CN106325348B - Multi-mode electrically operated control method - Google Patents
Multi-mode electrically operated control method Download PDFInfo
- Publication number
- CN106325348B CN106325348B CN201610766438.XA CN201610766438A CN106325348B CN 106325348 B CN106325348 B CN 106325348B CN 201610766438 A CN201610766438 A CN 201610766438A CN 106325348 B CN106325348 B CN 106325348B
- Authority
- CN
- China
- Prior art keywords
- power supply
- control
- power
- output
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/561—Voltage to current converters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Control Of Temperature (AREA)
Abstract
Description
技术领域technical field
本发明属于电源控制技术领域,具体涉及一种多模式电源控制方法,尤其适用于航天产品地面环境试验中的电源控制。The invention belongs to the technical field of power supply control, in particular to a multi-mode power supply control method, and is especially suitable for power supply control in ground environment tests of aerospace products.
背景技术Background technique
航天产品地面环境试验的目的是要在地面试验设备中模拟航天产品在空间中所经受的各种环境以及它们的效应来检验航天产品能否经受这些环境的考验而正常工作。航天产品地面环境试验是航天产品研制过程中的一个重要环节,其中,热流模拟和温度控制的准确性对热试验结果的可靠性和有效性有重要影响。热流模拟和温度控制的形式有多种,其中,恒定热流模拟和恒定温度控制在航天产品热试验中最为常见,也最为关键。恒定热流模拟是通过程控电源给加热设备提供恒定电流或电压,从而获得恒定热流。恒定温度控制通常用于模拟地面环境试验的边界条件,通过热流的调节来控制温度恒定的边界,即不断调控加热设备输出功率的大小。因此,在航天产品环境试验中至少需要两种电源控制模式来分别模拟试验中所需的热流和温度。但是现有技术中,航天产品的地面环境试验电源控制模式只能实现单一功能,应用受限。The purpose of the ground environment test of aerospace products is to simulate various environments experienced by aerospace products in space and their effects in ground test equipment to test whether aerospace products can withstand the test of these environments and work normally. The ground environmental test of aerospace products is an important link in the development process of aerospace products, in which the accuracy of heat flow simulation and temperature control has an important impact on the reliability and validity of thermal test results. There are many forms of heat flow simulation and temperature control. Among them, constant heat flow simulation and constant temperature control are the most common and critical in thermal testing of aerospace products. The constant heat flow simulation is to provide constant current or voltage to the heating equipment through the programmable power supply, so as to obtain a constant heat flow. Constant temperature control is usually used to simulate the boundary conditions of ground environmental tests, and the boundary of constant temperature is controlled through the adjustment of heat flow, that is, the output power of heating equipment is constantly adjusted. Therefore, at least two power control modes are required in the environmental test of aerospace products to simulate the heat flow and temperature required in the test respectively. However, in the prior art, the ground environment test power supply control mode of aerospace products can only realize a single function, and the application is limited.
另外,对于一些对温度要求更严格的航天产品,如空间光学遥感器,地面环境试验中必须实现精确控温,常规的闭环控制模式控制精度在±1℃,难以实现±0.1℃的精确控温,因此,需要控温精度更高的电源控制模式。In addition, for some aerospace products with stricter temperature requirements, such as space optical remote sensors, precise temperature control must be achieved in ground environmental tests. The conventional closed-loop control mode has a control accuracy of ±1°C, and it is difficult to achieve precise temperature control of ±0.1°C. , therefore, a power control mode with higher temperature control accuracy is required.
综上,迫切需求一种具备多控制模式,能够实现精确控温的电源控制方法,来满足航天产品热试验的需求。To sum up, there is an urgent need for a power control method with multiple control modes and accurate temperature control to meet the thermal test requirements of aerospace products.
发明内容Contents of the invention
本发明的解决的技术问题是如何提供一种具备多控制模式,能够实现精确控温的电源控制方法。The technical problem to be solved by the present invention is how to provide a power control method capable of realizing precise temperature control with multiple control modes.
本发明解决上述技术问题采取的技术方案如下。The technical scheme adopted by the present invention to solve the above-mentioned technical problems is as follows.
