CN106323841A - 三轴应力作用下超低渗岩石渗透率测量装置 - Google Patents

三轴应力作用下超低渗岩石渗透率测量装置 Download PDF

Info

Publication number
CN106323841A
CN106323841A CN201610946045.7A CN201610946045A CN106323841A CN 106323841 A CN106323841 A CN 106323841A CN 201610946045 A CN201610946045 A CN 201610946045A CN 106323841 A CN106323841 A CN 106323841A
Authority
CN
China
Prior art keywords
pressure
room
axial compression
closed loop
confined pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610946045.7A
Other languages
English (en)
Inventor
胡大伟
王冲
魏天宇
周辉
张传庆
杨凡杰
卢景景
朱勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Rock and Soil Mechanics of CAS
Original Assignee
Wuhan Institute of Rock and Soil Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Rock and Soil Mechanics of CAS filed Critical Wuhan Institute of Rock and Soil Mechanics of CAS
Priority to CN201610946045.7A priority Critical patent/CN106323841A/zh
Publication of CN106323841A publication Critical patent/CN106323841A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了三轴应力作用下超低渗岩石渗透率测量装置,涉及岩土工程技术中的岩石力学测试领域。它包括数据采集及处理系统,三轴压力系统;所述三轴压力系统包括围压室、轴压室、测试室、围压闭环伺服计量泵、轴压闭环伺服计量泵和渗透压闭环伺服计量泵;所述轴压室缸筒连接于围压室缸筒上端,且与所述围压室缸筒通过螺栓固定密封、连接成一个整体;所述数据采集及处理系统设置于所述三轴压力系统外侧,且分别通过所述围压闭环伺服计量泵、所述轴压闭环伺服计量泵和所述渗透压闭环伺服计量泵连接于所述三轴压力系统上。克服了现有技术测量精度差、仅仅能提供围压、无法真实模拟深部岩体在三轴应力作用下的受力状态的缺点。

