CN106331636A - 基于行为事件触发的输油管道智能视频监控系统及方法 - Google Patents

基于行为事件触发的输油管道智能视频监控系统及方法 Download PDF

Info

Publication number
CN106331636A
CN106331636A CN201610788205.XA CN201610788205A CN106331636A CN 106331636 A CN106331636 A CN 106331636A CN 201610788205 A CN201610788205 A CN 201610788205A CN 106331636 A CN106331636 A CN 106331636A
Authority
CN
China
Prior art keywords
video
image
pedestrian
target
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610788205.XA
Other languages
English (en)
Inventor
马大中
张化光
刘金海
冯健
熊召喜
刘聪聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201610788205.XA priority Critical patent/CN106331636A/zh
Publication of CN106331636A publication Critical patent/CN106331636A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training

Abstract

本发明提供一种基于行为事件触发的输油管道智能视频监控系统及方法,涉及输油管道监控技术领域。包括若干视频监控站与一个监控中心,视频监控站包括视频采集模块、视频处理模块、通讯模块、语音模块和控制模块,其中视频处理模块包括实现视频处理的FPGA模块;其监控方法采用FPGA对每一帧视频图像进行处理,对进入监控范围内的行人进行有效的检测和跟踪并根据其行为判断监控站监控范围所处的状态。本发明利用FPGA并行处理机制,结合事件触发的模式和4G无线通讯手段,能有效提高处理速度,节省视频监控在人力上的花费和视频传输流量,使智能监控能够在野外实现。