多模式电源控制方法,步骤如下:The multi-mode power supply control method, the steps are as follows:
步骤一、将计算机与交换机连接,将加热设备划分为与目标设备多个需要加热的位置一一对应的多个加热区,每个加热区与一个或多个程控电源的一端连接,所有程控电源的另一端均与交换机连接,在目标设备每个需要加热的位置固定一个温度传感器,所有温度传感器的一端均与温度采集仪的一端连接,温度采集仪的另一端与交换机连接;Step 1. Connect the computer to the switch, and divide the heating equipment into multiple heating zones corresponding to multiple positions of the target equipment that need to be heated. Each heating zone is connected to one end of one or more programmable power supplies. All the programmable power supplies The other end of each is connected to the switch, and a temperature sensor is fixed at each position of the target device that needs to be heated. One end of all temperature sensors is connected to one end of the temperature collector, and the other end of the temperature collector is connected to the switch;
所述计算机包括控制模块、显示模块和电源数据存储模块,温度采集仪包括温度数据存储模块;The computer includes a control module, a display module and a power data storage module, and the temperature acquisition instrument includes a temperature data storage module;
步骤二、在计算机中创建电源配置文件,设定电源配置并保存;Step 2. Create a power configuration file in the computer, set the power configuration and save it;
所述电源配置包括电源IP地址、电源对应目标设备加热位置说明、预设电流/电压值、电源保护电流/电压、电源控制模式、目标温度值、采集的温度值在温度数据存储模块中的存储名称、温度数据存储路径、电源数据存储路径和PID控制参数;The power supply configuration includes the power supply IP address, the description of the heating position of the target equipment corresponding to the power supply, the preset current/voltage value, the power supply protection current/voltage, the power supply control mode, the target temperature value, and the storage of the collected temperature value in the temperature data storage module Name, temperature data storage path, power data storage path and PID control parameters;
所述电源控制模式为电源开环控制模式、电源开关控制模式或者电源PID控制模式;The power supply control mode is a power supply open-loop control mode, a power switch control mode or a power supply PID control mode;
步骤三、控制模块读取电源配置文件,判断电源配置文件的文件格式是否正确,如果不正确,显示模块提示错误位置,控制模块停止工作,进行步骤四,如果正确,控制模块控制程控电源初始化,进行步骤五;Step 3. The control module reads the power configuration file, and judges whether the file format of the power configuration file is correct. If it is not correct, the display module prompts the wrong location, and the control module stops working. Go to step 4. If it is correct, the control module controls the initialization of the programmable power supply. Go to step five;
步骤四、根据提示错误位置更改电源配置文件并保存,返回步骤三;Step 4. Change and save the power configuration file according to the error location prompted, and return to Step 3;
步骤五、控制模块判断程控电源的控制模式,如果是电源开环控制模式,执行步骤六,如果是电源开关控制模式,执行步骤七,如果是电源PID控制模式,执行步骤八;Step 5. The control module judges the control mode of the programmable power supply. If it is a power supply open-loop control mode, perform step 6. If it is a power switch control mode, perform step 7. If it is a power supply PID control mode, perform step 8;
步骤六、电源开环控制模式:Step 6. Power supply open-loop control mode:
6a、控制模块将预设电流/电压值经交换机发送给程控电源;6a. The control module sends the preset current/voltage value to the programmable power supply through the switch;
6b、程控电源按指令工作,并把工作时的输出电流和输出电压经交换机反馈回控制模块;6b. The program-controlled power supply works according to the instructions, and feeds back the output current and output voltage to the control module through the switchboard;
6c、控制模块根据反馈的输出电流和输出电压计算输出功率和回路阻值,将输出电压、输出电流、输出功率和回路阻值存储至电源数据存储模块,并控制显示模块实时显示程控电源的输出电压、输出电流、输出功率和回路阻值;6c. The control module calculates the output power and loop resistance according to the feedback output current and output voltage, stores the output voltage, output current, output power and loop resistance in the power supply data storage module, and controls the display module to display the output of the programmable power supply in real time Voltage, output current, output power and loop resistance;
6d、返回步骤6a,直至电源控制结束;6d. Return to step 6a until the power control ends;
步骤七、电源开关控制模式:Step 7. Power switch control mode:
7a、温度采集仪采集温度传感器的温度值,并将采集的温度值存储至温度数据存储模块;7a. The temperature collector collects the temperature value of the temperature sensor, and stores the collected temperature value in the temperature data storage module;
7b、控制模块经交换机从温度数据存储模块读取采集的温度值,判断该温度值是否高于目标温度值,如果判定结果为是,控制模块将数值为0的输入电流/输入电压经交换机发送给程控电源,如果判定结果为否,控制模块将预设电流/电压值经交换机发送给程控电源;7b. The control module reads the collected temperature value from the temperature data storage module through the switch, and judges whether the temperature value is higher than the target temperature value. If the judgment result is yes, the control module sends the input current/input voltage with a value of 0 to the switch. For the program-controlled power supply, if the judgment result is no, the control module sends the preset current/voltage value to the program-controlled power supply through the switch;