Description

三轴应力作用下超低渗岩石渗透率测量装置
技术领域
本发明涉及岩土工程技术中的岩石力学测试领域,更具体地说是三轴应力作用下超低渗岩石渗透率测量装置。
背景技术
渗透率是岩石重要的物理参数之一,对于了解非常规油气田及核废料储存的深部岩体的物理特性尤其重要;而伴随着近些年页岩气、致密砂岩油气等的开采,迫切地需要一种测量三轴应力状态下超低渗岩体渗透率的装置,这对现今实验原理及实验仪器都提出了不小的挑战。
目前大多数测量岩石渗透率的实验仪器都采用稳态法或者压力脉冲法等原理,对于非常规油气田储层中的超低渗岩体,该种测试方法存在测量原理落后、测量精度差的缺点,因此并不适用这种超低渗岩体渗透率的测量;目前测量超低渗岩石渗透率比较流行的方法是压力震荡法,该方法的原理是通过在岩石试样上游施加已知渗透压力波,在下游测量相应渗透压力波,通过对比两者之间的波形得出超低渗岩石渗透率。
目前国内少量采用压力震荡法测量超低渗岩体渗透率的仪器中则存在着一定缺点;申请号为201310518094.7的专利《一种测量超低渗岩石渗透率应力敏感性的互相关技术》中采用了压力震荡法测量超低渗岩石的渗透率,但该装置仅仅能提供围压,不能提供三轴应力的试验状态,无法真实模拟深部岩体在三轴应力作用下的受力状态。
因此研制出一款既能很好地测量超低渗岩石渗透率,又能真实地模拟好岩体的三轴应力状态的仪器就显得尤为重要了。
发明内容
本发明的目的是提供三轴应力作用下超低渗岩石渗透率测量装置,能很好地测量超低渗岩石渗透率、提供三轴应力的试验状态,能真实地模拟岩体的三轴应力状态。
为了实现本发明的目的,本发明的技术方案为:三轴应力作用下超低渗岩石渗透率测量装置,包括数据采集及处理系统,其特征在于:还包括三轴压力系统;所述三轴压力系统包括围压室、轴压室、测试室、围压闭环伺服计量泵、轴压闭环伺服计量泵和渗透压闭环伺服计量泵;所述围压室缸筒及轴压室缸筒包括轴压室缸筒和围压室缸筒;所述轴压室缸筒连接于所述围压室缸筒上端,且与所述围压室缸筒通过螺栓固定密封、连接成一个整体;
所述围压室包括围压室底座、所述围压室缸筒;所述轴压室包括轴向活塞、所述轴压室缸筒、轴压室顶盖;
所述轴向活塞位于所述轴压室内,所述轴压室缸筒上端设置有所述轴压室顶盖、下端连接于所述围压室缸筒上,所述围压室缸筒下端设置有所述围压室底座;
所述测试室位于所述围压室缸筒内,有上游孔隙压垫块位于所述测试室和所述轴向活塞之间,
有试样设置于所述测试室内,有透水垫板设置于所述试样上下两端,所述试样、所述透水垫板被橡胶套严密包裹;有二个卡箍分别设置于所述橡胶套的上下两端;
所述数据采集及处理系统设置于所述三轴压力系统外侧,且分别通过所述围压闭环伺服计量泵、所述轴压闭环伺服计量泵和所述渗透压闭环伺服计量泵连接于所述三轴压力系统上。
在上述技术方案中,所述透水垫板包括上透水垫板、下透水垫板,所述上透水垫板设置于所述试样上端,所述下透水垫板设置于所述试样下端;有下游孔隙压管路连通所述测试室和所述围压室底座。在三轴压力室内,围压室由于液压油的存在,需要充分保证围压室的密封问题;而渗透管道要从外部进入仪器内部对岩石试样施加渗透压,并且有利于实验步骤的进行,最佳方法就是渗透管路从围压室底座进入仪器内部。
在上述技术方案中,所述围压闭环伺服计量泵、所述轴压闭环伺服计量泵、所述渗透压闭环伺服计量泵的结构相同,且均包括泵体、泵活塞、压力传感器、伺服控制模块和伺服电机;所述围压闭环伺服计量泵的所述压力传感器为围压传感器、所述轴压闭环伺服计量泵的所述压力传感器为轴压传感器、所述渗透压闭环伺服计量泵的所述压力传感器为上游孔隙压传感器、下游孔隙压传感器。
在上述技术方案中,所述围压传感器的两端分别连接所述围压伺服泵伺服控制模块和通往所述围压室下端的管路、所述轴压传感器的两端分别连接所述轴压伺服泵伺服控制模块和通往所述轴压室上端的管路、所述上游孔隙压传感器的两端分别连接所述伺服控制模块和通往所述测试室上端的管路、所述下游孔隙压传感器与所述围压室底座上连接所述测试室底部的通道连接;所述伺服控制模块与所述伺服电机连接,所述伺服电机与所述泵活塞连接,所述泵活塞位于所述泵体内。
在上述技术方案中,所述围压传感器、所述轴压传感器、所述上孔隙压传感器、所述下孔隙传感器通过数据采集卡传送数据至所述数据测量及采集系统中。实现电脑对数据全过程的实时监测与控制,配合相关软件自动计算出实验结果,省时省力,避免了人为误差。
本发明具有如下优点:
(1)能很好地测量超低渗岩石渗透率;
(2)能提供三轴应力的试验状态,能真实地模拟好岩体的三轴应力状态;
(3)测试室内测试试样由橡胶套严密包裹,其中试样上下部各放置一块透水垫板,透水垫板与试样大小相同,且橡胶套通过两个卡箍将试样以及两块透水垫板严格密封在上孔隙压头和围压室底座之间;保证测试室的密封性;使围压室与实验室严格隔离,防止在施加渗透压过程中由于密封不到位对测量结果产生影响;
(4)实现电脑对数据全过程的实时监测与控制,配合相关软件自动计算出实验结果,省时省力,避免了人为误差;采用信号处理技术对数据进行处理,测量精度高;
(5)操作简单、原理先进成熟。
附图说明
图1为本发明结构示意图。
图2为本发明实施三轴应力状态下测量超低渗岩石渗透率孔隙压波形相关图。
图中1-围压室,2-围压室底座,3-围压室缸筒及轴压室缸筒,31-轴压室缸筒,32-围压室缸筒,4-轴压室,5-轴向活塞,6-轴压室顶盖,7-上游孔隙压垫块,8-透水垫板,81-上透水垫板,82-下透水垫板,9-试样,10-卡箍,11-橡胶套,13-围压传感器,14-围压闭环伺服计量泵,16-轴压传感器,17-轴压闭环伺服计量泵,19-上游孔隙压传感器,20-渗透压闭环伺服计量泵,22-下游孔隙压传感器,23-数据采集及处理系统,24-三轴压力系统,25-测试室,Ⅰ-上孔隙压力波,Ⅱ-下孔隙压力波。
具体实施方式
下面结合附图详细说明本发明的实施情况,但它们并不构成对本发明的限定,仅作举例而已。同时通过说明使本发明的优点更加清楚和容易理解。
参阅附图可知:三轴应力作用下超低渗岩石渗透率测量装置,包括数据采集及处理系统23,其特征在于:还包括三轴压力系统24;所述三轴压力系统24包括围压室1、轴压室4、测试室25、围压闭环伺服计量泵14、轴压闭环伺服计量泵17和渗透压闭环伺服计量泵20;所述围压室缸筒及轴压室缸筒3包括轴压室缸筒31和围压室缸筒32;所述轴压室缸筒31连接于所述围压室缸筒32上端,且与所述围压室缸筒32通过螺栓固定密封、连接成一个整体;
所述围压室1包括围压室底座2、所述围压室缸筒32;所述轴压室4包括轴向活塞5、所述轴压室缸筒31、轴压室顶盖6;
所述轴向活塞5位于所述轴压室4内,所述轴压室缸筒31上端设置有所述轴压室顶盖6,所述围压室缸筒32下端设置有所述围压室底座2;
所述测试室25位于所述围压室缸筒32内,有上游孔隙压垫块7位于所述测试室25和所述轴向活塞5之间,
有试样9设置于所述测试室25内,有透水垫板8设置于所述试样9上下两端,所述试样9、所述透水垫板8被橡胶套11严密包裹;有二个卡箍10分别设置于所述橡胶套11的上下两端;
所述数据采集及处理系统23设置于所述三轴压力系统24外侧,且分别通过所述围压闭环伺服计量泵14、所述轴压闭环伺服计量泵17和所述渗透压闭环伺服计量泵20连接于所述三轴压力系统24上。
所述透水垫板8包括上透水垫板81、下透水垫板82,所述上透水垫板81设置于所述试样9上端,所述下透水垫板82设置于所述试样9下端;有下游孔隙压管路连通所述测试室25和所述围压室底座2。
所述围压闭环伺服计量泵14、所述轴压闭环伺服计量泵17、所述渗透压闭环伺服计量泵20的结构相同,且均包括泵体、泵活塞、压力传感器、伺服控制模块和伺服电机;所述围压闭环伺服计量泵14的所述压力传感器为围压传感器13、所述轴压闭环伺服计量泵17的所述压力传感器为轴压传感器16、所述渗透压闭环伺服计量泵20的所述压力传感器为上游孔隙压传感器19、下游孔隙压传感器22。
所述围压传感器13的两端分别连接所述围压伺服泵伺服控制模块和通往所述围压室1下端的管路、所述轴压传感器16的两端分别连接所述轴压伺服泵伺服控制模块和通往所述轴压室4上端的管路、所述上游孔隙压传感器19的两端分别连接所述伺服控制模块和通往所述测试室25上端的管路、所述下游孔隙压传感器22与所述围压室底座2上连接所述测试室25底部的通道连接;所述伺服控制模块与所述伺服电机连接,所述伺服电机与所述泵活塞连接,所述泵活塞位于所述泵体内。
所述围压传感器13、所述轴压传感器16、所述上孔隙压传感器19、所述下孔隙传感器22通过数据采集卡传送数据至所述数据测量及采集系统23中。
图2中Ⅰ为上孔隙压力波,由渗透压伺服泵通过渗透管路给岩石试样施加振幅及频率已知的正弦渗透压力波,其振幅及频率的控制由三轴压力系统24中伺服泵的伺服控制模块进行控制,其振幅及频率的测量由上渗透压传感器19测得,最终形成上渗透压的渗透压-时间图像;由于岩石试样渗透率的影响,上游正弦渗透压力波在通过岩石试样内部时,其振幅会发生衰减,相位也会发生滞后效应,也就是图中的下游孔隙压力波Ⅱ;同样的,下孔隙压的测量由下渗透压传感器22测得,最终形成下渗透压的渗透压-时间图像;这样就可以直观的得到上、下孔隙压振幅的幅值比α以及相位延迟θ,通过渗透率与上、下孔隙压振幅的幅值比α以及相位延迟θ的关系,最终计算出岩石试样的渗透率。
本发明三轴应力作用下超低渗岩石渗透率测量装置的工作过程如下:选取超低渗岩石,并加工成标准的圆柱体实验构件,得到试样9;用橡胶套11将试样9上下两端的透水垫板8、试样9包裹于上游孔隙压垫块7与围压室底座2之间,并用两个卡箍10箍紧橡胶套11上下两端;通过围压闭环伺服计量泵14、轴压闭环伺服计量泵17给试样9施加围压以及轴压至特定值,同时通过渗透压闭环伺服计量泵20给试样9施加渗透压,使得试样9饱和;待试样9渗透压加压饱和后,通过渗透压闭环伺服计量泵20给试样9施加振幅、频率已知正弦压力波,同时通过下游孔隙压传感器22记录下游孔隙压力波Ⅱ的情况,并将数据实时传输到数据测量及采集系统23;改变围压、轴压大小,将波形互相关方法用于渗透率的测量,对不同围压、轴压情况下的试样9进行渗透率分析,得出不同围压、轴压条件下的渗透率。
其它未说明的部分均属于现有技术。

Claims (5)

1.三轴应力作用下超低渗岩石渗透率测量装置,包括数据采集及处理系统(23),其特征在于:还包括三轴压力系统(24);所述三轴压力系统(24)包括围压室(1)、轴压室(4)、测试室(25)、围压闭环伺服计量泵(14)、轴压闭环伺服计量泵(17)和渗透压闭环伺服计量泵(20);所述围压室缸筒及轴压室缸筒(3)包括轴压室缸筒(31)和围压室缸筒(32);所述轴压室缸筒(31)连接于所述围压室缸筒(32)上端,且与所述围压室缸筒(32)通过螺栓固定密封、连接成一个整体;
所述围压室(1)包括围压室底座(2)、所述围压室缸筒(32);所述轴压室(4)包括轴向活塞(5)、所述轴压室缸筒(31)、轴压室顶盖(6);
所述轴向活塞(5)位于所述轴压室(4)内,所述轴压室缸筒(31)上端设置有所述轴压室顶盖(6),所述围压室缸筒(32)下端设置有所述围压室底座(2);
所述测试室(25)位于所述围压室缸筒(32)内,有上游孔隙压垫块(7)位于所述测试室(25)和所述轴向活塞(5)之间,
有试样(9)设置于所述测试室(25)内,有透水垫板(8)设置于所述试样(9)上下两端,所述试样(9)、所述透水垫板(8)被橡胶套(11)严密包裹;有二个卡箍(10)分别设置于所述橡胶套(11)的上下两端;
所述数据采集及处理系统(23)设置于所述三轴压力系统(24)外侧,且分别通过所述围压闭环伺服计量泵(14)、所述轴压闭环伺服计量泵(17)和所述渗透压闭环伺服计量泵(20)连接于所述三轴压力系统(24)上。
2.根据权利要求1所述的三轴应力作用下超低渗岩石渗透率测量装置,其特征在于:所述透水垫板(8)包括上透水垫板(81)、下透水垫板(82),所述上透水垫板(81)设置于所述试样(9)上端,所述下透水垫板(82)设置于所述试样(9)下端;有下游孔隙压管路连通所述测试室(25)和所述围压室底座(2)。
3.根据权利要求1或2所述的三轴应力作用下超低渗岩石渗透率测量装置,其特征在于:所述围压闭环伺服计量泵(14)、所述轴压闭环伺服计量泵(17)、所述渗透压闭环伺服计量泵(20)的结构相同,且均包括泵体、泵活塞、压力传感器、伺服控制模块和伺服电机;所述围压闭环伺服计量泵(14)的所述压力传感器为围压传感器(13)、所述轴压闭环伺服计量泵(17)的所述压力传感器为轴压传感器(16)、所述渗透压闭环伺服计量泵(20)的所述压力传感器为上游孔隙压传感器(19)、下游孔隙压传感器(22)。
4.根据权利要求3所述的三轴应力作用下超低渗岩石渗透率测量装置,其特征在于:所述围压传感器(13)的两端分别连接所述围压伺服泵伺服控制模块和通往所述围压室(1)下端的管路、所述轴压传感器(16)的两端分别连接所述轴压伺服泵伺服控制模块和通往所述轴压室(4)上端的管路、所述上游孔隙压传感器(19)的两端分别连接所述伺服控制模块和通往所述测试室(25)上端的管路、所述下游孔隙压传感器(22)与所述围压室底座(2)上连接所述测试室(25)底部的通道连接;所述伺服控制模块与所述伺服电机连接,所述伺服电机与所述泵活塞连接,所述泵活塞位于所述泵体内。
5.根据权利要求4所述的三轴应力作用下超低渗岩石渗透率测量装置,其特征在于:所述围压传感器(13)、所述轴压传感器(16)、所述上孔隙压传感器(19)、所述下孔隙传感器(22)通过数据采集卡传送数据至所述数据测量及采集系统(23)中。
CN201610946045.7A 2016-10-26 2016-10-26 三轴应力作用下超低渗岩石渗透率测量装置 Pending CN106323841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610946045.7A CN106323841A (zh) 2016-10-26 2016-10-26 三轴应力作用下超低渗岩石渗透率测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610946045.7A CN106323841A (zh) 2016-10-26 2016-10-26 三轴应力作用下超低渗岩石渗透率测量装置

Publications (1)

Publication Number Publication Date
CN106323841A true CN106323841A (zh) 2017-01-11

Family

ID=57818929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610946045.7A Pending CN106323841A (zh) 2016-10-26 2016-10-26 三轴应力作用下超低渗岩石渗透率测量装置

Country Status (1)

Country Link
CN (1) CN106323841A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644739A (zh) * 2017-02-21 2017-05-10 湖北工业大学 一种岩石三轴压缩超声实时扫描装置
CN107421869A (zh) * 2017-07-30 2017-12-01 福州大学 一种裂隙岩体渗透系数演化测试装置及试验方法
CN107462509A (zh) * 2017-08-18 2017-12-12 中国科学院力学研究所 一种适用于多规格超低渗岩心的气测渗透率岩心夹持系统
CN107941915A (zh) * 2017-09-29 2018-04-20 中国科学院武汉岩土力学研究所 带超声相控阵列实时成像系统的岩石真三轴试验装置
CN108007772A (zh) * 2017-10-24 2018-05-08 江苏师范大学 一种测试三轴压力的渗透性试验系统
CN108088757A (zh) * 2018-02-02 2018-05-29 中国矿业大学 一种模拟高压水冻结成冰过程的三轴力学试验装置及方法
CN108344643A (zh) * 2018-02-02 2018-07-31 中国矿业大学 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法
CN109030318A (zh) * 2018-09-11 2018-12-18 中国科学院地质与地球物理研究所 一种压力室结构和渗透率测试系统
CN109187304A (zh) * 2018-08-17 2019-01-11 刘焱 一种建筑施工用混凝土抗渗性能检测装置
CN109613119A (zh) * 2019-01-11 2019-04-12 山东科技大学 一种声电渗综合监测的拟三轴压力室及试验方法
CN109632502A (zh) * 2018-12-11 2019-04-16 四川大学 多联实验系统及其实验方法
CN110160885A (zh) * 2019-06-28 2019-08-23 辽宁工程技术大学 多场耦合作用下测量低渗透煤岩渗透率的实验装置及方法
CN113811753A (zh) * 2019-04-24 2021-12-17 沙特阿拉伯石油公司 使用三轴压力离心机设备测试石油物理性质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245597A (zh) * 2013-05-29 2013-08-14 武汉大学 低渗岩石瞬态气压脉冲渗透率测量装置及测量方法
US20130346048A1 (en) * 2012-06-22 2013-12-26 Brian Ronad Crawford Petrophysical Method For Predicting Shear Strength Anisotropy In Fine-Grained Rock Formations
CN103528934A (zh) * 2013-10-29 2014-01-22 中国石油大学(北京) 一种测量超低渗岩石渗透率应力敏感性的互相关技术
CN104237099A (zh) * 2014-08-29 2014-12-24 中国石油大学 测定致密岩心径向渗透率的装置及方法
CN204241320U (zh) * 2014-12-04 2015-04-01 中国科学院武汉岩土力学研究所 Ct实时扫描的三轴应力、渗流、化学耦合流变试验系统
CN206470161U (zh) * 2016-10-26 2017-09-05 中国科学院武汉岩土力学研究所 三轴应力作用下超低渗岩石渗透率测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130346048A1 (en) * 2012-06-22 2013-12-26 Brian Ronad Crawford Petrophysical Method For Predicting Shear Strength Anisotropy In Fine-Grained Rock Formations
CN103245597A (zh) * 2013-05-29 2013-08-14 武汉大学 低渗岩石瞬态气压脉冲渗透率测量装置及测量方法
CN103528934A (zh) * 2013-10-29 2014-01-22 中国石油大学(北京) 一种测量超低渗岩石渗透率应力敏感性的互相关技术
CN104237099A (zh) * 2014-08-29 2014-12-24 中国石油大学 测定致密岩心径向渗透率的装置及方法
CN204241320U (zh) * 2014-12-04 2015-04-01 中国科学院武汉岩土力学研究所 Ct实时扫描的三轴应力、渗流、化学耦合流变试验系统
CN206470161U (zh) * 2016-10-26 2017-09-05 中国科学院武汉岩土力学研究所 三轴应力作用下超低渗岩石渗透率测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王小琼等: "利用周期振荡法测试超低渗储层的渗透率" *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644739A (zh) * 2017-02-21 2017-05-10 湖北工业大学 一种岩石三轴压缩超声实时扫描装置
CN107421869A (zh) * 2017-07-30 2017-12-01 福州大学 一种裂隙岩体渗透系数演化测试装置及试验方法
CN107462509A (zh) * 2017-08-18 2017-12-12 中国科学院力学研究所 一种适用于多规格超低渗岩心的气测渗透率岩心夹持系统
CN107462509B (zh) * 2017-08-18 2019-11-22 中国科学院力学研究所 一种适用于多规格超低渗岩心的气测渗透率岩心夹持系统
CN107941915A (zh) * 2017-09-29 2018-04-20 中国科学院武汉岩土力学研究所 带超声相控阵列实时成像系统的岩石真三轴试验装置
CN108007772A (zh) * 2017-10-24 2018-05-08 江苏师范大学 一种测试三轴压力的渗透性试验系统
CN108088757B (zh) * 2018-02-02 2019-02-19 中国矿业大学 一种模拟高压水冻结成冰过程的三轴力学试验装置及方法
CN108088757A (zh) * 2018-02-02 2018-05-29 中国矿业大学 一种模拟高压水冻结成冰过程的三轴力学试验装置及方法
CN108344643A (zh) * 2018-02-02 2018-07-31 中国矿业大学 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法
CN109187304A (zh) * 2018-08-17 2019-01-11 刘焱 一种建筑施工用混凝土抗渗性能检测装置
CN109030318A (zh) * 2018-09-11 2018-12-18 中国科学院地质与地球物理研究所 一种压力室结构和渗透率测试系统
CN109030318B (zh) * 2018-09-11 2024-04-02 中国科学院地质与地球物理研究所 一种压力室结构和渗透率测试系统
CN109632502A (zh) * 2018-12-11 2019-04-16 四川大学 多联实验系统及其实验方法
CN109613119A (zh) * 2019-01-11 2019-04-12 山东科技大学 一种声电渗综合监测的拟三轴压力室及试验方法
CN113811753A (zh) * 2019-04-24 2021-12-17 沙特阿拉伯石油公司 使用三轴压力离心机设备测试石油物理性质
CN110160885A (zh) * 2019-06-28 2019-08-23 辽宁工程技术大学 多场耦合作用下测量低渗透煤岩渗透率的实验装置及方法
CN110160885B (zh) * 2019-06-28 2022-06-10 辽宁工程技术大学 多场耦合作用下测量低渗透煤岩渗透率的实验装置及方法

Similar Documents

Publication Publication Date Title
CN106323841A (zh) 三轴应力作用下超低渗岩石渗透率测量装置
CN106290118A (zh) 三轴应力作用下超低渗岩石渗透率测量方法
CN106226216B (zh) 一种岩心夹持器及其测量方法
CN105181728B (zh) 核磁共振在线检测页岩气的方法
CN102374963B (zh) 煤层气完井方式评价实验装置
CN203422307U (zh) 致密岩石渗透率快速测试装置
CN107063963A (zh) 一种致密储层微裂缝扩展及渗流特征的测试装置和方法
CN201747363U (zh) 煤层气完井方式评价实验装置
CN106153662A (zh) 岩心应力敏感性的测量方法
CN107870144A (zh) 一种煤岩体应变‑裂隙‑渗透率的测试装置及方法
CN109752306A (zh) 动荷载扰动过程岩石渗透率测试方法及其测试系统
CN106246170B (zh) 五岩芯联测物理模拟装置及流体性质识别方法
CN103398933A (zh) 恒压混凝土渗透性测试装置
CN108051643A (zh) 多功能长岩心径向多对点动态监测驱替系统
CN204594829U (zh) 一种页岩气藏含气量测试装置
CN206470161U (zh) 三轴应力作用下超低渗岩石渗透率测量装置
CN103743661A (zh) 岩石渗透率测试装置
CN106198346B (zh) 一种能够测量力学参数和渗透率的岩心夹持器及测量方法
CN105699202B (zh) 一种测量岩体力学参数的液压装置
CN209707317U (zh) 动荷载扰动过程岩石渗透率测试系统
CN103927913B (zh) 一种深部地层环境二氧化碳地质储存模拟实验系统
CN207689304U (zh) 一种测定土样吸水质量及吸水速率的装置
CN109238562A (zh) 一种用于孔压静力触探探头室内检验与标定装置
CN203732405U (zh) 岩石渗透率测试装置
CN203465238U (zh) 非饱和土土水特性快速定量检测传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination