CN106311264B - 一种二氧化硅负载镍钨催化剂及其制备方法与应用 - Google Patents

一种二氧化硅负载镍钨催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN106311264B
CN106311264B CN201610592381.6A CN201610592381A CN106311264B CN 106311264 B CN106311264 B CN 106311264B CN 201610592381 A CN201610592381 A CN 201610592381A CN 106311264 B CN106311264 B CN 106311264B
Authority
CN
China
Prior art keywords
silicon dioxide
catalyst
nickel
preparation
tungsten catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610592381.6A
Other languages
English (en)
Other versions
CN106311264A (zh
Inventor
王雅莉
夏文生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610592381.6A priority Critical patent/CN106311264B/zh
Publication of CN106311264A publication Critical patent/CN106311264A/zh
Application granted granted Critical
Publication of CN106311264B publication Critical patent/CN106311264B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种二氧化硅负载镍钨催化剂及其制备方法与应用,涉及甲烷部分氧化催化剂。所述二氧化硅负载镍钨催化剂的组份为镍、钨和二氧化硅,通式为NiWx/SiO2,其中x=0.01,0.03,0.05,0.07,0.10;钨镍的摩尔比为0.01~0.10;所述二氧化硅为载体,所述二氧化硅负载镍钨催化剂的比表面积为276.2~327.6m2/g。制备方法:将硝酸镍和钨酸铵混合溶解在水中,再加入尿素,水热合成,待混合物冷却至室温后,离心,洗涤,再超声分散在二氧化硅上,浸渍后干燥,焙烧,压片,过筛,即得二氧化硅负载镍钨催化剂。所述二氧化硅负载镍钨催化剂可在甲烷部分氧化反应中应用。

Description

一种二氧化硅负载镍钨催化剂及其制备方法与应用
技术领域
本发明涉及甲烷部分氧化催化剂,特别是涉及过渡金属氧化物添加修饰的一种二氧化硅负载镍钨催化剂及其制备方法与应用。
背景技术
我国天然气资源储量丰富,天然气是清洁的能源和优质的化工原料。天然气的主要成分是甲烷,甲烷间接转化制合成气是甲烷化工利用的主要途径,其中,甲烷部分氧化是温和的放热反应,产物中H2和CO的比值为2,适合做甲醇及F-T合成的原料气,因此备受研究者的关注。传统负载型催化剂反应稳定性差,极易失活。因而制备高反应稳定性的催化剂是甲烷部分氧化反应的关键。
目前优异的甲烷部分氧化催化剂主要集中在贵金属催化剂和非贵金属催化剂,贵金属催化剂反应活性高,稳定性好,但其活性组分Rh、Ru、Pt、Ir等由于价格昂贵储量有限,应用范围受到极大的限制;非贵金属催化剂中,镍基催化剂反应活性高,但反应稳定性差,极易失活。
二氧化硅耐酸耐碱,热稳定性高,是一种常见的载体,镍基催化剂具有优异的甲烷部分氧化反应性能,且价格低廉,被广泛应用。传统负载型镍基催化剂,反应稳定性差,当添加少量过渡金属氧化物时,其催化剂反应稳定性明显提高。Zhang(Zhang,CatalysisCommunications,2015,69:123-128)等制备了W掺杂的Ni/SiO2催化剂,该催化剂上双金属以Ni17W3合金的形式存在,在二氧化碳重整反应中形成了α-WC,并参与了CO2的活化,有效的提高了催化剂的稳定性和抗积炭性能。Ouaguenouni(Ouaguenouni,Comptes RendusChimie,2009,12(6-7):740-747)等采用溶胶凝胶法、共沉淀法制备了NiMn混合氧化物催化剂,并用于甲烷部分氧化制合成气,实验结果表明,催化剂在900℃焙烧后形成NiMn2O4尖晶石结构,该结构的存在提高了Ni在催化剂上的稳定性,抑制了活性组分的团聚,表现出优异的POM反应稳定性。
发明内容
本发明的目的旨在提供用于甲烷部分氧化反应时,能实现甲烷部分氧化反应的高稳定性,制备简单易操作,原料廉价易得,钨添加修饰的一种二氧化硅负载镍钨催化剂及其制备方法与应用。
所述二氧化硅负载镍钨催化剂的组份为镍、钨和二氧化硅,通式为NiWx/SiO2,其中x=0.01,0.03,0.05,0.07,0.10;钨镍的摩尔比为0.01~0.10;所述二氧化硅为载体,所述二氧化硅负载镍钨催化剂的比表面积为276.2~327.6m2/g。
所述二氧化硅负载镍钨催化剂的制备方法,包括以下步骤:
1)将硝酸镍和钨酸铵混合溶解在水中,再加入尿素,水热合成,待混合物冷却至室温后,离心,洗涤;
在步骤1)中,所述硝酸镍可采用Ni(NO3)2·6H2O;所述钨酸铵可采用(NH4)10W12O41;所述水热合成是在聚四氟乙烯反应釜中于恒温干燥箱中水热合成;所述水热合成的温度可为120℃,所述水热合成的时间可为3h;所述离心的速率可为10000r/min,离心的时间可为10min;所述洗涤可采用去离子水洗涤至少2次。
2)将步骤1)中所得产物超声分散在二氧化硅上,浸渍后干燥,焙烧,压片,过筛,即得二氧化硅负载镍钨催化剂,记为NiWx/SiO2(x=0.01,0.03,0.05,0.07,0.10)。
在步骤2)中,所述超声分散的时间可为10min;所述浸渍的时间可为12h;所述干燥的温度可为60℃,干燥的时间可为12h,所述焙烧的温度可为700℃,焙烧的时间可为2h,焙烧的升温速率为1℃/min;所述过筛可过40~60目筛。
在步骤1)和2)中,所述硝酸镍、钨酸铵、尿素、二氧化硅的质量比可为(0.2908~0.2935)︰(0.0027~0.0270)︰0.1800︰0.5935;
所述二氧化硅负载镍钨催化剂可在甲烷部分氧化反应中应用。
所述二氧化硅负载镍钨催化剂可采用固定床连续流动反应器—气相色谱组合操作系统进行活性评价。反应温度为700℃,反应气为混合气,比例为CH4/O2=2/1,气体总空速为60000mL/g/h,二氧化硅负载镍钨催化剂用量为30mg。本发明所述二氧化硅负载镍钨催化剂具有优异的甲烷部分氧化反应稳定性,如所制得的催化剂NiW0.07/SiO2在反应10h内,甲烷转化率始终维持在78%,且反应后粒径没有明显的增大,积炭含量为0%。
本发明的优点:
(1)所述二氧化硅负载镍钨催化剂在甲烷部分氧化反应中,催化剂的反应稳定性高,反应后粒子没有发生明显的团聚,且没有检测到积炭的生成。
(2)所述二氧化硅负载镍钨催化剂的组份为镍、钨和二氧化硅,镍的含量较低(9%),W/Ni摩尔比较低(≤0.10),原料廉价易得,成本较低。
(3)制备步骤较简单,制备条件温和,有一定的工业价值。
附图说明
图1为PDF#04-0850-Ni标准卡片,PDF#04-0806-W标准卡片,实施例1~5以及对比例1中700℃H2还原1h合成催化剂XRD衍射谱图。
图2为PDF#04-0850-Ni标准卡片,实施例1~4以及对比例1中反应后催化剂的XRD衍射谱图。
图3为实施例1~5以及对比例1的反应性能评价结果。
反应条件:反应温度为700℃,催化剂用量为30mg,原料气为CH4/O2=2/1,空速GHSV=60000mL/g。
图中标记对应的催化剂如下:
a:对比例1;b:实施例1;c:实施例2;d:实施例3;e:实施例4;f:实施例5。
具体实施方式
以下实施例结合附图进一步说明本发明。
实施例1
1)将0.2935gNi(NO3)2·6H2O和0.0027g钨酸铵溶解在10mL去离子水中,再加入0.1800g尿素,待完全溶解后转移至聚四氟乙烯反应釜中,放入恒温干燥箱,120℃恒温反应3h,待混合物冷却至室温,离心,用去离子水将沉淀洗涤2次。
2)将步骤1)中所得产物超声分散在0.5935g商品二氧化硅上,常规浸渍12h,60℃干燥12h,然后700℃空气气氛下焙烧2h,所述硝酸镍为Ni(NO3)2·6H2O,钨酸铵为(NH4)10W12O41;将焙烧好的催化剂进行压片,过筛后取40~60目备用,制得催化剂简记为NiW0.01/SiO2
催化剂的活性评价结果见图3。
实施例2
1)将钨酸铵质量改成0.0081g,其余步骤同实施例1。
2)与实施例1中步骤2)相同,催化剂标记为NiW0.03/SiO2
实施例3
1)将钨酸铵质量改成0.0135g,其余步骤同实施例1。
2)与实施例1中步骤2)相同,催化剂标记为NiW0.05/SiO2
实施例4
1)将钨酸铵质量改成0.0189g,其余步骤同实施例1。
2)与实施例1中步骤2)相同,催化剂标记为NiW0.07/SiO2
实施例5
1)将钨酸铵质量改成0.0270g,其余步骤同实施例1。
2)与实施例1中步骤2)相同,催化剂标记为NiW0.10/SiO2
对比例1
1)将钨酸铵质量改为0.0000g,其余步骤同实施例1。
2)与实施例1中步骤2)相同,催化剂标记为Ni/SiO2
催化剂的XRD表征是在荷兰PANalytical公司生产的多晶粉末X-射线衍射仪Panalytical X’pert PRO上进行。辐射源为Cu Kα(λ=0.15406nm),管压为40kV,管流为30mA,采用石墨单色器滤光,扫描范围为10~90°,连续扫描步长为0.0167°·步-1,结果见图1和图2。
催化剂的BET表征(氮气吸脱附实验)在Micromeritics仪器公司生产的TristarⅡ3000型物理吸附仪上进行。催化剂用量约为100mg,实验前,先将样品于120℃抽空净化1h,然后升温至300℃抽真空处理2h。以高纯氮气作为吸附质,在液氮温度(77K)下测定样品的吸脱附等温曲线。催化剂的比表面积利用BET方程进行计算,孔结构数据通过BJH单点法得到。
实施例1~5和对比例1中催化剂的物理性质比较参见表1。
表1
注:还原后:700℃,H2还原1h;
反应后:反应条件下反应10h(反应条件:反应温度为700℃,催化剂用量为30mg,原料气为CH4/O2=2/1,空速GHSV=60000mL/g)。

Claims (7)

1.用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于所述二氧化硅负载镍钨催化剂的组份为镍、钨和二氧化硅,所述二氧化硅为载体,所述二氧化硅负载镍钨催化剂的比表面积为276.2~327.6m2/g;所述镍、钨和二氧化硅的通式为NiWx/SiO2,其中x=0.01,0.03,0.05,0.07,0.10;
所述二氧化硅负载镍钨催化剂的制备方法包括以下步骤:
1)将硝酸镍和钨酸铵混合溶解在水中,再加入尿素,水热合成,待混合物冷却至室温后,离心,洗涤;
2)将步骤1)中所得产物超声分散在二氧化硅上,浸渍后干燥,焙烧,压片,过筛,即得二氧化硅负载镍钨催化剂,所述干燥的温度为60℃,干燥的时间为12h;所述焙烧的温度为700℃,焙烧的时间为2h,焙烧的升温速率为1℃/min;所述过筛是过40~60目筛。
2.如权利要求1所述用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于在步骤1)中,所述硝酸镍采用Ni(NO3)2·6H2O;所述钨酸铵采用(NH4)10W12O41
3.如权利要求1所述用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于在步骤1)中,所述水热合成是在聚四氟乙烯反应釜中于恒温干燥箱中水热合成;所述水热合成的温度为120℃,所述水热合成的时间为3h。
4.如权利要求1所述用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于在步骤1)中,所述离心的速率为10000r/min,离心的时间为10min。
5.如权利要求1所述用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于在步骤1)中,所述洗涤是采用去离子水洗涤至少2次。
6.如权利要求1所述用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于在步骤2)中,所述超声分散的时间为10min;所述浸渍的时间为12h。
7.如权利要求1所述用于甲烷部分氧化反应的二氧化硅负载镍钨催化剂的制备方法,其特征在于在步骤1)和2)中,所述硝酸镍、钨酸铵、尿素、二氧化硅的质量比为(0.2908~0.2935)︰(0.0027~0.0270)︰0.1800︰0.5935。
CN201610592381.6A 2016-07-26 2016-07-26 一种二氧化硅负载镍钨催化剂及其制备方法与应用 Expired - Fee Related CN106311264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610592381.6A CN106311264B (zh) 2016-07-26 2016-07-26 一种二氧化硅负载镍钨催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610592381.6A CN106311264B (zh) 2016-07-26 2016-07-26 一种二氧化硅负载镍钨催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106311264A CN106311264A (zh) 2017-01-11
CN106311264B true CN106311264B (zh) 2018-12-11

Family

ID=57739190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610592381.6A Expired - Fee Related CN106311264B (zh) 2016-07-26 2016-07-26 一种二氧化硅负载镍钨催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106311264B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106902871B (zh) * 2017-03-03 2019-07-26 浙江工业大学 碳物种修饰型金属Ni基催化剂及其应用
CN112958068B (zh) * 2021-02-08 2023-06-30 齐齐哈尔大学 一种W改性Cs-La/KIT-6催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091624A (zh) * 2010-12-01 2011-06-15 厦门大学 一种多元醇氢解制二元醇的催化剂及其制备方法
CN102140153A (zh) * 2011-03-14 2011-08-03 杭州华品科技有限公司 一种碳五/碳九加氢石油树脂的制备方法
CN104941649A (zh) * 2015-04-14 2015-09-30 大连理工大学 一种用于石油树脂加氢催化剂、制备方法及其应用
CN105749927A (zh) * 2014-12-19 2016-07-13 易高环保能源研究院有限公司 一种非硫化物催化剂及其对生物油脂加氢提质的用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091624A (zh) * 2010-12-01 2011-06-15 厦门大学 一种多元醇氢解制二元醇的催化剂及其制备方法
CN102140153A (zh) * 2011-03-14 2011-08-03 杭州华品科技有限公司 一种碳五/碳九加氢石油树脂的制备方法
CN105749927A (zh) * 2014-12-19 2016-07-13 易高环保能源研究院有限公司 一种非硫化物催化剂及其对生物油脂加氢提质的用途
CN104941649A (zh) * 2015-04-14 2015-09-30 大连理工大学 一种用于石油树脂加氢催化剂、制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ni系催化剂上甲烷部分氧化制合成气;张恒等;《天然气化工》;20040818;第36-42页 *
POM反应中Si02负载Ni基催化剂;夏文生等;《厦门大学学报》;20150930;第726-729页 *

Also Published As

Publication number Publication date
CN106311264A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Le et al. CO and CO2 methanation over supported Ni catalysts
Liu et al. Design of Ni-ZrO2@ SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas
Dias et al. Carbon dioxide methanation over Ni-Cu/SiO2 catalysts
Abate et al. Catalytic performance of γ-Al2O3–ZrO2–TiO2–CeO2 composite oxide supported Ni-based catalysts for CO2 methanation
Cheng et al. H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming
Alexander et al. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys
Gálvez et al. Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures
Wang et al. Mesoporous Co-CeO2 catalyst prepared by colloidal solution combustion method for reverse water-gas shift reaction
Yasyerli et al. Ru incorporated Ni–MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature
Wang et al. Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers
Van Haasterecht et al. Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol
Chen et al. Synthesis of mesoporous Ni–La2O3/SiO2 by ploy (ethylene glycol)-assisted sol-gel route as highly efficient catalysts for dry reforming of methane with a H2/CO ratio of unity
Chen et al. Biogas dry reforming for syngas production: catalytic performance of nickel supported on waste-derived SiO 2
Sheng et al. Emerging applications of nanocatalysts synthesized by flame aerosol processes
Guo et al. Confining Ni nanoparticles in honeycomb-like silica for coking and sintering resistant partial oxidation of methane
CN101773835A (zh) 一种二氧化碳重整甲烷制合成气的催化剂及制备方法
Shi et al. Fabricating Cu2O-CuO submicron-cubes for efficient catalytic CO oxidation: The significant effect of heterojunction interface
Cheng et al. Effect of calcination temperature on the performance of hexaaluminate supported CeO2 for chemical looping dry reforming
CN109731579A (zh) 一种镍负载的介孔氧化镧催化剂及其制备方法
Zhou et al. Defect-rich TiO2 in situ evolved from MXene for the enhanced oxidative dehydrogenation of ethane to ethylene
CN106540698A (zh) 一种氯代硝基苯选择性加氢合成氯代苯胺的负载型镍基催化剂的制备方法
Park et al. Dry reforming of methane over Ni-substituted CaZrNiOx catalyst prepared by the homogeneous deposition method
Gu et al. Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4
Wang et al. An Al2O3-supported NiFe bimetallic catalyst derived from hydrotalcite precursors for efficient CO2 methanation
Mei et al. Thermo-catalytic methane decomposition for hydrogen production: Effect of palladium promoter on Ni-based catalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181211

Termination date: 20200726

CF01 Termination of patent right due to non-payment of annual fee