果发送调度指令至所述动态模拟层计算所述各节点的监测数据模拟值。Step 3: Detect whether the monitoring data corresponding to each node exceeds its preset pressure threshold and preset flow threshold, and send a scheduling instruction to the dynamic simulation layer to calculate the simulated value of the monitoring data of each node according to the detection result.
如上所述,本发明的基于动态模拟的钢铁企业煤气管理系统及方法,具有以下有益效果:As mentioned above, the steel enterprise gas management system and method based on dynamic simulation of the present invention has the following beneficial effects:
本系统分为可视化监控层、动态模拟层与应用管理层,各层级之间既可相对独立又能相互调用,通过可视化监控层采集煤气系统中监测数据,调用动态模拟层中计算模型模拟各个节点所对应的监测数据模拟值;在应用管理层中设有风险识别模块与辅助调度模块,通过风险识别模块检测煤气系统中各个节点是否存在煤气泄漏的风险,提高了煤气系统的安全性;通过辅助调度模块检测煤气系统各节点是否超过其预设压力阈值和预设流量阈值,根据检测结果将调度指令对应监测数据模拟值发送可视化监控层,为用户的调度方案提供了参考建议,提高了其调度工作的安全与效率;同时,将监测数据以及辅助调度模块与风险识别模块的检测结果动态显示至可视化监控层,方便了用户实时监控。The system is divided into a visual monitoring layer, a dynamic simulation layer and an application management layer. Each layer can be relatively independent and call each other. The monitoring data in the gas system is collected through the visual monitoring layer, and the calculation model in the dynamic simulation layer is called to simulate each node. Corresponding monitoring data simulation value; in the application management layer, there is a risk identification module and an auxiliary scheduling module, through the risk identification module to detect whether there is a risk of gas leakage at each node in the gas system, which improves the safety of the gas system; through the auxiliary The scheduling module detects whether each node of the gas system exceeds its preset pressure threshold and preset flow threshold. According to the detection results, the dispatching instruction corresponding to the monitoring data simulation value is sent to the visual monitoring layer, which provides reference suggestions for the user's scheduling plan and improves its scheduling. The safety and efficiency of the work; at the same time, the monitoring data and the detection results of the auxiliary scheduling module and the risk identification module are dynamically displayed on the visual monitoring layer, which is convenient for users to monitor in real time.
附图说明Description of drawings
图1显示为本发明提供的一种基于动态模拟的钢铁企业煤气管理系统结构框图;Fig. 1 shows a kind of steel enterprise gas management system block diagram based on dynamic simulation provided by the present invention;
图2显示为本发明提供的一种基于动态模拟的钢铁企业煤气管理系统中辅助调度模块的结构框图;Fig. 2 shows the structural block diagram of the auxiliary scheduling module in a kind of steel enterprise gas management system based on dynamic simulation provided by the present invention;
图3显示为本发明提供的一种基于动态模拟的钢铁企业煤气管理系统中风险识别模块的结构框图;Fig. 3 shows the block diagram of the risk identification module in a kind of steel enterprise gas management system based on dynamic simulation provided by the present invention;
图4显示为本发明提供的一种基于动态模拟的钢铁企业煤气管理方法流程图;Fig. 4 shows a kind of flow chart of gas management method for iron and steel enterprises based on dynamic simulation provided by the present invention;
图5显示为本发明提供的一种基于动态模拟的钢铁企业煤气管理方法中风险识别流程图;Fig. 5 shows the flow chart of risk identification in a kind of steel enterprise gas management method based on dynamic simulation provided by the present invention;
图6显示为本发明提供的一种基于动态模拟的钢铁企业煤气管理方法中辅助调度流程图。Fig. 6 shows a flow chart of auxiliary scheduling in a dynamic simulation-based gas management method for iron and steel enterprises provided by the present invention.
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in the following embodiments are only schematically illustrating the basic ideas of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
请参阅图1,为本发明提供一种基于动态模拟的钢铁企业煤气管理系统的结构框图,该系统安装于计算机终端上,通过网络与钢铁企业中的SCADA(数据采集与监视控制系统)系统、网络系统、数据服务器、报警系统与自动化控制系统连接,该系统具体包括:Please refer to Fig. 1, for the present invention provides a kind of structural block diagram of the steel enterprise gas management system based on dynamic simulation, this system is installed on the computer terminal, by the SCADA (data acquisition and supervisory control system) system in the network and iron and steel enterprise, The network system, data server, and alarm system are connected with the automatic control system, which specifically includes:
可视化监控层1,用于采集煤气系统中监测数据;以及将采集的所述监测数据按节点位置对应显示煤气系统拓扑图;The visual monitoring layer 1 is used to collect the monitoring data in the gas system; and display the gas system topology diagram corresponding to the collected monitoring data according to the node positions;
其中,所述可视化监控层的具体实现框架为:Wherein, the specific implementation framework of the visual monitoring layer is:
信息处理模块11,用于读取并存储煤气系统拓扑图、煤气管道和设备参数以及其空间地理数据;The information processing module 11 is used to read and store the topological map of the gas system, parameters of gas pipelines and equipment, and their spatial geographic data;
具体地,煤气系统中包含煤气系统拓扑图、煤气管道、煤气设备、以及煤气管道与煤气设备各自对应空间地理数据。Specifically, the gas system includes a topological map of the gas system, gas pipelines, gas equipment, and spatial geographic data corresponding to the gas pipelines and gas equipment.