7c、程控电源按指令工作,并将此时程控电源的输出电流和输出电压经交换机反馈回控制模块;7c. The program-controlled power supply works according to the instructions, and feeds back the output current and output voltage of the program-controlled power supply to the control module through the switch;
7d、控制模块根据反馈的输出电流和输出电压计算输出功率和回路阻值,将输出电压、输出电流、输出功率和回路阻值存储至电源数据存储模块,并控制显示模块实时显示程控电源的输出电压、输出电流、输出功率和回路阻值;7d. The control module calculates the output power and loop resistance according to the feedback output current and output voltage, stores the output voltage, output current, output power and loop resistance in the power supply data storage module, and controls the display module to display the output of the programmable power supply in real time Voltage, output current, output power and loop resistance;
7e、返回步骤7a,直至电源控制结束;7e. Return to step 7a until the power supply control ends;
步骤八、电源开关控制模式:Step 8. Power switch control mode:
8a、温度采集仪采集温度传感器的温度值,并将采集的温度值存储至温度数据存储模块;8a. The temperature collector collects the temperature value of the temperature sensor, and stores the collected temperature value in the temperature data storage module;
8b、控制模块经交换机从温度数据存储模块读取采集的温度值,计算采集的温度值与目标温度值的差值,根据PID计算公式计算程控电源的输入电流/输入电压,判断该输入电流/输入电压是否超过保护电流/电压,如果否,将该输入电流/输入电压经交换机发送给程控电源,如果是,将保护电流/电压经交换机发送给程控电源;8b. The control module reads the collected temperature value from the temperature data storage module through the switch, calculates the difference between the collected temperature value and the target temperature value, calculates the input current/input voltage of the programmable power supply according to the PID calculation formula, and judges the input current/ Whether the input voltage exceeds the protection current/voltage, if not, send the input current/voltage to the program-controlled power supply through the switch, if yes, send the protection current/voltage to the program-controlled power supply through the switch;
8c、程控电源按指令工作,并将此时程控电源的输出电流和输出电压经交换机反馈回控制模块;8c. The program-controlled power supply works according to the command, and feeds back the output current and output voltage of the program-controlled power supply to the control module through the switchboard;
8d、控制模块根据反馈的输出电流和输出电压计算输出功率和回路阻值,将输出电压、输出电流、输出功率和回路阻值存储至电源数据存储模块,并控制显示模块实时显示程控电源的输出电压、输出电流、输出功率和回路阻值;8d. The control module calculates the output power and loop resistance according to the feedback output current and output voltage, stores the output voltage, output current, output power and loop resistance in the power supply data storage module, and controls the display module to display the output of the programmable power supply in real time Voltage, output current, output power and loop resistance;
8e、返回步骤8a,直至电源控制结束。8e. Return to step 8a until the power supply control ends.
进一步的,所述计算机为多台,通过网络TCPIP协议构成局域网络,实现局域网内所有计算机都能够远程控制多个程控电源工作。Further, there are multiple computers, and a local area network is formed through the network TCPIP protocol, so that all computers in the local area network can remotely control the work of multiple program-controlled power supplies.
进一步的,所述温度传感器为热电偶类、热敏电阻类或者铂电阻类。Further, the temperature sensor is a thermocouple, a thermistor or a platinum resistor.
进一步的,所述步骤三中,判断电源配置文件的文件格式是否正确为:判断字段与字段之间的间隔是否相同及电源IP地址是否唯一,如是则正确,不是则不正确。Further, in the step 3, judging whether the file format of the power supply configuration file is correct is: judging whether the intervals between fields are the same and whether the IP address of the power supply is unique, if yes, it is correct, if not, it is incorrect.
进一步的,所述步骤七中,还包括步骤7f,控制模块计算占空比。Further, in the seventh step, step 7f is also included, the control module calculates the duty cycle.
进一步的,所述控制模块能够调用电源数据存储模块中单个/多个程控电源的历史数据,控制显示模块显示历史数据曲线。Further, the control module can call the historical data of a single/multiple programmable power supplies in the power supply data storage module, and control the display module to display historical data curves.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明的多模式电源控制方法存在三种控制模式,可以根据使用需求的不同,灵活控制加热设备的输出功率,从而获得需要的热流或温度,在航天产品的地面环境试验中具有广泛的应用前景。The multi-mode power supply control method of the present invention has three control modes, and can flexibly control the output power of the heating device according to different usage requirements, so as to obtain the required heat flow or temperature, and has a wide application prospect in the ground environment test of aerospace products .
附图说明Description of drawings
图1为本发明的多模式电源控制方法步骤一的设备连接图;1 is a device connection diagram of step 1 of the multi-mode power supply control method of the present invention;
图2为本发明的多模式电源控制方法的控制流程图;Fig. 2 is the control flowchart of the multi-mode power supply control method of the present invention;
图中,1、计算机,2、交换机,3、程控电源,4、加热设备,5、目标设备,6、温度传感器,7、温度采集仪。In the figure, 1. computer, 2. switch, 3. program-controlled power supply, 4. heating device, 5. target device, 6. temperature sensor, 7. temperature acquisition instrument.