Description

基于行为事件触发的输油管道智能视频监控系统及方法
技术领域:
本发明涉及输油管道监控技术领域,尤其涉及一种基于行为事件触发的输油管道智能视频监控系统及方法。
背景技术:
在我国国民经济中,石油天然气是国民经济的命脉,占据着重要的战略地位。管道运输与其他运输方式相比具有明显的优势,封闭的管道运输可以减少液体的挥发损耗,运输过程受气候和环境的影响较小,并能适应复杂的地形。因此管道运输已成为石油和天然气运输的主要方式。管道泄漏的原因有以下几个方面:管线内部腐蚀、管线外部腐蚀、外力损伤、违章施工、环境及自然灾害等。石油、天然气等能源产品的管道运输,在我国已经发展了半个多世纪,随着管网的逐年扩建,管道运输已经成为我国陆上油气运输的主要方式。由于近些年来不法分子钻孔偷油恶意破坏的现象多有出现,不仅给国民经济造成损失,甚至造成大面积石油污染,因此管网的安全问题引起了人们的强烈关注。
通常管网的安全监测分为管道内部安全监测和管道外部安全监测。目前管道外部安全监测主要采用传统的视频监控,需要耗费大量的人力对监控视频进行实时查看,而且由于监视人员长时间查看监控视频容易疲劳进而导致漏掉一些可能对管道安全产生严重影响的不法行为。目前,智能监控已经在很多领域投入应用,但是由于输油管道通常位于野外,而且环境复杂多变,系统的通讯畅通和智能性都难以解决。因此尚没有针对输油管道的具体特征的有效的智能视频监控系统。
发明内容:
针对现有技术的缺陷,本发明提供一种基于行为事件触发的输油管道智能视频监控系统及方法,利用FPGA并行处理机制,结合事件触发的模式和4G无线通讯手段,能有效提高处理速度,节省视频监控在人力上的花费和视频传输流量,使智能监控能够在野外实现。
一方面,本发明提供一种基于行为事件触发的输油管道智能视频监控系统,包括若干视频监控站与一个监控中心;
所述视频监控站包括视频采集模块、视频处理模块、通讯模块、语音模块和控制模块;
所述视频采集模块连接视频处理模块和控制模块,用于产生视频数据、时钟信号和行、场同步信号,包括CMOS数字摄像头和视频数据采集电路;所述CMOS数字摄像头用于直接对输油管道及附近范围进行视频采集,所述视频数据采集电路用于辅助摄像头进行视频采集;所述CMOS数字摄像头设有底座和支架,用于CMOS数字摄像头的支撑和固定;
所述视频处理模块连接控制模块,用于对视频采集模块采集到的视频数据进行视频格式转化和实时处理,包括实现视频处理的FPGA模块,FPGA模块用于把计算量很大的视频处理算法转化成逻辑电路,进行视频格式转化、快速行人检测、行人跟踪、行为识别以及泄漏判断的实时处理;
所述通讯模块连接控制模块,用于将视频数据远程传输给监控中心,包括4G无线通信模块和三速以太网接口,当视频监控站位于野外,不能够接入以太网,并且该视频监控站的视频处理模块判定视频有异常时,由无线通信模块通过4G通信向监控中心传输当前的视频,当视频监控站能够连接以太网时,则三速以太网接口连接以太网,该视频监控站通过以太网与监控中心保持连接,实时传输视频数据;
所述语音模块连接控制模块,用于在视频中发现异常情况时,发出报警语音;
所述控制模块为FPGA模块上嵌入的ARM处理器,用于对其他各模块的动作进行控制,使系统正常有序地工作;
所述监控中心用于远程接收各视频监控站的视频数据,根据视频数据的内容做出判断并向各视频监控站下达指令,完成监控处理的任务。
进一步地,视频监控站还包括云台,所述云台连接摄像头底座和支架,用于为CMOS数字摄像头提供水平旋转和垂直旋转,以扩大监控范围。
另一方面,本发明还提供一种基于行为事件触发的输油管道智能视频监控方法,采用上述的基于行为事件触发的输油管道智能视频监控系统实现,包括如下步骤:
步骤1、控制模块控制FPGA上的IP核,以SCCB总线方式对视频采集模块进行配置,使CMOS数字摄像头产生稳定的视频数据、时钟信号以及行、场同步信号,开始进行视频采集;
步骤2、将稳定的视频数据、时钟信号及行、场同步信号传输到FPGA,视频处理模块将这些数据和信号转化为视频流数据;
步骤3、FPGA根据视频流数据,进行快速行人检测、行人跟踪、行为识别和泄漏检测,判断监控范围内的状态为:正常状态、疑似有人盗油状态或疑似泄漏状态,具体包括以下步骤:
步骤3.1、进行快速行人检测,视频处理模块对视频流数据进行预处理,利用小核值相似区(small univalue segment assimilating nucleus,SUSAN)算子及空域合并方法获取视频图像中的感兴趣区域,对感兴趣区域提取多块局部二元模式(Multi-Block LocalBinary Pattern,MB-LBP)特征;利用同可区分度的近似约简算法(common discernibilitydegree-based algorithm for approximate reduction of knowledge,CDDBAARK)对MB-LBP特征约简,得到约简后的MB-LBP模式,判定待测视频图像中是否有行人,若有行人,则执行步骤3.2,若没有行人,则进入下一帧图像,再次执行步骤3.1;
步骤3.2、进行行人跟踪,具体包括以下步骤:
步骤3.2.1、提取行人目标的SIFT(Scale-invariant feature transform,尺度不变特征转换)特征,利用粗糙集方法对SIFT特征进行约简,建立描述行人目标的特征集;
步骤3.2.2、根据行人目标的位置信息与前一时间段检测结果进行对比,判断是否为已有目标,若为新的目标,则进入缓存,暂时记录候选的新的目标特征集,执行步骤3.2.3的跟踪过程;若为已有目标,则直接执行步骤3.2.3的跟踪过程;
步骤3.2.3、跟踪过程中,运用基于几何约束的鲁棒匹配算法对目标特征集的SIFT特征进行匹配,对新缓存的目标特征集和已有目标进行关联;
步骤3.2.4、判断是否有未关联的目标,若目标已关联,则存储目标轨迹,再运用基本的卡尔曼滤波方法对轨迹及相关参数进行估计滤波,同时对目标特征集进行更新,此帧视频图像的行人跟踪完成,执行步骤3.3,若有未关联的目标,则执行步骤3.2.5;
步骤3.2.5、判断未关联目标是否靠近监控视频画面边界,若是,则新增目标并进行关联,此帧视频图像的行人跟踪完成,执行步骤3.3,若否,则直接进入下一帧图像,此帧视频图像的行人跟踪完成,执行步骤3.3;
步骤3.3、进行行人目标的行为识别,具体包括以下步骤:
步骤3.3.1、通过步骤3.1中检测到的行人,获取图像目标,根据步骤3.2.1中的目标特征集,建立并训练获得图像目标的目标特征集网络树模型;
步骤3.3.2、建立SIFT特征RSOM聚类树来对网络树模型中的目标特征集进行检索,从而快速查找目标特征集的邻近目标特征集集合;
步骤3.3.3、对待识别目标特征集,在RSOM聚类树中检索到对应的获胜叶节点以及该叶节点中SIFT特征向量所属的目标特征集标号,对所有的SIFT特征都进行检索,记录这些目标特征集的标号;
步骤3.3.4、统计特征集标号中频率最高的K个目标特征集标号;
步骤3.3.5、通过匹配算法计算匹配特征数目,计算相似性度量值,同时按大小排序;
步骤3.3.6、把最为相似的目标特征集所属目标特征集网络树的目标类别作为目标类别进行输出,通过识别的目标类别结果判断当前状态是否为疑似有人盗油状态,,如果为正常状态,则执行步骤3.4,如果为疑似有人盗油状态,则执行步骤4;