监测模块12,用于根据SCADA系统采集煤气系统的监测数据,其中,该监测数据包括煤气各管段的压力、流量参数及煤气设备的运行参数;The monitoring module 12 is used to collect the monitoring data of the gas system according to the SCADA system, wherein the monitoring data includes the pressure and flow parameters of each gas pipe section and the operating parameters of the gas equipment;
具体地,该煤气系统根据预设采集频率通过SCADA系统采集煤气系统的监测数据,其中,监测数据优选为压力参数与流量参数,采集频率优选不小于5HZ(赫兹);所述监测模块还可查询、读取煤气系统内运行的历史数据,方便用户进行操作。Specifically, the gas system collects the monitoring data of the gas system through the SCADA system according to the preset collection frequency, wherein the monitoring data are preferably pressure parameters and flow parameters, and the collection frequency is preferably not less than 5HZ (Hertz); the monitoring module can also query , Read the historical data of the operation of the gas system, which is convenient for users to operate.
显示模块13,用于根据读取的煤气管道、设备参数以及对应的空间地理数据将所述监测数据对应显示煤气系统拓扑图。The display module 13 is configured to display the gas system topological map corresponding to the monitoring data according to the read gas pipeline, equipment parameters and corresponding spatial geographic data.
具体地,显示模块为计算机终端的显示屏,通过该显示模块不仅能将监测数据按照上述方式对应显示至煤气系统拓扑图,还能将动态模拟层计算各个节点的监测数据模拟值、发送的报警信息按照该节点动态显示到煤气系统拓扑图;以及将应用管理层发送交互数据显示。Specifically, the display module is the display screen of the computer terminal. Through this display module, not only the monitoring data can be correspondingly displayed on the topological map of the gas system according to the above method, but also the dynamic simulation layer can calculate the monitoring data simulation value of each node and send the alarm. The information is dynamically displayed on the topological map of the gas system according to the node; and the application management layer will send interactive data for display.
在本实施例中,通过实时将监测数据动态显示至煤气系统拓扑图,以及将接收的报警信息、交互信息等内容均可展示至显示模块,使煤气系统各个节点均处于可视化监控状态,方便用户在线监控,提高了监控质量与效率。In this embodiment, by dynamically displaying the monitoring data to the topological map of the gas system in real time, and displaying the received alarm information, interactive information and other content to the display module, each node of the gas system is in a visual monitoring state, which is convenient for users Online monitoring improves monitoring quality and efficiency.
动态模拟层2,用于根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成相应的煤气管网模型;以所述煤气管网模型为基础计算煤气系统各个节点的监测数据模拟值;The dynamic simulation layer 2 is used for modeling and generating a corresponding gas pipeline network model based on the gas pipeline network, geographic information and parameter information of gas system equipment; and calculating the simulated values of the monitoring data of each node of the gas system based on the gas pipeline network model ;
其中,所述动态模拟层的具体实现框架为:Wherein, the specific implementation framework of the dynamic simulation layer is:
可视化建模器21,用于根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成相应的煤气管网模型,其中,所述煤气管网模型包括管网拓扑关系、煤气管道以及设备的水力参数;The visualization modeler 21 is used for modeling and generating a corresponding gas pipeline network model according to the gas pipeline network, gas system equipment geographic information and parameter information, wherein the gas pipeline network model includes pipeline network topological relationships, gas pipelines and equipment hydraulic parameters;
具体地,可视化建模器读取信息处理模块中的煤气系统拓扑图中的管网拓扑关系生成管网模型所需的管网拓扑关系,还读取信息处理模块中的煤气管网及设备的参数及空间地理信息生成各煤气管道及设备元件的水力参数;也可以由用户在建模界面调用煤气系统元件模型库中元件自主建模,如:通过建立操作图形或修改管网拓扑关系,选取具体的元件输入相应煤气管道及设备的水力参数。Specifically, the visual modeler reads the pipe network topological relationship in the gas system topology map in the information processing module to generate the pipe network topological relationship required by the pipe network model, and also reads the gas pipe network and equipment information in the information processing module. Parameters and spatial geographic information generate the hydraulic parameters of each gas pipeline and equipment components; the user can also call the components in the gas system component model library to model independently on the modeling interface, such as: by establishing an operation graphic or modifying the topological relationship of the pipeline network, selecting The specific components input the hydraulic parameters of the corresponding gas pipelines and equipment.
模拟边界参数输入器22,用于根据读取的监测数据或者获取的输入指令生成对应地边界参数;An analog boundary parameter input device 22, configured to generate corresponding boundary parameters according to the read monitoring data or the obtained input instructions;
具体地,该监测数据可为存储的历史数据,或者煤气系统相关气源、煤气用户以及煤气设备实时监控所得的数据;该输入指令可为用户输入数据或调度指令。Specifically, the monitoring data may be stored historical data, or real-time monitoring data obtained from related gas sources, gas users, and gas equipment of the gas system; the input instruction may be user input data or scheduling instruction.