具体实施方式detailed description
以下结合附图进一步说明本发明。Further illustrate the present invention below in conjunction with accompanying drawing.
如图1所示,本发明的多模式电源控制方法,步骤如下:As shown in Figure 1, the multi-mode power supply control method of the present invention, the steps are as follows:
步骤一、如图1所示,连接设备:将计算机1通过第二类网线与交换机2连接,将加热设备4划分为与目标设备5多个需要加热的位置一一对应的多个加热区,每个加热区通过铜线与一个或多个程控电源3的一端连接,所有程控电源3的另一端均通过第二类网线与交换机2连接,在目标设备5每个需要加热的位置固定一个温度传感器6,所有温度传感器6的一端均通过温度传感器接线与温度采集仪7的一端连接,温度采集仪7的另一端通过第二类网线与交换机2连接;Step 1, as shown in Figure 1, connect the equipment: connect the computer 1 to the switch 2 through the second type of network cable, divide the heating equipment 4 into a plurality of heating zones corresponding to the positions of the target equipment 5 that need to be heated one by one, Each heating zone is connected to one end of one or more programmable power supplies 3 through copper wires, and the other ends of all programmable power supplies 3 are connected to the switch 2 through a second-type network cable, and a temperature is fixed at each position of the target device 5 that needs to be heated Sensor 6, one end of all temperature sensors 6 is all connected with one end of temperature acquisition instrument 7 by temperature sensor wiring, and the other end of temperature acquisition instrument 7 is connected with switch 2 by second type network cable;
其中,计算机1包括控制模块、显示模块和电源数据存储模块;如果存在多台计算机1,可以利用网络TCPIP协议,构成局域网络,实现局域网内所有计算机都可远程控制多个程控电源3工作。程控电源3可以采用Agilent公司的N5700系列高精度程控直流电源,电流输出精度可达0.02A。铜线的规格可以为0.35mm2。目标设备5置于加热设备4内,可以与加热设备4接触,即加热设备4设置在目标设备5的表面,也可以不与加热设备4接触,即目标设备5置于加热设备4形成的空间内。温度传感器6的类型没有限制,可以是热电偶类、热敏电阻类或者铂电阻类。温度采集仪7包括温度数据存储模块。Wherein, the computer 1 includes a control module, a display module and a power supply data storage module; if there are multiple computers 1, the network TCPIP protocol can be used to form a local area network, so that all computers in the local area network can remotely control the work of multiple programmable power supplies 3 . The program-controlled power supply 3 can use Agilent's N5700 series high-precision program-controlled DC power supply, and the current output accuracy can reach 0.02A. The gauge of the copper wire may be 0.35mm 2 . The target device 5 is placed in the heating device 4 and can be in contact with the heating device 4, that is, the heating device 4 is arranged on the surface of the target device 5, or not in contact with the heating device 4, that is, the target device 5 is placed in the space formed by the heating device 4 Inside. The type of the temperature sensor 6 is not limited, and may be a thermocouple, a thermistor or a platinum resistor. The temperature acquisition instrument 7 includes a temperature data storage module.
步骤二、在计算机1中创建电源配置文件,设定电源配置并保存;Step 2. Create a power configuration file in computer 1, set the power configuration and save it;
电源配置文件是控制模块的输入文件,也是仅有的输入文件,影响整个控制方法,电源配置文件常采用电源配置表,具体包括电源IP地址、电源对应目标设备5加热位置说明、预设电流/电压值、电源保护电流/电压、电源控制模式、目标温度值、采集的温度值在温度数据存储模块中的存储名称、温度数据存储路径、电源数据存储路径、PID控制参数等;The power configuration file is the input file of the control module, and it is the only input file, which affects the entire control method. The power configuration file often uses a power configuration table, which specifically includes the IP address of the power supply, the description of the heating position of the target device 5 corresponding to the power supply, and the preset current/ Voltage value, power supply protection current/voltage, power supply control mode, target temperature value, storage name of the collected temperature value in the temperature data storage module, temperature data storage path, power supply data storage path, PID control parameters, etc.;
其中,电源IP地址可根据需要自行设定,但要保证其唯一性,电源保护电流/电压由电源自身性能决定,预设电流/电压值是本领域技术人员根据热平衡公式计算得到,预设电流/电压值和目标温度值不超过电源保护电流/电压,采集的温度值在温度数据存储模块中的名称、温度数据存储路径和电源数据存储路径根据需要设置,PID控制参数为Kp、Ki、Kd,本领域技术人员能够通过熟知方式获得,电源控制模式根据需要选择。需要说明的是,电源配置按照硬件连接存在对应关系,即电源IP地址确定后,电源对应目标设备5加热位置说明即为该IP地址的电源对应的目标设备5的加热位置,预设电流/电压值即为该IP地址的电源对应的目标设备5的加热位置的预设电流/电压值,电源保护电流/电压即为该IP地址的电源的保护电流,电源控制模式即为该IP地址的电源对应的目标设备5的加热位置需要的控制模式,目标温度值即为该IP地址的电源对应的目标设备5的加热位置的目标温度值,采集的温度值在温度数据存储模块中的存储名称即温度采集仪7采集的该IP地址的电源对应的目标设备5的加热位置处的温度传感器6的温度在温度数据存储模块中的存储名称,PID控制参数即为该目标设备5加热位置的PID控制参数;Among them, the IP address of the power supply can be set according to the needs, but its uniqueness must be guaranteed. The protection current/voltage of the power supply is determined by the performance of the power supply itself. The preset current/voltage value is calculated by those skilled in the art according to the heat balance formula. The preset current The /voltage value and the target temperature value do not exceed the power supply protection current/voltage, the name of the collected temperature value in the temperature data storage module, the temperature data storage path and the power supply data storage path are set according to the needs, and the PID control parameters are Kp, Ki, Kd , those skilled in the art can obtain in a well-known manner, and the power control mode is selected according to needs. It should be noted that the power supply configuration has a corresponding relationship according to the hardware connection, that is, after the IP address of the power supply is determined, the description of the heating position of the target device 5 corresponding to the power supply is the heating position of the target device 5 corresponding to the power supply of the IP address, and the preset current/voltage The value is the preset current/voltage value of the heating position of the target device 5 corresponding to the power supply of the IP address, the power protection current/voltage is the protection current of the power supply of the IP address, and the power control mode is the power supply of the IP address. The control mode required by the heating position of the corresponding target device 5, the target temperature value is the target temperature value of the heating position of the target device 5 corresponding to the power supply of the IP address, and the storage name of the collected temperature value in the temperature data storage module is The storage name of the temperature of the temperature sensor 6 at the heating position of the target device 5 corresponding to the power supply of the IP address collected by the temperature acquisition instrument 7 in the temperature data storage module, and the PID control parameter is the PID control of the target device 5 heating position parameter;
步骤三、控制模块读取电源配置文件,并判断电源配置文件的文件格式是否正确,通常是判断字段与字段之间的间隔是否相同(如是否都是2个空格,如是则正确,不是则不正确,该判断是为了保证控制模块完整读取电源配置文件)及电源IP地址的是否唯一(如唯一则正确,如不唯一,则不正确),如果不正确,控制模块控制显示模块提示错误位置,控制模块停止工作,进行步骤四,如果正确,控制模块控制程控电源3初始化,进行步骤五;Step 3. The control module reads the power configuration file and judges whether the file format of the power configuration file is correct, usually by judging whether the intervals between fields are the same (if they are all 2 spaces, if yes, then it is correct, if not, then no Correct, the judgment is to ensure that the control module reads the power supply configuration file completely) and whether the IP address of the power supply is unique (if it is unique, it is correct, if it is not unique, it is incorrect), if it is not correct, the control module controls the display module to prompt the wrong location , the control module stops working, proceed to step 4, if correct, the control module controls the initialization of the programmable power supply 3, proceed to step 5;
步骤四、根据提示错误位置更改电源配置文件并保存,返回步骤三;Step 4. Change and save the power configuration file according to the error location prompted, and return to Step 3;
步骤五、控制模块判断程控电源3的控制模式,确定模式0、模式1还是模式2,如果是模式0,执行步骤六,如果是模式1,执行步骤七,如果是模式2,执行步骤八;Step five, the control module judges the control mode of the program-controlled power supply 3, determines mode 0, mode 1 or mode 2, if it is mode 0, execute step six, if it is mode 1, execute step seven, if it is mode 2, execute step eight;
步骤六、模式0为电源开环控制模式,电源开环控制即单一电流/电压控制,不将控制的结果反馈,具体过程是:Step 6. Mode 0 is the open-loop control mode of the power supply. The open-loop control of the power supply is a single current/voltage control, and the control result is not fed back. The specific process is:
6a、控制模块将预设电流/电压值经交换机2发送给程控电源3;6a. The control module sends the preset current/voltage value to the programmable power supply 3 via the switch 2;
6b、程控电源3按指令工作,并把工作时的输出电流和输出电压经交换机2反馈回控制模块;6b. The program-controlled power supply 3 works according to the instructions, and feeds back the output current and output voltage to the control module through the switch 2;
6c、控制模块根据反馈的输出电流和输出电压计算输出功率和回路阻值,将输出电压、输出电流、输出功率和回路阻值存储至电源数据存储模块,并控制显示模块实时显示程控电源3的输出电压、输出电流、输出功率和回路阻值;6c. The control module calculates the output power and loop resistance according to the feedback output current and output voltage, stores the output voltage, output current, output power and loop resistance in the power supply data storage module, and controls the display module to display the real-time value of the programmable power supply 3 Output voltage, output current, output power and loop resistance;
6d、返回步骤6a,直至电源控制结束。6d. Return to step 6a until the power supply control ends.