步骤3.4、对输油管道进行泄漏检测,对待检测的一帧视频图像进行预处理,遍历分类图像的像素,统计该帧视频图像中石油像素点的数量,根据石油像素点的数量判断当前状态是否为泄漏状态,如果为正常状态,则返回步骤3.1,进入下一帧视频图像进行处理,如果为疑似泄漏状态,则执行步骤5;
步骤4、通过通讯模块向监控中心发出盗油报警信号,监控中心通过以太网或4G通讯网络远程操控相应视频监控站的视频采集模块,查看此时该视频监控站监控范围内的实际情况,判定此时的真实状态,并向该视频监控站发送相应动作指令:若为正常状态,则执行步骤3.4;若有人盗油,则该视频监控站进入盗油警报状态,语音模块发出盗油警报语音,警告盗油者,结束后执行步骤3.4;
步骤5、通过通讯模块向监控中心发出泄漏报警信号,监控中心通过以太网或4G通讯网络远程操控相应视频监控站的视频采集模块,查看此时该视频监控站监控范围内的实际情况,判定此时的真实状态,并向该视频监控站发送相应动作指令:若为正常状态,则返回步骤3.1,进入下一帧视频图像进行处理;若为管道泄漏状态,则该视频监控站进入泄漏警报状态,语音模块发出泄漏警报语音,提醒工作人员启动抢修机制,结束后返回步骤3.1,进入下一帧视频图像进行处理。
进一步地,步骤3.1所述的快速行人检测的过程,首先选取数据进行离线训练,然后利用训练好的分类器检测待测视频中的行人,具体包括以下步骤:
步骤3.1.1、对视频流数据进行离线训练,得到SVM(Support Vector Machine,支持向量机)分类器,具体方法为:
步骤3.1.1.1、在视频流数据中选取数据,构造行人样本w1与非行人样本w0,样本数目分别为n1和n0,定义样本总数为L,L=n1+n0
步骤3.1.1.2、对样本的MB-LBP特征做直方图统计,得到视频图像的MB-LBP模式直方图,如下式所示:
H ij ( m ) = Σ x , y I { f i , j ( x , y ) = m } , m = 0,1 , . . . , K - 1
其中,Hii(m)表示视频图像的MB-LBP模式直方图;i为1或0,分别表示行人类和非行人类图像;j表示图像序号;(x,y)表示图像MB-LBP特征所在区域的中心坐标;fi,j(x,y)表示行人类或非行人类中的第j幅图像的MB-LBP特征,特征为m时,I{fi,j(x,y)=m}值为1,否则为0;K为MB-LBP模式的种类数量,m为其中一个种类;
步骤3.1.1.3、将视频图像的MB-LBP模式直方图Hij看做一行向量,每一维表示该图像的一个特征,所有训练图像的Hij组合在一起,则构成一个包含L个对象的决策表,每幅训练图像被看成是一个对象,其中对象fi,j(x,y)的特征向量Hij对应的决策值为i,进而得到决策表S=(O,C,D),其中,O表示论域,为所有训练图像的集合,C表示条件属性,对应MB-LBP模式直方图Hij,D表示决策属性,对应图像的类别,D=1代表行人,D=0代表非行人;
步骤3.1.1.4、利用同可区分度的近似约简(CDDBAARK)算法对MB-LBP特征约简,得到约简后的MB-LBP模式;
步骤3.1.1.5、用约简后的MB-LBP特征训练支持向量机SVM,对行人与非行人样本训练,得到SVM分类器;
步骤3.1.2、对待测的某一帧视频图像进行预处理,包括彩色图像转换为灰度图像和图像的几何归一化;
步骤3.1.3、利用SUSAN检测算子获取视频图像中的感兴趣区域,先选择SUSAN圆形模板,确定相似度,进而确定感兴趣区域;
步骤3.1.4、对感兴趣区域提取MB-LBP特征,首先将图像中任意3s×3t大小的领域窗口均分为9个子窗口,子窗口大小标记为s×t,然后对每一个子区域求其平均灰度值得到一个3×3的整数矩阵,MB-LBP特征计算公式如下:
MB - LBP s , t ( x , y ) = &Sigma; q = 0 7 s ( g q - g c ) * 2 q , s ( g q - g c ) = 1 , g q &GreaterEqual; g c 0 , g q < g c
其中,s表示子窗口像素的行数,t表示子窗口像素的列数,(x,y)表示3s×3t的窗口中心在整个图像中的坐标,q表示子窗口编号,gc代表中心子窗口的平均灰度,gq表示周围子窗口的平均灰度值;s(gq-gc)表示对中心子窗口的平均灰度与周围子窗口平均灰度的差做二值化处理,若差值大于或等于零则结果为1,否则为0;
步骤3.1.5、对提取的MB-LBP特征进行特征约简,选择约简后的MB-LBP特征;
步骤3.1.6、用步骤3.1.1训练好的SVM分类器对步骤3.1.5选择的简约后的MB-LBP特征进行在线检测,输出结果,判定待测视频中是否有行人,若有行人,则执行步骤3.2,若没有行人,则进入下一帧图像,再次执行步骤3.1。
进一步地,步骤3.1.3中所述获取视频图像中的感兴趣区域的具体方法为:
在图像中,用一个含有37个像素的模板来表示SUSAN圆形模板,SUSAN圆形模板在图像上滑动,在图像的每个位置上比较SUSAN圆形模板内各个像素的灰度值与SUSAN圆形模板核心的灰度值,得出比较结果,相似度比较计算公式:
其中,为相似度,(x0,y0)为SUSAN圆形模板核心像素点的坐标,为SUSAN圆形模板其它像素点的坐标;I(x0,y0)和分别是SUSAN圆形模板核心点与SUSAN圆形模板其它点所对应的检测图像上像素的灰度值,当两者差值小于等于阈值t时,就认为检测图像上的该像素点在感兴趣区域。
进一步地,步骤3.4所述判断当前状态是否为泄漏状态的具体方法包括以下步骤:
步骤3.4.1、对待检测的一帧视频图像进行几何校正和滤波处理、将视频图像的RGB颜色空间转换到YUV颜色空间和YIQ颜色空间;
RGB-YUV颜色空间的转换公式为:
Y U V = 0.299 0.587 0.114 - 0.147 0.289 0.436 0.615 - 0.515 - 0.100 R G B
YUV颜色空间的色调θ为:
θ=tan-1(|V|/|U|)
RGB-YIQ颜色空间的转换公式为:
Y I Q = 0.299 0.578 0.114 0 . 596 0.274 0.322 0.211 - 0.523 - 0 . 312 R G B
步骤3.4.2、对视频图像的像素进行遍历分类,如果YUV颜色空间的色调θ和YIQ颜色空间的颜色分量I分别满足:θ∈[θmin,θmax]和I∈[Imin,Imax],则该像素属于石油像素点,其中θmax和θmin分别代表石油在YUV颜色空间下色调的阈值上下限,Imax和Imin分别代表石油在YIQ颜色空间下颜色分量I的阈值上下限;
步骤3.4.3、对视频图像进行二值化和闭运算,统计视频图像的像素点总数量为n、石油像素点数量为no,判断当前状态是否为泄漏状态,如果石油像素点数量no与图像像素点总数量n之比满足则判定为疑似泄漏状态,其中σ为泄漏判定阈值,否则为正常状态。