模型解算器23,用于根据所述煤气管网模型数据构建计算模型,在所述计算模型中得到煤气系统中各节点的监测数据模拟值。The model solver 23 is configured to construct a calculation model according to the gas pipeline network model data, and obtain the simulated values of the monitoring data of each node in the gas system in the calculation model.
具体地,根据可视化建模器所建模型,调用相应的系统内置水力模型,包括管道流动的质量、动量及能量守恒方程、管道阻力方程、煤气设备的逻辑控制方程等,并通过调用煤气管网模型数据构建计算模型;通过有限差分法或有限体积法等离散方式对计算模型进行离散,通过数值方法迭代解算出煤气系统中各个节点监测数据模拟值。Specifically, according to the model built by the visual modeler, the corresponding built-in hydraulic model of the system is called, including the mass, momentum and energy conservation equations of the pipeline flow, the pipeline resistance equation, the logic control equation of the gas equipment, etc., and by calling the gas pipeline network The calculation model is constructed from the model data; the calculation model is discretized by discrete means such as the finite difference method or the finite volume method, and the simulated values of the monitoring data of each node in the gas system are calculated through numerical method iterative solutions.
在本实施例中,通过可视化建模器读取信息处理模块中的相应数据生成煤气管网模型,模拟边界参数输入器通过获取监测数据或者外界输入指令输出相应的边界参数,将边界参数输入至计算模型即可得到该节点所对应监测数据模拟值,即压力参数与流量参数;如果多个节点分别输入所述计算模型就能得到一定时间段内的监测数据模拟值,从而可动态模拟煤气系统管网各个监测数据模拟值。In this embodiment, the gas pipeline network model is generated by reading the corresponding data in the information processing module through the visual modeler, and the analog boundary parameter input device outputs corresponding boundary parameters by obtaining monitoring data or external input instructions, and inputs the boundary parameters to The calculation model can obtain the simulated value of the monitoring data corresponding to the node, that is, the pressure parameter and the flow parameter; if multiple nodes are respectively input into the calculation model, the simulated value of the monitoring data within a certain period of time can be obtained, so that the gas system can be dynamically simulated The simulated value of each monitoring data of the pipe network.
应用管理层3,其包含辅助调度模块,所述辅助调度模块,用于检测各节点所对应的监测数据是否超过其预设压力阈值和预设流量阈值,根据检测结果发送调度指令至所述动态模拟层计算所述各节点的监测数据模拟值。Application management layer 3, which includes an auxiliary scheduling module, the auxiliary scheduling module is used to detect whether the monitoring data corresponding to each node exceeds its preset pressure threshold and preset flow threshold, and send scheduling instructions to the dynamic The simulation layer calculates the simulated values of the monitoring data of each node.
其中,所述应用管理层、动态模拟层与可视化监控层之间均两两相连,相互调用传输交互信息。Wherein, the application management layer, the dynamic simulation layer and the visual monitoring layer are all connected in pairs, and call each other to transmit interactive information.
请参阅图2,为本发明提供的一种基于动态模拟的钢铁企业煤气管理系统中辅助调度模块的结构框图,具体包括:Please refer to Fig. 2, which is a structural block diagram of an auxiliary scheduling module in a dynamic simulation-based steel enterprise gas management system provided by the present invention, specifically including:
获取单元311,用于获取所述可视化监控层中煤气系统各节点的监测数据,其中,该监测数据包括煤气各管段的压力参数与流量参数;An acquisition unit 311, configured to acquire monitoring data of each node of the gas system in the visual monitoring layer, wherein the monitoring data includes pressure parameters and flow parameters of each pipe section of the gas;
第一检测单元312,用于当检测到煤气系统中某个节点的压力参数与流量参数中至少一个超过该节点预设压力阈值与预设流量阈值时,通过所述可视化监控层向用户发送报警信息,以及显示预设调度指令或自定义调度指令;The first detection unit 312 is configured to send an alarm to the user through the visual monitoring layer when at least one of the pressure parameter and the flow parameter of a certain node in the gas system is detected to exceed the preset pressure threshold and the preset flow threshold of the node information, and display of preset dispatch orders or custom dispatch orders;
具体地,如果检测到煤气系统某个节点所对应监测数据(压力参数与流量参数)超过该节点对应的预设压力阈值与预设流量阈值时,则无需进行任何操作;如果当某个节点监测数据超过预设压力阈值与预设流量阈值时,发送报警信息至可视化监控层,同时,显示预设调度指令或自定义调度指令;其中,自定义调度指令可为用户手动输入。Specifically, if it is detected that the monitoring data (pressure parameters and flow parameters) corresponding to a node in the gas system exceed the preset pressure threshold and preset flow threshold corresponding to the node, no operation is required; if a node monitors When the data exceeds the preset pressure threshold and preset flow threshold, an alarm message is sent to the visual monitoring layer, and at the same time, a preset scheduling instruction or a custom scheduling instruction is displayed; among them, the custom scheduling instruction can be manually input by the user.
优选地,所有节点的预设压力阈值与预设流量阈值可设为相同阈值,也可根据用户需求按节点不同单一进行设置。Preferably, the preset pressure thresholds and preset flow thresholds of all nodes can be set to the same threshold, or can be set individually for different nodes according to user requirements.
第一计算单元313,用于当接收到预设调度指令或自定义调度指令时;将当前获取的边界参数输入至所述动态模拟层中煤气管网模型进行模拟计算,得到相应监测数据模拟值;The first computing unit 313 is configured to input the currently acquired boundary parameters into the gas pipeline network model in the dynamic simulation layer for simulation calculation to obtain corresponding monitoring data simulation values when receiving a preset scheduling instruction or a custom scheduling instruction ;
具体地,在预设调度指令或自定义调度指令中均设有相应的监测数值,按照该监测数值作为边界参数输入至煤气管网模型进行模拟计算,即可得到该节点的监测数据模拟值。Specifically, the corresponding monitoring values are set in the preset scheduling instructions or custom scheduling instructions, and the monitoring values are input as boundary parameters into the gas pipeline network model for simulation calculation, and the monitoring data simulation value of the node can be obtained.
回馈单元314,用于将所述预设调度指令或自定义调度指令对应监测数据模拟值发送至所述可视化监控层进行显示,以提供调度参考。The feedback unit 314 is configured to send the monitoring data simulation value corresponding to the preset scheduling instruction or the custom scheduling instruction to the visual monitoring layer for display, so as to provide scheduling reference.
在本实施例中,在钢铁企业准备紧急关闭自备电厂、电厂用量在1秒内减为零时,2分钟后启动放散,10分钟后启动电厂备用机组,关闭电厂前煤气系统如下表1所示,获取单元按照气源与用户的气量值可获取到各个节点的流量,第一检测单元检测各个节点是否超过预设流量值,根据检测结果确定是否调用预设调度指令或自定义调度指令;第一计算单元将边界参数输入到煤气管网模型进行模拟计算,即可得到该节点的监测数据模拟值;计算求出整个过程中高炉煤气柜的最大累计吞纳量约为11000m3,而此时煤气柜可存容量大于50000m3,整个调度过程可保证煤气柜的运行安全。同理,按照上述方式也可计算煤气管网系统各节点的压力变化,得知整个过程煤气管网系统最高压力不超过14kPa,没超过管网压力安全限值。由此,辅助调度人员对调度预案进行预判,为用户的调度方案提供了参考建议,提高了其调度工作的安全与效率。In this embodiment, when the iron and steel enterprise prepares to shut down the self-provided power plant urgently and the consumption of the power plant is reduced to zero within 1 second, the gas system will be started after 2 minutes, and the standby unit of the power plant will be started after 10 minutes. shows that the acquisition unit can acquire the flow of each node according to the gas source and the gas volume value of the user, the first detection unit detects whether each node exceeds the preset flow value, and determines whether to call the preset scheduling instruction or a custom scheduling instruction according to the detection result; The first calculation unit inputs the boundary parameters into the gas pipeline network model for simulation calculation, and can obtain the simulated value of the monitoring data of this node; the calculation finds that the maximum cumulative throughput of the blast furnace gas cabinet in the whole process is about 11000m 3 , and this When the storage capacity of the gas cabinet is greater than 50000m 3 , the whole scheduling process can ensure the safe operation of the gas cabinet. In the same way, the pressure change of each node of the gas pipeline network system can also be calculated according to the above method, and it is known that the maximum pressure of the gas pipeline network system in the whole process does not exceed 14kPa, which does not exceed the safety limit of the pipeline network pressure. As a result, the auxiliary dispatchers can predict the dispatching plan, provide reference suggestions for the user's dispatching plan, and improve the safety and efficiency of their dispatching work.
表1高炉煤气系统煤气平衡表Table 1 Blast furnace gas system gas balance table
请参阅图3,为本发明提供的一种基于动态模拟的钢铁企业煤气管理系统中风险识别模块的结构框图,具体包括:Please refer to Fig. 3, which is a structural block diagram of a risk identification module in a dynamic simulation-based iron and steel enterprise gas management system provided by the present invention, specifically including:
读取单元321,用于读取所述可视化监控层中的监测数据,其中,该监测数据包括煤气各管段的压力参数与流量参数;The reading unit 321 is used to read the monitoring data in the visual monitoring layer, wherein the monitoring data includes pressure parameters and flow parameters of each pipe section of gas;
第二计算单元322,用于将获取的边界参数输入至所述动态模拟层中煤气管网模型进行模拟计算,得到相应监测数据模拟值;还用于根据监测数据模拟值与读取的监测数据计算两者之间的偏差;The second calculation unit 322 is used to input the obtained boundary parameters into the gas pipeline network model in the dynamic simulation layer to perform simulation calculations to obtain corresponding monitoring data simulation values; it is also used to combine the monitoring data simulation values with the read monitoring data Calculate the deviation between the two;
第二检测单元323,用于当检测到煤气系统中某个节点所对应偏差大于预设阈值时,发送报警信息显示该节点所对应的位置信息。The second detection unit 323 is configured to send an alarm message to display the location information corresponding to the node when it is detected that the deviation corresponding to a certain node in the gas system is greater than a preset threshold.