步骤七、模式1为电源开关控制模式,电源开关控制模式为闭环控制的一种,闭环控制即将控制的结果反馈回来与设定值比较,并根据它们的比较值调整控制作用。电源开关控制模式是将反馈回来的温度测量结果与目标温度值比较,控制电源是否工作,具体控制过程为:Step 7. Mode 1 is the power switch control mode. The power switch control mode is a kind of closed-loop control. Closed-loop control is about feeding back the control result and comparing it with the set value, and adjusting the control function according to their comparison value. The power switch control mode is to compare the feedback temperature measurement result with the target temperature value to control whether the power supply works. The specific control process is as follows:
7a、温度采集仪7采集温度传感器6的温度值,并将采集的温度值存储至温度数据存储模块;7a. The temperature collector 7 collects the temperature value of the temperature sensor 6, and stores the collected temperature value in the temperature data storage module;
7b、控制模块经交换机2从温度数据存储模块读取采集的温度值,判断该温度值是否高于目标温度值,如果判定结果为是,控制模块将数值为0的输入电流/输入电压经交换机2发送给程控电源3,即程控电源3不工作,如果判定结果为否,控制模块将预设电流/电压值经交换机2发送给程控电源3;7b. The control module reads the collected temperature value from the temperature data storage module through the switch 2, and judges whether the temperature value is higher than the target temperature value. If the judgment result is yes, the control module sends the input current/voltage with a value of 0 to the switch through the switch. 2 to send to the program-controlled power supply 3, that is, the program-controlled power supply 3 does not work, if the judgment result is no, the control module sends the preset current/voltage value to the program-controlled power supply 3 via the switch 2;
7c、程控电源3按指令工作,并将此时程控电源3的输出电流和输出电压经交换机2反馈回控制模块;7c. The program-controlled power supply 3 works according to the instruction, and feeds back the output current and output voltage of the program-controlled power supply 3 to the control module through the switch 2;
7d、控制模块根据反馈的输出电流和输出电压计算输出功率和回路阻值,将输出电压、输出电流、输出功率和回路阻值存储至电源数据存储模块,并控制显示模块实时显示程控电源3的输出电压、输出电流、输出功率和回路阻值;7d. The control module calculates the output power and loop resistance according to the feedback output current and output voltage, stores the output voltage, output current, output power, and loop resistance in the power supply data storage module, and controls the display module to display the real-time value of the programmable power supply 3 Output voltage, output current, output power and loop resistance;
7e、返回步骤7a,直至电源控制结束。7e. Return to step 7a until the power supply control ends.
该控制模式中,还可以包括步骤7f,控制模块计算占空比,即计算指定时间段内电源开启的时间占整个时间的比值,以百分比表示,所需数据直接从电源数据存储模块中读取。In this control mode, step 7f may also be included, the control module calculates the duty cycle, that is, calculates the ratio of the power-on time to the entire time within a specified period of time, expressed as a percentage, and the required data is directly read from the power data storage module .
步骤八、模式2为电源PID控制模式,电源PID控制为闭环控制的一种,是根据反馈回来的温度测量结果与目标温度值之间的差值,逐步调整电源输出电流/电压,从而达到精确控温的目的,具体控制过程为:Step 8. Mode 2 is the PID control mode of the power supply. The PID control of the power supply is a kind of closed-loop control. It gradually adjusts the output current/voltage of the power supply according to the difference between the temperature measurement result fed back and the target temperature value, so as to achieve accurate The purpose of temperature control, the specific control process is:
8a、温度采集仪7采集温度传感器6的温度值,并将采集的温度值存储至温度数据存储模块;8a. The temperature collector 7 collects the temperature value of the temperature sensor 6, and stores the collected temperature value in the temperature data storage module;
8b、控制模块经交换机2从温度数据存储模块读取采集的温度值,计算采集的温度值与目标温度的差值,根据PID计算公式计算程控电源3的输入电流/输入电压,判断该输入电流/输入电压是否超过保护电流/电压,如果否,将该输入电流/输入电压经交换机2发送给程控电源3,如果是,将保护电流/电压经交换机2发送给程控电源3;8b. The control module reads the collected temperature value from the temperature data storage module via the switch 2, calculates the difference between the collected temperature value and the target temperature, calculates the input current/input voltage of the programmable power supply 3 according to the PID calculation formula, and judges the input current /Whether the input voltage exceeds the protection current/voltage, if not, send the input current/input voltage to the program-controlled power supply 3 through the switch 2, if yes, send the protection current/voltage to the program-control power supply 3 through the switch 2;
8c、程控电源3按指令工作,并将此时程控电源3的输出电流和输出电压经交换机2反馈回控制模块;8c. The program-controlled power supply 3 works according to the instruction, and feeds back the output current and output voltage of the program-controlled power supply 3 to the control module through the switch 2;
8d、控制模块根据反馈的输出电流和输出电压计算输出功率和回路阻值,将输出电压、输出电流、输出功率和回路阻值存储至电源数据存储模块,并控制显示模块实时显示程控电源3的输出电压、输出电流、输出功率和回路阻值;8d. The control module calculates the output power and loop resistance according to the feedback output current and output voltage, stores the output voltage, output current, output power and loop resistance in the power supply data storage module, and controls the display module to display the real-time value of the programmable power supply 3 Output voltage, output current, output power and loop resistance;
8e、返回步骤8a,直至电源控制结束。8e. Return to step 8a until the power supply control ends.
本发明在实际控制过程中,根据具体需要,可以选择针对目标设备5的一个位置控制,也可以选择针对目标设备5的多个位置控制。但针对目标设备5的每个位置的控制来讲,为其加热的加热设备4的加热区、与加热设备4的加热区连接的程控电源3、感应其温度的温度传感器6,以及电源IP地址、预设电流/电压值、电源保护电流、电源控制模式、目标温度值、采集的温度值在温度数据存储模块中的名称、PID控制参数都是对应的。In the actual control process of the present invention, according to specific needs, one position control for the target device 5 can be selected, and multiple position controls for the target device 5 can also be selected. But for the control of each position of the target device 5, the heating zone of the heating device 4 for heating, the programmable power supply 3 connected to the heating zone of the heating device 4, the temperature sensor 6 that senses its temperature, and the IP address of the power supply , preset current/voltage value, power supply protection current, power supply control mode, target temperature value, name of the collected temperature value in the temperature data storage module, and PID control parameters are all corresponding.
本发明在实际控制过程中,显示模块显示的程控电源3的数据,根据实际需要选择,可以是显示一个程控电源3的输出电压、输出电流、输出功率和回路阻值,也可以是显示多个程控电源3的的输出电压、输出电流、输出功率和回路阻值。In the actual control process of the present invention, the data of the program-controlled power supply 3 displayed by the display module can be selected according to actual needs. It can display the output voltage, output current, output power and loop resistance of a program-controlled power supply 3, or display multiple The output voltage, output current, output power and loop resistance of the programmable power supply 3 are controlled.
本发明中,控制模块能够控制显示模块显示历史曲线,历史曲线显示是以电源数据存储模块为基础,直接从电源数据存储模块中读取指定时间段内的历史数据(如采用LabSQL数据库访问工具读取),并以曲线的形式显示,直观地反映单个/多个程控电源3的输出电压、输出电流、输出功率、回路阻值的变化过程。In the present invention, the control module can control the display module to display historical curves. The historical curve display is based on the power data storage module, and directly reads historical data in a specified time period from the power data storage module (such as using a LabSQL database access tool to read ) and displayed in the form of a curve, intuitively reflecting the change process of the output voltage, output current, output power, and loop resistance of a single/multiple programmable power supplies 3 .
本发明中,回路阻值的计算主要是用于与准备阶段测量的回路阻值进行比较,方便操作人员判断加热回路是否存在短路/断路现象,准备阶段回路阻值的测量和短路/断路的判断是本领域技术人员熟知技术。In the present invention, the calculation of the loop resistance is mainly used for comparison with the loop resistance measured in the preparation stage, which is convenient for the operator to judge whether there is a short circuit/open circuit phenomenon in the heating circuit, the measurement of the loop resistance value and the judgment of the short circuit/open circuit in the preparation stage It is a technique well known to those skilled in the art.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610766438.XA CN106325348B (en) | 2016-08-29 | 2016-08-29 | Multi-mode electrically operated control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610766438.XA CN106325348B (en) | 2016-08-29 | 2016-08-29 | Multi-mode electrically operated control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106325348A CN106325348A (en) | 2017-01-11 |
CN106325348B true CN106325348B (en) | 2017-10-03 |
Family
ID=57789622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610766438.XA Expired - Fee Related CN106325348B (en) | 2016-08-29 | 2016-08-29 | Multi-mode electrically operated control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106325348B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108345230A (en) * | 2018-02-05 | 2018-07-31 | 合肥中科离子医学技术装备有限公司 | A kind of draw-out area power control management system of medical superconducting cyclotron |
CN108889262A (en) * | 2018-06-15 | 2018-11-27 | 北京万德高科技发展有限公司 | A kind of continuously flowing preparation system and method |
CN109168144B (en) * | 2018-08-17 | 2021-02-02 | 佛山市澳霆环境设备制造有限公司 | Heat pump Internet of things system based on PLC control |
CN109976409B (en) * | 2019-04-19 | 2021-01-08 | 合肥一煊检测技术有限公司 | Temperature acquisition control system for aviation product test |
CN112445198A (en) * | 2019-09-05 | 2021-03-05 | 中车青岛四方机车车辆股份有限公司 | Vehicle-mounted controller testing method, device and system |
US11567551B2 (en) | 2020-07-28 | 2023-01-31 | Rohde & Schwarz Gmbh & Co. Kg | Adaptive power supply |
CN112953183A (en) * | 2021-03-11 | 2021-06-11 | 吉事励电子(苏州)有限公司 | Multifunctional programmable AC/DC power supply |
CN114323345A (en) * | 2021-12-13 | 2022-04-12 | 上海卫星装备研究所 | Satellite and load thermal response automatic test system and method |
CN114675699A (en) * | 2022-03-31 | 2022-06-28 | 深圳前海骁客影像科技设计有限公司 | Control method, device, equipment and medium applied to multi-channel numerical control power supply |
CN115882984A (en) * | 2022-11-17 | 2023-03-31 | 高新兴物联科技股份有限公司 | Test system, test method, and storage medium |
CN116204033B (en) * | 2023-04-27 | 2023-07-14 | 无锡前诺德半导体有限公司 | Parameter setting system of power supply device and design method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6298722A (en) * | 1985-10-25 | 1987-05-08 | Koyo Seiko Co Ltd | Temperature controlling device for optical heating device |
US6529796B1 (en) * | 1999-07-21 | 2003-03-04 | Caco Pacific Corporation | Closed loop interactive controller |
CN101819445B (en) * | 2010-02-05 | 2012-05-16 | 北京航空航天大学 | Embedded satellite-borne fault-tolerant temperature control system and verification method thereof |
CN102243502B (en) * | 2011-03-22 | 2013-10-02 | 北京时代民芯科技有限公司 | Temperature control system and method for performing single event effect test under same |
CN103412590B (en) * | 2013-08-08 | 2015-05-27 | 北京空间机电研究所 | Method of high-precision temperature control suitable for space remote sensing camera |
CN103914092B (en) * | 2014-03-20 | 2016-03-02 | 航天东方红卫星有限公司 | System-level thermal vacuum test on-board equipment temperature-controlled process |
CN105045308B (en) * | 2015-08-12 | 2018-06-01 | 北京空间机电研究所 | A kind of semiconductor cooler closed loop control method applied to space environment |
CN105528000B (en) * | 2016-01-07 | 2018-04-27 | 北京航天发射技术研究所 | A kind of intelligent temperature control table for aircraft |
-
2016
- 2016-08-29 CN CN201610766438.XA patent/CN106325348B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106325348A (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106325348B (en) | Multi-mode electrically operated control method | |
CN107859646B (en) | Temperature control equipment and its control method | |
CN101620013A (en) | Method and system for calibrating a motor control circuit to improve temperature measurement in an electrical motor | |
KR102067095B1 (en) | Digital twin device | |
CN103917935B (en) | For the method controlling thermogenesis element | |
TW202102054A (en) | System and method for calibrating a control system operating an electric heater | |
EP3822600B1 (en) | Temperature calibrator with advanced functionality | |
CN205982345U (en) | Intelligence load numerical control resistance box | |
CN102981529A (en) | Blackbody temperature control device for testing infrared dynamic tracking characteristics | |
CN107562088B (en) | Temperature controller for resistance measurement and temperature control method | |
CN111381205A (en) | Motor controller current sensor calibration system and method | |
CN104679061A (en) | Temperature control system based on Dahlin algorithm | |
CN103728546A (en) | Transistor life test acceleration and operating point stabilization system | |
CN106199486A (en) | A kind of measurement system of power meter temperature impact test | |
Punse et al. | A novel application of multipoint temperature control using pid | |
CN103399600B (en) | Coil bar solidification heating control system | |
Neiser et al. | Placement of embedded temperature sensors in a printed circuit board for a manufacturing process | |
CN102564645A (en) | Automatic calibrating device of thermocouple | |
CN109916593A (en) | A solar simulator irradiation non-uniformity test device | |
CN2932407Y (en) | Steady-state operating life test equipment for controlling transistor junction temperature | |
Usman et al. | PD Based Cost Effective and Accurate Calorimeter Temperature Control and Measurement System | |
CN113835456A (en) | Temperature controller and temperature compensation method thereof | |
CN209432404U (en) | A kind of solar simulator irradiation nonuniformity test device | |
CN202041325U (en) | Automatic verification device for heat engineering | |
CN207067789U (en) | Temperature controller error measuring means and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171003 Termination date: 20210829 |