由上述技术方案可知,本发明的有益效果在于:本发明提供的基于行为事件触发的输油管道智能视频监控系统及方法,能够对进入监控范围内的行人进行有效的检测和跟踪并根据其行为判断监控站监控范围所处的状态,监控站根据所处状态与监控中心通讯,监控中心接通实时视频并通过实时视频最终判定监控站监控范围所处的真实状态并反馈给监控站,监控站控制语音警报。结合行为事件触发的模式和4G无线通讯手段,既节省了视频监控在人力上的花费,又节省了视频传输流量,使得智能监控能够在野外实现。利用FPGA并行处理机制,将视频处理中大量的计算以FPGA逻辑电路的方式实现,大大提高了处理速度。
附图说明:
图1为本发明实施例提供的基于行为事件触发的输油管道智能视频监控系统的结构框图;
图2为本发明实施例提供的基于事件触发的输油管道智能视频监控方法的整体流程图;
图3为本发明实施例提供的快速行人检测的方法流程图;
图4为本发明实施例提供的行人跟踪的方法流程图;
图5为本发明实施例提供的行为识别的方法流程图;
图6为本发明实施例提供的泄漏检测的方法流程图。
具体实施方式:
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明提供一种基于行为事件触发的输油管道智能视频监控系统,如图1所示,包括若干视频监控站与一个监控中心。视频监控站包括视频采集模块、云台、视频处理模块、通讯模块、语音模块和控制模块。
视频采集模块连接视频处理模块和控制模块,用于产生视频数据、时钟信号和行、场同步信号,包括CMOS数字摄像头和视频数据采集电路;所述CMOS数字摄像头用于直接对输油管道及附近范围进行视频采集,所述视频数据采集电路用于辅助摄像头进行视频采集;CMOS数字摄像头设有底座和支架,用于CMOS数字摄像头的支撑和固定。
云台连接摄像头底座和支架,用于为CMOS数字摄像头提供水平旋转和垂直旋转,以扩大监控范围。
视频处理模块连接控制模块,用于对视频采集模块采集到的视频数据进行视频格式转化和实时处理,包括实现视频处理算法的FPGA模块,利用FPGA丰富的逻辑资源,可以把计算量很大的视频处理算法转化成逻辑电路,进行视频格式转化、快速行人检测、行人跟踪、行为识别以及泄漏判断等实时处理;
通讯模块连接控制模块,用于将视频数据远程传输给监控中心,包括4G无线通信模块和三速以太网接口,当视频监控站位于野外,不能够接入以太网,并且该视频监控站的视频处理模块判定视频有异常时,由无线通信模块通过4G通信向监控中心传输当前的视频,当视频监控站能够连接以太网时,则三速以太网接口连接以太网,该视频监控站通过以太网与监控中心保持连接,实时传输视频数据。采用4G LTE无线通信模块LE910和三速以太网芯片实现无线、有线通信,
语音模块连接控制模块,用于在视频中发现异常情况时,发出报警语音,由WTV020-SD语音模块及扬声器组成。
控制模块为FPGA模块上嵌入的ARM Cortex A9处理器,用于对其他各模块的动作进行控制,使系统正常有序地工作。
监控中心,包括PC机及监控处理软件,用于远程接收各视频监控站的视频数据,根据视频数据的内容做出判断并向各视频监控站下达指令,完成监控处理的任务。
一种基于事件触发的输油管道智能视频监控方法,采用上述上午基于行为事件触发的输油管道智能视频监控系统实现,如图2所示,包括如下步骤。
步骤1、控制模块控制FPGA上的IP核,以SCCB总线方式对视频采集模块进行配置,使CMOS数字摄像头产生稳定的视频数据、时钟信号以及行、场同步信号,开始进行视频采集。
步骤2、将稳定的视频数据、时钟信号及行、场同步信号传输到FPGA,视频处理模块将这些数据和信号转化为视频流数据。
步骤3、FPGA根据视频流数据,首先对监控范围内的行人进行检测与跟踪,并对其行为进行识别,以此判定当前状态是正常状态还是疑似有人盗油状态,其次对监控图像颜色空间进行计算统计,判断是否为疑似泄漏状态,具体包括以下步骤。
步骤3.1、进行快速行人检测,视频处理模块对视频流数据进行预处理,利用小核值相似区(small univalue segment assimilating nucleus,SUSAN)算子及空域合并方法获取视频图像中的感兴趣区域,对感兴趣区域提取多块局部二元模式(Multi-Block LocalBinary Pattern,MB-LBP)特征;利用同可区分度的近似约简算法(common discernibilitydegree-based algorithm for approximate reduction of knowledge,CDDBAARK)对MB-LBP特征约简,得到约简后的MB-LBP模式,判定待测视频图像中是否有行人,具体实施中,首先选取数据进行离线训练,然后利用训练好的分类器检测待测视频中的行人,如图3所示,具体步骤如下:
步骤3.1.1、对视频流数据进行离线训练,得到SVM(Support Vector Machine,支持向量机)分类器,具体方法为:
步骤3.1.1.1、在视频流数据中选取数据,构造行人w1与非行人w0样本,样本数目分别为n1和n0,定义样本总数为L,L=n1+n0
步骤3.1.1.2、对样本的MB-LBP特征做直方图统计,得到图像的MB-LBP模式直方图,如下式所示:
H ij ( m ) = &Sigma; x , y I { f i , j ( x , y ) = m } , m = 0,1 , . . . , K - 1
其中,i为1或0,分别表示行人类和非行人类图像,j表示图像序号,(x,y)表示图像MB-LBP特征所在区域的中心坐标,fi,j(x,y)表示行人类或非行人类中的第j幅图像的MB-LBP特征,特征为m时,I{fi,j(x,y)=m}值为1,否则为0;K为MB-LBP模式的种类数量,m为其中一个种类;
步骤3.1.1.3、将图像的MB-LBP模式直方图Hij看做一行向量,每一维表示该图像的一个特征,所有训练图像的Hij组合在一起,则构成一个包含L个对象的决策表S=(O,C,D),每幅训练图像被看成是一个对象,其中对象fi,j(x,y)的特征向量Hij对应的决策值为i,进而得到决策表S=(O,C,D),其中,O表示论域,为所有训练图像的集合,C表示条件属性,对应MB-LBP模式直方图Hij,D表示决策属性,对应图像的类别,D=1代表行人,D=0代表非行人;
步骤3.1.1.4、利用同可区分度的近似约简(CDDBAARK)算法对MB-LBP特征约简,得到约简后的MB-LBP模式;
步骤3.1.1.5、用约简后的MB-LBP特征训练支持向量机SVM,选定支持向量机SVM的核函数为感知器核函数,对行人与非行人样本训练,得到SVM分类器;
步骤3.1.2、视频处理模块对待测的某一帧视频图像进行预处理,包括彩色图像转换为灰度图像和图像的几何归一化;
步骤3.1.3、利用SUSAN检测算子获取视频图像中的感兴趣区域,选择SUSAN圆形模板,计算相似度,确定感兴趣区域,具体方法为:
在图像中,用一个含有37个像素的模板来表示SUSAN圆形模板,SUSAN圆形模板在图像上滑动,在图像的每个位置上比较SUSAN圆形模板内各个像素的灰度值与SUSAN圆形模板核心的灰度值,得出比较结果,相似度比较计算公式:
为相似度,(x0,y0)为SUSAN圆形模板核心像素点的坐标,为SUSAN圆形模板其它像素点的坐标;I(x0,y0)和分别是SUSAN圆形模板核心点与SUSAN圆形模板其它点所对应的检测图像上像素的灰度值,当两者差值小于等于阈值t,就认为检测图像上的该像素点在感兴趣区域;