在本实施例中,通过实时监控煤气系统的检测数据,第二计算单元调用煤气管网模型根据各个节点边界参数输出监测数据模拟值,计算出监测数据(实测监测数据)与监测数据模拟值的偏差,检测所述偏差是否大于预设阈值,如果当所述偏差大于该预设阈值,则发送报警信息显示该节点所对应的位置信息;如果所述偏差不大于该预设阈值是,不操作。In this embodiment, by monitoring the detection data of the gas system in real time, the second calculation unit calls the gas pipeline network model to output the simulated value of the monitoring data according to the boundary parameters of each node, and calculates the relationship between the monitoring data (actually measured monitoring data) and the simulated value of the monitoring data. Deviation, detect whether the deviation is greater than the preset threshold, if the deviation is greater than the preset threshold, send an alarm message to display the location information corresponding to the node; if the deviation is not greater than the preset threshold, do not operate .
具体地,例如:当读取单元获取到监测的球团厂、焦化厂分支节点到球团厂入厂节点的编号为10-11的管段上某监测点的流量、压力实测值分别为10896m3/h和5.52kPa;第二计算单元根据实时边界工况模拟该节点流量模拟值、压力模拟值分别为12530.4m3/h和6.42kPa,两者之间的相对偏差分别为13.04%和14.01%,如果该厂预设阈值均为10%;第二检测单元检测流量与压力的偏差均大于预设阈值,发送报警信息显示该节点所对应的位置信息。通过风险识别模监控各个管道节点的监测数据,解决了某个节点的煤气泄漏用户无法发现的问题,提高了整个煤气系统的安全性。Specifically, for example: when the reading unit acquires the measured flow and pressure values of a certain monitoring point on the pipe section numbered 10-11 from the branch node of the monitored pellet plant and coking plant to the entry node of the pellet plant, they are 10896m3 /h and 5.52kPa; the second calculation unit simulates the flow simulation value and pressure simulation value of this node according to the real-time boundary conditions to be 12530.4m 3 /h and 6.42kPa, and the relative deviations between the two are 13.04% and 14.01% , if the preset thresholds of the factory are all 10%; the second detection unit detects that the deviation of the flow rate and the pressure is greater than the preset thresholds, and sends an alarm message to display the corresponding position information of the node. The monitoring data of each pipeline node is monitored through the risk identification model, which solves the problem that the user cannot find the gas leakage of a certain node, and improves the safety of the entire gas system.
请参阅图4,为本发明提供的一种基于动态模拟的钢铁企业煤气管理方法,包括:Please refer to Fig. 4, a kind of steel enterprise gas management method based on dynamic simulation provided by the present invention includes:
步骤1,采集煤气系统中监测数据;以及将采集的所述监测数据按节点位置对应显示煤气系统拓扑图;Step 1, collecting monitoring data in the gas system; and displaying the gas system topological map corresponding to the collected monitoring data according to node positions;
其中,步骤1具体的实现流程为:Among them, the specific implementation process of step 1 is as follows:
步骤1.1,读取并存储煤气系统拓扑图、煤气管道和设备参数以及其空间地理数据;Step 1.1, read and store the topological map of the gas system, gas pipeline and equipment parameters, and their spatial geographic data;
步骤1.2,根据SCADA系统采集煤气系统的监测数据,其中,该监测数据包括煤气各管段的压力、流量参数及煤气设备的运行参数;Step 1.2, collecting the monitoring data of the gas system according to the SCADA system, wherein the monitoring data includes the pressure and flow parameters of each gas pipe section and the operating parameters of the gas equipment;
步骤1.3,根据读取的煤气管道、设备参数以及对应的空间地理数据将所述监测数据对应显示煤气系统拓扑图。Step 1.3, according to the read gas pipeline, equipment parameters and corresponding spatial geographic data, display the topological map of the gas system correspondingly to the monitoring data.
具体地,不仅可采集煤气系统各个节点的监测数据,还可查询、读取煤气系统内运行的历史数据,方便用户进行操作;同时,显示风险识别模块、辅助调度模块输出的报警信息,方便用户用户监控。Specifically, not only can the monitoring data of each node of the gas system be collected, but also the historical data of the operation of the gas system can be queried and read, which is convenient for users to operate; at the same time, the alarm information output by the risk identification module and the auxiliary dispatching module is displayed, which is convenient for users User monitoring.
步骤2,根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成煤气管网模型;以所述煤气管网模型为基础计算煤气系统各个节点的监测数据模拟值;Step 2: Carry out modeling according to the gas pipeline network, gas system equipment geographic information and parameter information to generate a gas pipeline network model; calculate the monitoring data simulation values of each node of the gas system based on the gas pipeline network model;
其中,步骤2具体的实现流程为:Among them, the specific implementation process of step 2 is:
步骤2.1,根据煤气管网、煤气系统设备地理信息与参数信息进行建模生成相应的煤气管网模型,其中,所述煤气管网模型包括管网拓扑关系、煤气管道以及设备的水力参数;Step 2.1, modeling and generating a corresponding gas pipeline network model according to the gas pipeline network, gas system equipment geographic information and parameter information, wherein the gas pipeline network model includes the pipeline network topological relationship, gas pipeline and hydraulic parameters of the equipment;
步骤2.2,根据读取的监测数据或者获取的输入指令生成对应地边界参数;Step 2.2, generating corresponding boundary parameters according to the read monitoring data or the obtained input instructions;
步骤2.3,根据所述煤气管网模型数据构建计算模型,求解所述计算模型得到煤气系统中各节点的监测数据模拟值。In step 2.3, a calculation model is constructed according to the data of the gas pipeline network model, and the calculation model is solved to obtain simulated values of monitoring data of each node in the gas system.
具体地,根据获取边界参数计算各个节点的监测数据模拟值,达到动态模拟的目的。Specifically, the monitoring data simulation value of each node is calculated according to the obtained boundary parameters, so as to achieve the purpose of dynamic simulation.
步骤3,检测各节点所对应的监测数据是否超过其预设压力阈值和预设流量阈值,根据检测结果发送调度指令至所述动态模拟层计算所述各节点的监测数据模拟值。Step 3: Detect whether the monitoring data corresponding to each node exceeds its preset pressure threshold and preset flow threshold, and send a scheduling instruction to the dynamic simulation layer to calculate the simulated value of the monitoring data of each node according to the detection result.
请参阅图5,为本发明提供的一种基于动态模拟的钢铁企业煤气管理方法中辅助调度流程图,包括:Please refer to Fig. 5, which is a flow chart of auxiliary scheduling in a dynamic simulation-based iron and steel enterprise gas management method provided by the present invention, including:
步骤3.1,获取所述可视化监控层中煤气系统各节点的监测数据,其中,该监测数据包括压力参数与流量参数;Step 3.1, obtaining the monitoring data of each node of the gas system in the visual monitoring layer, wherein the monitoring data includes pressure parameters and flow parameters;
步骤3.2,当检测到煤气系统中某个节点的压力参数与流量参数中至少一个超过该节点预设压力阈值与预设流量阈值时,通过所述可视化监控层向用户发送报警信息,以及显示预设调度指令或自定义调度指令;Step 3.2, when it is detected that at least one of the pressure parameter and the flow parameter of a certain node in the gas system exceeds the preset pressure threshold and the preset flow threshold of the node, an alarm message is sent to the user through the visual monitoring layer, and the preset value is displayed. Set scheduling instructions or custom scheduling instructions;
步骤3.3,当接收到预设调度指令或自定义调度指令时;将当前获取的边界参数输入至所述动态模拟层中煤气管网模型进行模拟计算,得到相应监测数据模拟值;Step 3.3, when receiving a preset scheduling instruction or a custom scheduling instruction; input the currently acquired boundary parameters into the gas pipeline network model in the dynamic simulation layer for simulation calculation, and obtain corresponding monitoring data simulation values;
当用户默认预设调度指令,或,主动输入自定义调度指令时;调用调度指令中的边界参数输入至煤气管网模型进行模拟计算,得到相应监测数据模拟值;When the user presets the scheduling command by default, or actively enters the custom scheduling command; call the boundary parameters in the scheduling command and input it to the gas pipeline network model for simulation calculation, and obtain the corresponding monitoring data simulation value;
步骤3.4,将所述预设调度指令或自定义调度指令对应监测数据模拟值发送至所述可视化监控层进行显示,以提供调度参考。Step 3.4, sending the monitoring data simulation value corresponding to the preset scheduling instruction or the custom scheduling instruction to the visual monitoring layer for display, so as to provide scheduling reference.
在本实施例中,通过获取各个节点所对应的监测数据,将实测的监测数据分别与预设压力阈值、预设流量阈值比较,检测是否调用预设调度指令或自定义调度指令;当调用预设调度指令或自定义调度指令时,计算该节点所对应的监测数据模拟值,并将该监测数据模拟值返回至可视化监控层进行显示,以提供调度参考,提高了整个煤气系统调度工作的安全与效率。In this embodiment, by acquiring the monitoring data corresponding to each node, comparing the measured monitoring data with the preset pressure threshold and the preset flow threshold respectively, it is detected whether to call the preset dispatching instruction or the custom dispatching instruction; when calling the preset When setting scheduling instructions or custom scheduling instructions, calculate the monitoring data simulation value corresponding to the node, and return the monitoring data simulation value to the visual monitoring layer for display, so as to provide scheduling reference and improve the safety of the entire gas system scheduling work and efficiency.
请参阅图6,为本发明提供的一种基于动态模拟的钢铁企业煤气管理方法中风险识别流程图,包括:Please refer to Fig. 6, which is a flow chart of risk identification in a dynamic simulation-based iron and steel enterprise gas management method provided by the present invention, including:
步骤4.1,读取所述可视化监控层中的监测数据,其中,该监测数据包括煤气各管段的压力参数与流量参数;Step 4.1, reading the monitoring data in the visual monitoring layer, wherein the monitoring data includes pressure parameters and flow parameters of each gas pipe section;
步骤4.2,将获取的边界参数输入至所述动态模拟层中煤气管网模型进行模拟计算,得到相应监测数据模拟值;还用于根据监测数据模拟值与读取的监测数据计算两者之间的偏差;Step 4.2, input the obtained boundary parameters into the gas pipeline network model in the dynamic simulation layer for simulation calculation, and obtain the corresponding monitoring data simulation value; it is also used to calculate the relationship between the monitoring data simulation value and the read monitoring data deviation;
步骤4.3,当检测到煤气系统中某个节点所对应偏差大于预设阈值时,发送报警信息显示该节点所对应的位置信息。Step 4.3, when it is detected that the deviation corresponding to a certain node in the gas system is greater than the preset threshold, an alarm message is sent to display the location information corresponding to the node.