步骤3.1.4、对感兴趣区域提取MB-LBP特征,首先将图像中任意3s×3t大小的领域窗口均分为9个子窗口,子窗口大小标记为s×t,然后对每一个子区域求其平均灰度值得到一个3×3的整数矩阵,MB-LBP特征计算公式如下:
MB - LBP s , t ( x , y ) = &Sigma; q = 0 7 s ( g q - g c ) * 2 q , s ( g q - g c ) = 1 , g q &GreaterEqual; g c 0 , g q < g c
其中,s表示子窗口像素的行数,t表示子窗口像素的列数,(x,y)表示3s×3t的窗口中心在整个图像中的坐标,q表示子窗口编号,gc代表中心子窗口的平均灰度,gq表示周围子窗口的平均灰度值;s(gq-gc)表示对中心子窗口的平均灰度与周围子窗口平均灰度的差做二值化处理,若差值大于或等于零则结果为1,否则为0;
步骤3.1.5、对提取的MB-LBP特征进行特征约简,选择约简后的MB-LBP特征;
步骤3.1.6、用步骤3.1.1训练好的SVM分类器对步骤3.1.5选择的简约后的MB-LBP特征进行在线检测,判定待测视频中是否有行人,若有行人,则执行步骤3.2,若没有行人,则进入下一帧图像,再次执行步骤3.1。
步骤3.2、进行行人跟踪,如图4所示,具体包括以下步骤:
步骤3.2.1、提取行人目标的SIFT(Scale-invariant feature transform,尺度不变特征转换)特征,利用粗糙集方法对SIFT特征进行约简,建立描述行人目标的特征集;
步骤3.2.2、根据行人目标的位置信息与前一时间段检测结果进行对比,判断是否为已有目标,若为新的目标,则进入缓存,暂时记录候选的新的目标特征集,执行步骤3.2.3的跟踪过程;若为已有目标,则直接执行步骤3.2.3的跟踪过程;
步骤3.2.3、跟踪过程中,运用基于几何约束的鲁棒匹配算法对目标特征集的SIFT特征进行匹配,对新缓存的目标特征集和已有目标进行关联;
步骤3.2.4、判断是否有未关联的目标,若目标已关联,则存储目标轨迹,再运用基本的卡尔曼滤波方法对轨迹及相关参数进行估计滤波,同时对目标特征集进行更新,此帧视频图像的行人跟踪完成,执行步骤3.3,若有未关联的目标,则执行步骤3.2.5;
步骤3.2.5、判断未关联目标是否靠近场景边界即监控视频画面边界,若是,则新增目标并进行关联,此帧视频图像的行人跟踪完成,执行步骤3.3,若否,则直接执行步骤3.3。
步骤3.3、进行行人目标的行为识别,如图5所示,具体包括以下步骤:
步骤3.3.1、通过步骤3.1中检测到的行人,获取图像目标L,获取步骤3.2.1中的目标特征集Al,建立并训练获得具有N个目标的目标特征集网络树模型,
步骤3.3.2、建立SIFT特征RSOM聚类树来对TOFSN模型中的目标特征集进行检索,从而快速查找目标特征集Al的邻近目标特征集集合Neb(Al);
步骤3.3.3、对待识别目标特征集Al,任意ul,i∈Al都可以在RSOM聚类树中检索到对应的获胜叶节点以及该叶节点中SIFT特征向量所属的目标特征集标号,记录这些目标特征集的标号为idx(ul,i)={idx1,idx2,…,idxk},对所有的SIFT特征都进行检索,记录这些目标特征集的标号,最终得到IDX(Al)={idx(ul,1),idx(ul,2),…,idx(ul,n)};
步骤3.3.4、统计特征集标号IDX(Al)中频率最高的K个目标特征集标号{c1,c2,…,cK},得到N个候选目标特征集
步骤3.3.5、通过匹配算法计算与Al的匹配特征数目,计算相似性度量值同时按大小排序,得到Neb(Al);
步骤3.3.6、把最为相似的目标特征集Asim所属目标特征集网络树TNET的目标类别作为目标类别进行输出,通过识别的目标类别结果判断当前状态是否为疑似有人盗油状态,如果为正常状态,则执行步骤3.4,如果为疑似有人盗油状态,则执行步骤4。
步骤3.4、对输油管道进行泄漏检测,对待检测的一帧视频图像进行预处理,遍历分类图像的像素,统计该帧视频图像中石油像素点的数量,判断当前状态是否为泄漏状态,如图6所示,具体步骤如下:
步骤3.4.1、对待检测的一帧视频图像进行几何校正和滤波处理、将视频图像的RGB颜色空间转换到YUV颜色空间和YIQ颜色空间;
RGB-YUV颜色空间的转换公式为:
Y U V = 0.299 0.587 0.114 - 0.147 0.289 0.436 0.615 - 0.515 - 0.100 R G B
YUV颜色空间的色调θ为:
θ=tan-1(|V|/|U|)
RGB-YIQ颜色空间的转换公式为:
Y I Q = 0.299 0.578 0.114 0 . 596 0.274 0.322 0.211 - 0.523 - 0 . 312 R G B
步骤3.4.2、对视频图像的像素进行遍历分类,如果YUV颜色空间的色调θ和YIQ颜色空间的颜色分量I分别满足:θ∈[θmin,θmax]和I∈[Imin,Imax],则该像素属于石油像素点,其中θmax和θmin分别代表石油在YUV颜色空间下色调的阈值上下限,Imax和Imin分别代表石油在YIQ颜色空间下颜色分量I的阈值上下限;
步骤3.4.3、对视频图像进行二值化和闭运算,统计视频图像的像素点总数量为n、石油像素点数量为no,判断当前状态是否为泄漏状态,如果no与图像像素点数量n之比满足则判定为疑似泄漏状态,执行步骤5,其中σ为泄漏判定阈值,本实施例中,设定σ为0.2,否则为正常状态,返回步骤3.1,进入下一帧视频图像进行处理。
步骤4、通过通讯模块向监控中心发出盗油报警信号,监控中心通过以太网或4G通讯网络远程操控相应视频监控站的视频采集模块,查看此时该视频监控站监控范围内的实际情况,判定此时的真实状态,并向该视频监控站发送相应动作指令:若为正常状态,则执行步骤3.4;若有人盗油,则该视频监控站进入盗油警报状态,语音模块发出盗油警报语音,警告盗油者,结束后执行步骤3.4。
步骤5、通过通讯模块向监控中心发出泄漏报警信号,监控中心通过以太网或4G通讯网络远程操控相应视频监控站的视频采集模块,查看此时该视频监控站监控范围内的实际情况,判定此时的真实状态,并向该视频监控站发送相应动作指令:若为正常状态,则该视频监控站返回步骤3.1,进入下一帧视频图像进行处理;若为管道泄漏状态,则该视频监控站进入泄漏警报状态,语音模块发出泄漏警报语音,提醒工作人员启动抢修机制,结束后返回步骤3.1,进入下一帧视频图像进行处理。
本发明提供的基于行为事件触发的输油管道智能视频监控系统及方法,能够对进入监控范围内的行人进行有效的检测和跟踪并根据其行为判断监控站监控范围所处的状态,监控站根据所处状态与监控中心通讯,监控中心接通实时视频并通过实时视频最终判定监控站监控范围所处的真实状态并反馈给监控站,监控站控制语音警报。结合行为事件触发的模式和4G无线通讯手段,既节省了视频监控在人力上的花费,又节省了视频传输流量,使得智能监控能够在野外实现。利用FPGA并行处理机制,将视频处理中大量的计算以FPGA逻辑电路的方式实现,大大提高了处理速度。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (6)

1.一种基于行为事件触发的输油管道智能视频监控系统,其特征在于,包括若干视频监控站与一个监控中心;
所述视频监控站包括视频采集模块、视频处理模块、通讯模块、语音模块和控制模块;
所述视频采集模块连接视频处理模块和控制模块,用于产生视频数据、时钟信号和行、场同步信号,包括CMOS数字摄像头和视频数据采集电路;所述CMOS数字摄像头用于直接对输油管道及附近范围进行视频采集,所述视频数据采集电路用于辅助摄像头进行视频采集;所述CMOS数字摄像头设有底座和支架,用于CMOS数字摄像头的支撑和固定;
所述视频处理模块连接控制模块,用于对视频采集模块采集到的视频数据进行视频格式转化和实时处理,包括实现视频处理的FPGA模块,FPGA模块用于把计算量很大的视频处理算法转化成逻辑电路,进行视频格式转化、快速行人检测、行人跟踪、行为识别以及泄漏判断的实时处理;
所述通讯模块连接控制模块,用于将视频数据远程传输给监控中心,包括4G无线通信模块和三速以太网接口,当视频监控站位于野外,不能够接入以太网,并且该视频监控站的视频处理模块判定视频有异常时,由无线通信模块通过4G通信向监控中心传输当前的视频,当视频监控站能够连接以太网时,则三速以太网接口连接以太网,该视频监控站通过以太网与监控中心保持连接,实时传输视频数据;
所述语音模块连接控制模块,用于在视频中发现异常情况时,发出报警语音;
所述控制模块为FPGA模块上嵌入的ARM处理器,用于对其他各模块的动作进行控制,使系统正常有序地工作;
所述监控中心用于远程接收各视频监控站的视频数据,根据视频数据的内容做出判断并向各视频监控站下达指令,完成监控处理的任务。
2.根据权利要求1所述的基于行为事件触发的输油管道智能视频监控系统,其特征在于,所述视频监控站还包括云台,所述云台连接摄像头底座和支架,用于为CMOS数字摄像头提供水平旋转和垂直旋转,以扩大监控范围。
3.一种基于行为事件触发的输油管道智能视频监控方法,其特征在于,该方法采用权利要求1所述的基于行为事件触发的输油管道智能视频监控系统实现,包括如下步骤:
步骤1、控制模块控制FPGA上的IP核,以SCCB总线方式对视频采集模块进行配置,使CMOS数字摄像头产生稳定的视频数据、时钟信号以及行、场同步信号,开始进行视频采集;
步骤2、将稳定的视频数据、时钟信号及行、场同步信号传输到FPGA,视频处理模块将这些数据和信号转化为视频流数据;
步骤3、FPGA根据视频流数据,进行快速行人检测、行人跟踪、行为识别和泄漏检测,判断监控范围内的状态为:正常状态、疑似有人盗油状态或疑似泄漏状态,具体包括以下步骤:
步骤3.1、进行快速行人检测,视频处理模块对视频流数据进行预处理,利用小核值相似区(small univalue segment assimilating nucleus,SUSAN)算子及空域合并方法获取视频图像中的感兴趣区域,对感兴趣区域提取多块局部二元模式(Multi-Block LocalBinary Pattern,MB-LBP)特征;利用同可区分度的近似约简算法(common discernibilitydegree-based algorithm for approximate reduction of knowledge,CDDBAARK)对MB-LBP特征约简,得到约简后的MB-LBP模式,判定待测视频图像中是否有行人,若有行人,则执行步骤3.2,若没有行人,则进入下一帧图像,再次执行步骤3.1;
步骤3.2、进行行人跟踪,具体包括以下步骤:
步骤3.2.1、提取行人目标的SIFT(Scale-invariant feature transform,尺度不变特征转换)特征,利用粗糙集方法对SIFT特征进行约简,建立描述行人目标的特征集;
步骤3.2.2、根据行人目标的位置信息与前一时间段检测结果进行对比,判断是否为已有目标,若为新的目标,则进入缓存,暂时记录候选的新的目标特征集,执行步骤3.2.3的跟踪过程;若为已有目标,则直接执行步骤3.2.3的跟踪过程;
步骤3.2.3、跟踪过程中,运用基于几何约束的鲁棒匹配算法对目标特征集的SIFT特征进行匹配,对新缓存的目标特征集和已有目标进行关联;
步骤3.2.4、判断是否有未关联的目标,若目标已关联,则存储目标轨迹,再运用基本的卡尔曼滤波方法对轨迹及相关参数进行估计滤波,同时对目标特征集进行更新,此帧视频图像的行人跟踪完成,执行步骤3.3,若有未关联的目标,则执行步骤3.2.5;
步骤3.2.5、判断未关联目标是否靠近监控视频画面边界,若是,则新增目标并进行关联,此帧视频图像的行人跟踪完成,执行步骤3.3,若否,则直接进入下一帧图像,此帧视频图像的行人跟踪完成,执行步骤3.3;
步骤3.3、进行行人目标的行为识别,具体包括以下步骤:
步骤3.3.1、通过步骤3.1中检测到的行人,获取图像目标,根据步骤3.2.1中的目标特征集,建立并训练获得图像目标的目标特征集网络树模型;
步骤3.3.2、建立SIFT特征RSOM聚类树来对网络树模型中的目标特征集进行检索,从而快速查找目标特征集的邻近目标特征集集合;
步骤3.3.3、对待识别目标特征集,在RSOM聚类树中检索到对应的获胜叶节点以及该叶节点中SIFT特征向量所属的目标特征集标号,对所有的SIFT特征都进行检索,记录这些目标特征集的标号;
步骤3.3.4、统计特征集标号中频率最高的K个目标特征集标号;
步骤3.3.5、通过匹配算法计算匹配特征数目,计算相似性度量值,同时按大小排序;
步骤3.3.6、把最为相似的目标特征集所属目标特征集网络树的目标类别作为目标类别进行输出,通过识别的目标类别结果判断当前状态是否为疑似有人盗油状态,,如果为正常状态,则执行步骤3.4,如果为疑似有人盗油状态,则执行步骤4;
步骤3.4、对输油管道进行泄漏检测,对待检测的一帧视频图像进行预处理,遍历分类图像的像素,统计该帧视频图像中石油像素点的数量,根据石油像素点的数量判断当前状态是否为泄漏状态,如果为正常状态,则返回步骤3.1,进入下一帧视频图像进行处理,如果为疑似泄漏状态,则执行步骤5;
步骤4、通过通讯模块向监控中心发出盗油报警信号,监控中心通过以太网或4G通讯网络远程操控相应视频监控站的视频采集模块,查看此时该视频监控站监控范围内的实际情况,判定此时的真实状态,并向该视频监控站发送相应动作指令:若为正常状态,则执行步骤3.4;若有人盗油,则该视频监控站进入盗油警报状态,语音模块发出盗油警报语音,警告盗油者,结束后执行步骤3.4;
步骤5、通过通讯模块向监控中心发出泄漏报警信号,监控中心通过以太网或4G通讯网络远程操控相应视频监控站的视频采集模块,查看此时该视频监控站监控范围内的实际情况,判定此时的真实状态,并向该视频监控站发送相应动作指令:若为正常状态,则返回步骤3.1,进入下一帧视频图像进行处理;若为管道泄漏状态,则该视频监控站进入泄漏警报状态,语音模块发出泄漏警报语音,提醒工作人员启动抢修机制,结束后返回步骤3.1,进入下一帧视频图像进行处理。
4.根据权利要求3所述的基于行为事件触发的输油管道智能视频监控方法,其特征在于,步骤3.1所述的快速行人检测的过程,首先选取数据进行离线训练,然后利用训练好的分类器检测待测视频中的行人,具体包括以下步骤:
步骤3.1.1、对视频流数据进行离线训练,得到SVM(Support Vector Machine,支持向量机)分类器,具体方法为:
步骤3.1.1.1、在视频流数据中选取数据,构造行人样本w1与非行人样本w0,样本数目分别为n1和n0,定义样本总数为L,L=n1+n0
步骤3.1.1.2、对样本的MB-LBP特征做直方图统计,得到视频图像的MB-LBP模式直方图,如下式所示:
H i j ( m ) = &Sigma; x , y I { f i , j ( x , y ) = m } , m = 0 , 1 , ... , K - 1
其中,Hij(m)表示视频图像的MB-LBP模式直方图;i为1或0,分别表示行人类和非行人类图像;j表示图像序号;(x,y)表示图像MB-LBP特征所在区域的中心坐标;fi,j(x,y)表示行人类或非行人类中的第j幅图像的MB-LBP特征,特征为m时,I{fi,j(x,y)=m}值为1,否则为0;K为MB-LBP模式的种类数量,m为其中一个种类;
步骤3.1.1.3、将视频图像的MB-LBP模式直方图Hij看做一行向量,每一维表示该图像的一个特征,所有训练图像的Hij组合在一起,则构成一个包含L个对象的决策表,每幅训练图像被看成是一个对象,其中对象fi,j(x,y)的特征向量Hij对应的决策值为i,进而得到决策表S=(O,C,D),其中,O表示论域,为所有训练图像的集合,C表示条件属性,对应MB-LBP模式直方图Hij,D表示决策属性,对应图像的类别,D=1代表行人,D=0代表非行人;
步骤3.1.1.4、利用同可区分度的近似约简(CDDBAARK)算法对MB-LBP特征约简,得到约简后的MB-LBP模式;
步骤3.1.1.5、用约简后的MB-LBP特征训练支持向量机SVM,对行人与非行人样本训练,得到SVM分类器;
步骤3.1.2、对待测的某一帧视频图像进行预处理,包括彩色图像转换为灰度图像和图像的几何归一化;
步骤3.1.3、利用SUSAN检测算子获取视频图像中的感兴趣区域,先选择SUSAN圆形模板,确定相似度,进而确定感兴趣区域;
步骤3.1.4、对感兴趣区域提取MB-LBP特征,首先将图像中任意3s×3t大小的领域窗口均分为9个子窗口,子窗口大小标记为s×t,然后对每一个子区域求其平均灰度值得到一个3×3的整数矩阵,MB-LBP特征计算公式如下:
M B - LBP s , t ( x , y ) = &Sigma; q = 0 7 s ( g q - g c ) * 2 q , s ( g q - g c ) = 1 , g q &GreaterEqual; g c 0 , g q < g c
其中,s表示子窗口像素的行数,t表示子窗口像素的列数,(x,y)表示3s×3t的窗口中心在整个图像中的坐标,q表示子窗口编号,gc代表中心子窗口的平均灰度,gq表示周围子窗口的平均灰度值;s(gq-gc)表示对中心子窗口的平均灰度与周围子窗口平均灰度的差做二值化处理,若差值大于或等于零则结果为1,否则为0;
步骤3.1.5、对提取的MB-LBP特征进行特征约简,选择约简后的MB-LBP特征;
步骤3.1.6、用步骤3.1.1训练好的SVM分类器对步骤3.1.5选择的简约后的MB-LBP特征进行在线检测,判定待测视频中是否有行人并输出结果,若有行人,则执行步骤3.2,若没有行人,则进入下一帧图像,再次执行步骤3.1。
5.根据权利要求4所述的基于行为事件触发的输油管道智能视频监控方法,其特征在于,步骤3.1.3中所述获取视频图像中的感兴趣区域的具体方法为:
在图像中,用一个含有37个像素的模板来表示SUSAN圆形模板,SUSAN圆形模板在图像上滑动,在图像的每个位置上比较SUSAN圆形模板内各个像素的灰度值与SUSAN圆形模板核心的灰度值,得出比较结果,相似度比较计算公式:
其中,为相似度,(x0,y0)为SUSAN圆形模板核心像素点的坐标,为SUSAN圆形模板其它像素点的坐标;I(x0,y0)和分别是SUSAN圆形模板核心点与SUSAN圆形模板其它点所对应的检测图像上像素的灰度值,当两者差值小于等于阈值t时,就认为检测图像上的该像素点在感兴趣区域。
6.根据权利要求3所述的基于行为事件触发的输油管道智能视频监控方法,其特征在于,步骤3.4所述判断当前状态是否为泄漏状态的具体方法包括以下步骤:
步骤3.4.1、对待检测的一帧视频图像进行几何校正和滤波处理、将视频图像的RGB颜色空间转换到YUV颜色空间和YIQ颜色空间;
RGB-YUV颜色空间的转换公式为:
Y U V = 0.299 0.587 0.114 - 0.147 0.289 0.436 0.615 - 0.515 - 0.100 R G B
YUV颜色空间的色调θ为:
θ=tan-1(|V|/|U|)
RGB-YIQ颜色空间的转换公式为:
Y I Q = 0.299 0.578 0.114 0.596 - 0.274 - 0.322 0.211 - 0.523 - 0.312 R G B
步骤3.4.2、对视频图像的像素进行遍历分类,如果YUV颜色空间的色调θ和YIQ颜色空间的颜色分量I分别满足:θ∈[θmin,θmax]和I∈[Imin,Imax],则该像素属于石油像素点,其中θmax和θmin分别代表石油在YUV颜色空间下色调的阈值上下限,Imax和Imin分别代表石油在YIQ颜色空间下颜色分量I的阈值上下限;
步骤3.4.3、对视频图像进行二值化和闭运算,统计视频图像的像素点总数量为n、石油像素点数量为no,判断当前状态是否为泄漏状态,如果石油像素点数量no与图像像素点总数量n之比满足则判定为疑似泄漏状态,其中σ为泄漏判定阈值,否则为正常状态。
CN201610788205.XA 2016-08-31 2016-08-31 基于行为事件触发的输油管道智能视频监控系统及方法 Pending CN106331636A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610788205.XA CN106331636A (zh) 2016-08-31 2016-08-31 基于行为事件触发的输油管道智能视频监控系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610788205.XA CN106331636A (zh) 2016-08-31 2016-08-31 基于行为事件触发的输油管道智能视频监控系统及方法

Publications (1)

Publication Number Publication Date
CN106331636A true CN106331636A (zh) 2017-01-11

Family

ID=57789840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610788205.XA Pending CN106331636A (zh) 2016-08-31 2016-08-31 基于行为事件触发的输油管道智能视频监控系统及方法

Country Status (1)

Country Link
CN (1) CN106331636A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899664A (zh) * 2017-02-15 2017-06-27 东北大学 基于多智能体的输油管道分布式协同泄漏检测系统及方法
CN106954040A (zh) * 2017-02-28 2017-07-14 中国船舶重工集团公司第七研究所 船用柴油机的故障诊断的方法、装置及系统
CN107122719A (zh) * 2017-04-07 2017-09-01 北京讯腾智慧科技股份有限公司 基于图像识别的管道形变自动识别系统和方法
CN108234821A (zh) * 2017-03-07 2018-06-29 北京市商汤科技开发有限公司 检测视频中的动作的方法、装置和系统
WO2018161188A1 (zh) * 2017-03-07 2018-09-13 广州瀚鼎信息科技有限公司 智能远程监控系统及方法
CN108737785A (zh) * 2018-05-21 2018-11-02 北京奇伦天佑创业投资有限公司 基于tof 3d摄像机的室内跌倒自动检测系统
CN110209668A (zh) * 2019-04-29 2019-09-06 苏宁云计算有限公司 基于流计算的维表关联方法、装置、设备及可读存储介质
CN110321770A (zh) * 2019-03-25 2019-10-11 西安长城数字软件有限公司 管线监控方法、装置、设备和存储介质
CN110553151A (zh) * 2019-07-17 2019-12-10 石化盈科信息技术有限责任公司 一种管道泄漏监测方法和系统
CN111274872A (zh) * 2020-01-08 2020-06-12 哈尔滨融智爱科智能科技有限公司 基于模板匹配的视频监控动态不规则多监管区域判别方法
CN114092437A (zh) * 2021-11-18 2022-02-25 国网四川省电力公司电力科学研究院 一种变压器渗漏油检测方法
CN114880731A (zh) * 2022-07-08 2022-08-09 南京欧格节能环保科技有限公司 适用于pvc智能生产线的数据处理方法及装置
CN115272948A (zh) * 2022-05-20 2022-11-01 贵州丰立空间科技有限公司 基于物联网的智能安防信息系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201667699U (zh) * 2010-01-29 2010-12-08 上海理工大学 数字视频信息监控装置
CN102289222A (zh) * 2011-05-09 2011-12-21 天津科电石化科技发展有限公司 用于长输油品管路监控的智能物联网安全防范预警系统
CN202956192U (zh) * 2012-03-16 2013-05-29 东莞华仪仪表科技有限公司 智能型红外热像仪的装置和系统
US8565536B2 (en) * 2010-04-01 2013-10-22 Microsoft Corporation Material recognition from an image
CN103902976A (zh) * 2014-03-31 2014-07-02 浙江大学 一种基于红外图像的行人检测方法
CN103974040A (zh) * 2014-05-09 2014-08-06 哈尔滨水星电子科技有限公司 一种接口共享的全景数字图像传感器及构建方法
CN104950394A (zh) * 2015-06-12 2015-09-30 中国电子科技集团公司第四十一研究所 一种光纤图像的自动调整装置与方法
CN107229894A (zh) * 2016-03-24 2017-10-03 上海宝信软件股份有限公司 基于计算机视觉分析技术的智能视频监控方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201667699U (zh) * 2010-01-29 2010-12-08 上海理工大学 数字视频信息监控装置
US8565536B2 (en) * 2010-04-01 2013-10-22 Microsoft Corporation Material recognition from an image
CN102289222A (zh) * 2011-05-09 2011-12-21 天津科电石化科技发展有限公司 用于长输油品管路监控的智能物联网安全防范预警系统
CN202956192U (zh) * 2012-03-16 2013-05-29 东莞华仪仪表科技有限公司 智能型红外热像仪的装置和系统
CN103902976A (zh) * 2014-03-31 2014-07-02 浙江大学 一种基于红外图像的行人检测方法
CN103974040A (zh) * 2014-05-09 2014-08-06 哈尔滨水星电子科技有限公司 一种接口共享的全景数字图像传感器及构建方法
CN104950394A (zh) * 2015-06-12 2015-09-30 中国电子科技集团公司第四十一研究所 一种光纤图像的自动调整装置与方法
CN107229894A (zh) * 2016-03-24 2017-10-03 上海宝信软件股份有限公司 基于计算机视觉分析技术的智能视频监控方法及系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
夏东: "《智能视频监控中目标检测、跟踪和识别方法研究》", 《中国优秀硕士学位论文全文数据库》 *
曹健: "《基于局部特征的图像目标识别技术研究》", 《中国优秀硕士学位论文全文数据库》 *
楼建明: "《基于CMOS的FBG传感网络图像解调技术研究》", 《中国优秀硕士学位论文全文数据库》 *
赖世铭: "《全景凝视系统中的关键技术研究》", 《中国优秀硕士学位论文全文数据库》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899664A (zh) * 2017-02-15 2017-06-27 东北大学 基于多智能体的输油管道分布式协同泄漏检测系统及方法
CN106899664B (zh) * 2017-02-15 2019-12-31 东北大学 基于多智能体的输油管道分布式协同泄漏检测系统及方法
CN106954040A (zh) * 2017-02-28 2017-07-14 中国船舶重工集团公司第七研究所 船用柴油机的故障诊断的方法、装置及系统
CN108234821A (zh) * 2017-03-07 2018-06-29 北京市商汤科技开发有限公司 检测视频中的动作的方法、装置和系统
WO2018161188A1 (zh) * 2017-03-07 2018-09-13 广州瀚鼎信息科技有限公司 智能远程监控系统及方法
CN107122719A (zh) * 2017-04-07 2017-09-01 北京讯腾智慧科技股份有限公司 基于图像识别的管道形变自动识别系统和方法
CN108737785B (zh) * 2018-05-21 2020-07-03 北京奇伦天佑创业投资有限公司 基于tof 3d摄像机的室内跌倒自动检测系统
CN108737785A (zh) * 2018-05-21 2018-11-02 北京奇伦天佑创业投资有限公司 基于tof 3d摄像机的室内跌倒自动检测系统
CN110321770A (zh) * 2019-03-25 2019-10-11 西安长城数字软件有限公司 管线监控方法、装置、设备和存储介质
CN110321770B (zh) * 2019-03-25 2022-05-31 西安长城数字软件有限公司 管线监控方法、装置、设备和存储介质
CN110209668A (zh) * 2019-04-29 2019-09-06 苏宁云计算有限公司 基于流计算的维表关联方法、装置、设备及可读存储介质
CN110553151A (zh) * 2019-07-17 2019-12-10 石化盈科信息技术有限责任公司 一种管道泄漏监测方法和系统
CN110553151B (zh) * 2019-07-17 2021-05-07 石化盈科信息技术有限责任公司 一种管道泄漏监测方法和系统
CN111274872A (zh) * 2020-01-08 2020-06-12 哈尔滨融智爱科智能科技有限公司 基于模板匹配的视频监控动态不规则多监管区域判别方法
CN111274872B (zh) * 2020-01-08 2023-08-22 哈尔滨融智爱科智能科技有限公司 基于模板匹配的视频监控动态不规则多监管区域判别方法
CN114092437A (zh) * 2021-11-18 2022-02-25 国网四川省电力公司电力科学研究院 一种变压器渗漏油检测方法
CN114092437B (zh) * 2021-11-18 2023-04-25 国网四川省电力公司电力科学研究院 一种变压器渗漏油检测方法
CN115272948A (zh) * 2022-05-20 2022-11-01 贵州丰立空间科技有限公司 基于物联网的智能安防信息系统
CN114880731A (zh) * 2022-07-08 2022-08-09 南京欧格节能环保科技有限公司 适用于pvc智能生产线的数据处理方法及装置

Similar Documents

Publication Publication Date Title
CN106331636A (zh) 基于行为事件触发的输油管道智能视频监控系统及方法
CN111967393B (zh) 一种基于改进YOLOv4的安全帽佩戴检测方法
CN110826538B (zh) 一种用于电力营业厅的异常离岗识别系统
CN108062349B (zh) 基于视频结构化数据及深度学习的视频监控方法和系统
CN104303193B (zh) 基于聚类的目标分类
CN103116987B (zh) 一种基于监控视频处理的车流统计和违规检测的方法
CN104766086B (zh) 一种公路标识的监管方法和系统
CN108009473A (zh) 基于目标行为属性视频结构化处理方法、系统及存储装置
CN106971182A (zh) 嵌入式电力继电压板投退状态智能识别装置及实现方法
CN108765404A (zh) 一种基于深度学习图像分类的道路破损检测方法及装置
CN104978567B (zh) 基于场景分类的车辆检测方法
CN104951775A (zh) 基于视频技术的铁路道口防护区域安全智能识别方法
CN106339657B (zh) 基于监控视频的秸秆焚烧监测方法、装置
CN103425967A (zh) 一种基于行人检测和跟踪的人流监控方法
CN104268528A (zh) 一种人群聚集区域检测方法和装置
KR102122859B1 (ko) 교통 영상감시시스템의 멀티 표적 추적 방법
CN104966304A (zh) 基于卡尔曼滤波与非参数背景模型的多目标检测跟踪方法
CN110135374A (zh) 采用图像块特征识别与回归分类的火灾烟雾检测方法
CN112183472A (zh) 一种基于改进RetinaNet的试验现场人员是否穿着工作服检测方法
CN111008574A (zh) 一种基于形体识别技术的重点人员轨迹分析方法
CN105005773A (zh) 一种融合时域信息和空域信息的行人检测方法
CN110490150A (zh) 一种基于车辆检索的违章图片自动审核系统及方法
CN112084928A (zh) 基于视觉注意力机制和ConvLSTM网络的道路交通事故检测方法
CN110659546A (zh) 一种违法摊位检测方法及装置
CN113850562A (zh) 一种智能旁站监理方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111