在本实施例中,通过对整个煤气系统中各个节点的监测数据进行监控,同时,根据煤气管网模型计算各个节点在边界参数情况下的监测数据模拟值;根据监测数据模拟值与实际的监测数据之间偏差与预设阈值比较,从而可检测出煤气系统中各个节点是否存在煤气泄漏的情况,提高了整个煤气系统的安全性。In this embodiment, by monitoring the monitoring data of each node in the entire gas system, at the same time, calculate the simulated value of the monitored data of each node in the case of boundary parameters according to the gas pipeline network model; By comparing the deviation between the data with the preset threshold, it is possible to detect whether there is a gas leakage at each node in the gas system, which improves the safety of the entire gas system.
综上所述,本发明本系统分为可视化监控层、动态模拟层与应用管理层,各层级之间既可相对独立又能相互调用,通过可视化监控层采集煤气系统中监测数据,调用动态模拟层中计算模型模拟各个节点所对应监测数据模拟值;在应用管理层中设有风险识别模块与辅助调度模块,通过风险识别模块检测煤气系统中各个节点是否存在煤气泄漏的风险,提高了煤气系统的安全性;通过辅助调度模块检测煤气系统各节点是否超过其预设压力阈值和预设流量阈值,根据检测结果将调度指令对应监测数据模拟值发送可视化监控层,为用户的调度方案提供了参考建议,提高了其调度工作的安全与效率;同时,将监测数据以及辅助调度模块与风险识别模块的检测结果动态显示至可视化监控层,方便了用户实时监控。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the system of the present invention is divided into a visual monitoring layer, a dynamic simulation layer and an application management layer. Each layer can be relatively independent and can call each other. The monitoring data in the gas system is collected through the visual monitoring layer, and the dynamic simulation layer is called. The calculation model in the layer simulates the simulated values of the monitoring data corresponding to each node; a risk identification module and an auxiliary scheduling module are set in the application management layer, and the risk identification module detects whether there is a risk of gas leakage at each node in the gas system, which improves the gas system. The safety of the gas system is detected through the auxiliary scheduling module to detect whether each node of the gas system exceeds its preset pressure threshold and preset flow threshold, and according to the detection results, the scheduling instruction corresponding to the monitoring data simulation value is sent to the visual monitoring layer, which provides a reference for the user's scheduling plan Suggestions improve the safety and efficiency of its scheduling work; at the same time, the monitoring data and the detection results of the auxiliary scheduling module and risk identification module are dynamically displayed to the visual monitoring layer, which facilitates real-time monitoring for users. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610957306.5A CN106338930B (en) | 2016-10-27 | 2016-10-27 | Gas management system and method for iron and steel enterprises based on dynamic simulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610957306.5A CN106338930B (en) | 2016-10-27 | 2016-10-27 | Gas management system and method for iron and steel enterprises based on dynamic simulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106338930A true CN106338930A (en) | 2017-01-18 |
CN106338930B CN106338930B (en) | 2019-08-30 |
Family
ID=57841758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610957306.5A Active CN106338930B (en) | 2016-10-27 | 2016-10-27 | Gas management system and method for iron and steel enterprises based on dynamic simulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106338930B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107272619A (en) * | 2017-06-23 | 2017-10-20 | 深圳市盛路物联通讯技术有限公司 | The intelligent monitor system and method for a kind of equipment of industrial product |
CN110462709A (en) * | 2017-02-15 | 2019-11-15 | Cae有限公司 | The visual subsystem of virtual analog element in interactive computer simulation system |
CN110619191A (en) * | 2019-10-10 | 2019-12-27 | 中冶赛迪重庆信息技术有限公司 | Gas pipe network operation diagnosis system and method |
CN111709666A (en) * | 2020-06-30 | 2020-09-25 | 中冶智诚(武汉)工程技术有限公司 | Three-dimensional visual control system and method for coal gas safety of iron and steel enterprise |
CN114609980A (en) * | 2021-05-13 | 2022-06-10 | 苏州蓝桥智能科技有限公司 | Biological medicine production environment management system |
CN115840389A (en) * | 2022-11-24 | 2023-03-24 | 中煤科工集团信息技术有限公司 | Simulation monitoring data generation method for coal preparation plant |
CN117108924A (en) * | 2023-10-23 | 2023-11-24 | 北京中环信科科技股份有限公司 | Intelligent hydrogen management system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101109952A (en) * | 2007-08-23 | 2008-01-23 | 济南钢铁集团总公司 | Real-time control method for coal gas dynamic balancing in steel plants based on cabinet position prediction |
CN101187967A (en) * | 2007-12-07 | 2008-05-28 | 冶金自动化研究设计院 | Gas dynamic simulation system for iron and steel enterprises |
CN103439926A (en) * | 2013-07-26 | 2013-12-11 | 同济大学 | Gas optimization scheduling device of iron and steel enterprise |
CN105543443A (en) * | 2015-12-29 | 2016-05-04 | 中冶南方工程技术有限公司 | Antisurge control system of converter gas pressuring machine and method |
CN105955020A (en) * | 2016-05-03 | 2016-09-21 | 华东理工大学 | Coal water slurry gasification process DMC-PID multivariable control method |
-
2016
- 2016-10-27 CN CN201610957306.5A patent/CN106338930B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101109952A (en) * | 2007-08-23 | 2008-01-23 | 济南钢铁集团总公司 | Real-time control method for coal gas dynamic balancing in steel plants based on cabinet position prediction |
CN101187967A (en) * | 2007-12-07 | 2008-05-28 | 冶金自动化研究设计院 | Gas dynamic simulation system for iron and steel enterprises |
CN103439926A (en) * | 2013-07-26 | 2013-12-11 | 同济大学 | Gas optimization scheduling device of iron and steel enterprise |
CN105543443A (en) * | 2015-12-29 | 2016-05-04 | 中冶南方工程技术有限公司 | Antisurge control system of converter gas pressuring machine and method |
CN105955020A (en) * | 2016-05-03 | 2016-09-21 | 华东理工大学 | Coal water slurry gasification process DMC-PID multivariable control method |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110462709A (en) * | 2017-02-15 | 2019-11-15 | Cae有限公司 | The visual subsystem of virtual analog element in interactive computer simulation system |
CN110462709B (en) * | 2017-02-15 | 2022-03-08 | Cae有限公司 | Visualization subsystem for virtual simulation elements in an interactive computer simulation system |
CN107272619A (en) * | 2017-06-23 | 2017-10-20 | 深圳市盛路物联通讯技术有限公司 | The intelligent monitor system and method for a kind of equipment of industrial product |
WO2018232930A1 (en) * | 2017-06-23 | 2018-12-27 | 深圳市盛路物联通讯技术有限公司 | Intelligent monitoring system and method for industrial production equipment |
CN110619191A (en) * | 2019-10-10 | 2019-12-27 | 中冶赛迪重庆信息技术有限公司 | Gas pipe network operation diagnosis system and method |
CN111709666A (en) * | 2020-06-30 | 2020-09-25 | 中冶智诚(武汉)工程技术有限公司 | Three-dimensional visual control system and method for coal gas safety of iron and steel enterprise |
CN111709666B (en) * | 2020-06-30 | 2022-06-07 | 中冶智诚(武汉)工程技术有限公司 | Three-dimensional visual control system and method for coal gas safety of iron and steel enterprise |
CN114609980A (en) * | 2021-05-13 | 2022-06-10 | 苏州蓝桥智能科技有限公司 | Biological medicine production environment management system |
CN115840389A (en) * | 2022-11-24 | 2023-03-24 | 中煤科工集团信息技术有限公司 | Simulation monitoring data generation method for coal preparation plant |
CN117108924A (en) * | 2023-10-23 | 2023-11-24 | 北京中环信科科技股份有限公司 | Intelligent hydrogen management system and method |
CN117108924B (en) * | 2023-10-23 | 2024-02-06 | 北京中环信科科技股份有限公司 | Intelligent hydrogen management system and method |
Also Published As
Publication number | Publication date |
---|---|
CN106338930B (en) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106338930B (en) | Gas management system and method for iron and steel enterprises based on dynamic simulation | |
CN114640173B (en) | Early warning model of transformer and generator based on many characteristic quantities | |
CN110263460A (en) | A kind of assembled 4D construction simulation safety monitoring system based on BIM | |
CN102663912B (en) | Computer simulation systems for integrated dispatching and monitoring of regional power network | |
CN109657912B (en) | Visual power grid risk management and control method and system | |
CN115034578A (en) | A construction method and system for intelligent management of hydraulic metal structure equipment based on digital twin | |
CN105469689B (en) | A kind of nuclear plant severe accident training system and Training Methodology | |
KR101328224B1 (en) | Virtual facility system for manufacturing steel and operating method thereof | |
CN101187967A (en) | Gas dynamic simulation system for iron and steel enterprises | |
CN101692575A (en) | Method for processing data for real-time load flow calculation in large electric systems | |
CN103823952B (en) | The dataflow design method of bulk power grid regulation and control integration whole process simulation training system | |
CN117154739B (en) | User power distribution control method and system according to power utilization characteristics | |
CN113361108B (en) | Simulation method and system for future period of power system based on real-time and forecast data | |
CN117875901A (en) | Intelligent command management system and method based on gas emergency repair | |
CN102567800A (en) | Decision-making modeling method for relay protection on-line condition based maintenance of power system | |
Huang et al. | Research on safety of operation and maintenance of utility tunnel based on BIM and computer technology | |
CN112113145A (en) | Intelligent online detection method for chemical pipeline safety | |
Ran et al. | Application of digital twins to flexible production management: taking a Shandong factory as an example | |
CN116300704A (en) | A Process Island Design Method Supporting Virtual Commissioning | |
RU2541937C2 (en) | Oil production data support and control method in real time and automated system for its implementation | |
CN108596346B (en) | Operation and maintenance method of gas pressure regulating equipment | |
CN106155032A (en) | Digitized electric power station system | |
CN210743605U (en) | Intelligent operation and maintenance management platform for hospital environment facilities | |
CN112801550A (en) | Comprehensive supervision, monitoring and emergency management platform system for transmission and distribution pipe network and accessory facilities | |
CN118863848A (en) | A rehearsal system for overhaul of nuclear power plant generator sets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |