CN106299655A - 低损耗射频能量吸收微带天线 - Google Patents

低损耗射频能量吸收微带天线 Download PDF

Info

Publication number
CN106299655A
CN106299655A CN201610816497.3A CN201610816497A CN106299655A CN 106299655 A CN106299655 A CN 106299655A CN 201610816497 A CN201610816497 A CN 201610816497A CN 106299655 A CN106299655 A CN 106299655A
Authority
CN
China
Prior art keywords
point
rotating graphs
radius
line segment
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610816497.3A
Other languages
English (en)
Inventor
施艳艳
景建伟
王萌
庞家斐
马鹏飞
李小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201610816497.3A priority Critical patent/CN106299655A/zh
Publication of CN106299655A publication Critical patent/CN106299655A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种低损耗射频能量吸收微带天线,包括由上到下尺寸一致且相互贴合的介质覆盖层、介质基板和接地板,其中与介质覆盖层贴合一侧的介质基板上贴附有金属天线贴片,介质基板的中部设有垂直贯穿介质基板的圆柱形金属导体,接地板上设有三条环状缺口及与圆柱形金属导体底面同心的圆孔。本发明具有更低的回波损耗、良好的阻抗匹配和驻波比以及较高的增益,从而能够高效接收环境中的射频能量。

Description

低损耗射频能量吸收微带天线
技术领域
本发明属于电磁能量接收天线技术领域,具体涉及一种用于接收环境中射频能量的低损耗射频能量吸收微带天线。
背景技术
在国内,关于射频无线能量有限空间内的传输技术研究起步较晚,在科技迅猛发展的今天,随着经济的进步和科研水平的提高,越来越多的公司和科研机构开始关注并开展这方面的研究,在有限空间内进行无线射频能量的收集。
发明内容
本发明解决的技术问题是提供了一种结构简单且设计合理的低损耗射频能量吸收微带天线,该天线较其它天线而言拥有的更小的尺寸、相对较低的回拨损耗、良好的阻抗匹配和较高的增益。
本发明为解决上述技术问题采用如下技术方案,低损耗射频能量吸收微带天线,其特征在于包括由上到下尺寸一致且相互贴合的介质覆盖层、介质基板和接地板,其中与介质覆盖层贴合一侧的介质基板上贴附有金属天线贴片,介质基板的中部设有垂直贯穿介质基板的圆柱形金属导体,接地板上设有三条环状缺口及与圆柱形金属导体底面同心的圆孔;所述介质覆盖层的材料为Rogers RO6002,介电常数εr=2.94,厚度d=0.51mm,长度和宽度均为30mm;所述金属天线贴片的圆形覆盖面的半径为0.1132λ,其中λ=122mm,λ为2.45GHz射频的波长,厚度为0.02mm,材料为铜,所述介质基板的材料为Rogers RO6010,介电常数εr=10.2,厚度d=2.54mm,长度和宽度均为30mm,金属天线贴片的中心点与介质基板上表面的中心点位置一致;所述金属天线贴片的设计形状及尺寸满足如下要求,建立平面直角坐标系,将原点(0mm,-2.5mm)作为起点,(13.75mm,-2.5mm)为另一端点沿x轴正方向做出一条长为13.75mm的线段一,以点(13.75mm,-2.5mm)为旋转点,将线段一沿逆时针方向旋转105°,与曲线方程的交点为H(14.72057mm,-6.1222mm),以直线y=-x为对称轴作镜面对称得到点L(6.1222mm,-14.72057mm),将线段一以直线y=-x为对称轴作镜面对称得到线段二,线段一和线段二的交点为分别连接点H(14.72057mm,-6.1222mm)、和L(6.1222mm,-14.72057mm)、得到线段HW和线段LW,再次将原点(0mm,0mm)作为起点,沿x轴正方向作出一条长为2.5mm的线段,以(2.5mm,-1.25mm)为第一个曲线的圆心,以(2.5mm,0mm)为一端点,以(3.75mm,-1.25mm)为另一端点,半径r1=1.25mm,作出圆周角为90°,方向为向x轴及y轴正方向凸出的圆弧,以(5mm,-1.25mm)为第二个曲线的圆心,以(3.75mm,-1.25mm)为一端点,以(6.25mm,-1.25mm)为另一端点,半径r2=1.25mm,作出圆周角为180°,方向为向y轴负方向凸出的圆弧,然后以(7.5mm,-1.25mm)为第三个曲线的圆心,以(6.25mm,-1.25mm)为一端点,以(7.5mm,0mm)为另一端点,半径r3=1.25mm,作出圆周角为90°,方向为向x轴负方向及y轴正方向凸出的圆弧,以(7.5mm,-2.5mm)为第四个曲线的圆心,以(7.5mm,0mm)为一端点,以(10mm,-2.5mm)为另一端点,半径r4=2.5mm,作出圆周角为90°,方向为向x轴及y轴正方向凸出的圆弧;以(13.75mm,-2.5mm)为第五个曲线的圆心,以(10mm,-2.5mm)为一端点,以H(14.72057mm,-6.1222mm)为另一端点,半径r5=3.75mm,作出圆周角为105°,方向为向x轴及y轴负方向凸出的圆弧,得到初始图形一,以直线y=-x为对称轴,将初始图形一进行镜面对称,得到初始图形二,将线段HW、线段LW、初始图形一和初始图形二合并得到旋转图形一,将旋转图形一以点为旋转点,顺时针旋转60°并整体缩小为原来的0.8倍,得到旋转图形二,将旋转图形一以点为旋转点,顺时针旋转120°,得到旋转图形三,将旋转图形一以点为旋转点,顺时针旋转180°并整体缩小为原来的0.8倍,得到旋转图形四,将旋转图形一以点为旋转点,顺时针旋转240°,得到旋转图形五;将旋转图形一以点为旋转点,顺时针旋转300°并整体缩小为原来的0.8倍,得到旋转图形六,旋转图形一、旋转图形二、旋转图形三、旋转图形四、旋转图形五和旋转图形六合并得到封闭图形,将封闭图形的圆形覆盖面半径缩小为原来的0.77234倍得到所需金属天线贴片的设计形状及尺寸,按照设计形状及尺寸裁剪得到金属天线贴片;以接地板的底面中心为圆心,分别作内环半径为10mm、环宽为0.25mm的环形缺口一,内环半径为12mm、环宽为0.25mm的环形缺口二和内环半径为14mm、环宽为0.25mm的环形缺口三;所述圆柱形金属导体的一端与金属天线贴片连接,圆柱形金属导体的材料为铜,其底面半径r=0.5mm,厚度d=2.54mm,圆柱形金属导体与金属天线贴片的连接处圆心与介质基板四条侧边的垂直距离分别为16.59mm、16.59mm、13.41mm和13.41mm,与圆柱形金属导体相对的接地板上圆孔的孔径R=1.9mm,所述圆柱形金属导体另一端的输出接口与能量管理电路相连,该能量管理电路用于将吸收到的能量进行储存。
本发明的技术效果为:低损耗射频能量吸收微带天线具有更低的回波损耗、良好的阻抗匹配和驻波比以及较高的增益,从而能够高效接收环境中的射频能量。
附图说明
图1是金属天线贴片的结构示意图;
图2是低损耗射频能量吸收微带天线结构示意图;
图3是利用HFSS天线模拟仿真软件模拟的低损耗射频能量吸收微带天线的回波损耗图;
图4是利用HFSS天线模拟仿真软件模拟的低损耗射频能量吸收微带天线3D增益图。
图中:1、介质覆盖层,2、介质基板,3、接地板,4、金属天线贴片,5、圆柱形金属导体,6、矩形环状缺口,7、圆孔。
具体实施方式
下面将结合本发明中的附图,对本发明具体实施过程中的技术方案进行清楚、完整、具体的描述。
此发明的核心部分是低损耗射频能量吸收微带天线设计,在微带天线设计时需要对低损耗射频能量吸收微带天线的金属天线贴片的尺寸,介质基板的尺寸、厚度进行理论上的估算,才能在模拟实验的时候更加快速精确的找到适合特定频率的低损耗射频能量吸收微带天线。所以下面以矩形微带天线为例,讲解微带天线各个数据参数的理论计算方法。
贴片尺寸L×W,贴片宽度W为:
W = c 2 f 0 ( ϵ r + 1 2 ) - 1 2 - - - ( 1 )
在(1)式中,c为光速,f0为禁带中心频率,εr为相对介电常数。
微带天线介质基板的相对有效介电常数εre为:
ϵ r e = ϵ r + 1 2 + ϵ r - 1 2 ( 1 + 12 h W ) - 1 2 - - - ( 2 )
h表示介质层厚度,为了降低表面波辐射对天线性能的影响,介质基片的厚度应该满足一下的理论计算公式:
h ≤ 0.3 c 2 πf u ϵ r - - - ( 3 )
其中fu为微带天线的工作的最高频率。
微带天线的等效辐射缝隙长度ΔL为:
Δ L = 0.412 h ( ϵ r e + 0.3 ) ( W / h + 0.264 ) ( ϵ r e - 0.258 ) ( W / h + 0.8 ) - - - ( 4 )
则微带天线贴片的长度L为:
L = c 2 f 0 1 ϵ r e - 2 Δ L - - - ( 5 )
接地板的尺寸Lg×Wg满足下列理论公式
Lg≥L+6h (6)
Wg≥W+6h (7)
矩形微带天线用的是同轴线进行馈电,当确定了矩形贴片的长度和宽度后,一般在微带天线中加入50Ω的标准阻抗。
如图1-2所示,低损耗射频能量吸收微带天线,包括由上到下尺寸一致且相互贴合的介质覆盖层1、介质基板2和接地板3,其中与介质覆盖层1贴合一侧的介质基板2上贴附有金属天线贴片4,介质基板2的中部设有垂直贯穿介质基板2的圆柱形金属导体5,接地板3上设有三条环状缺口6及与圆柱形金属导体5底面同心的圆孔7;所述介质覆盖层1的材料为Rogers RO6002,介电常数εr=2.94,厚度d=0.51mm,长度和宽度均为30mm;所述金属天线贴片1的圆形覆盖面的半径为0.1132λ,其中λ=122mm,λ为2.45GHz射频的波长,厚度为0.02mm,材料为铜,所述介质基板2的材料为Rogers RO6010,介电常数εr=10.2,厚度d=2.54mm,长度和宽度均为30mm,金属天线贴片4的中心点与介质基板2上表面的中心点位置一致;所述金属天线贴片4的设计形状及尺寸满足如下要求,建立平面直角坐标系,将原点(0mm,-2.5mm)作为起点,(13.75mm,-2.5mm)为另一端点沿x轴正方向做出一条长为13.75mm的线段一,以点(13.75mm,-2.5mm)为旋转点,将线段一沿逆时针方向旋转105°,与曲线方程的交点为H(14.72057mm,-6.1222mm),以直线y=-x为对称轴作镜面对称得到点L(6.1222mm,-14.72057mm),将线段一以直线y=-x为对称轴作镜面对称得到线段二,线段一和线段二的交点为分别连接点H(14.72057mm,-6.1222mm)、和L(6.1222mm,-14.72057mm)、得到线段HW和线段LW,再次将原点(0mm,0mm)作为起点,沿x轴正方向作出一条长为2.5mm的线段,以(2.5mm,-1.25mm)为第一个曲线的圆心,以(2.5mm,0mm)为一端点,以(3.75mm,-1.25mm)为另一端点,半径r1=1.25mm,作出圆周角为90°,方向为向x轴及y轴正方向凸出的圆弧,以(5mm,-1.25mm)为第二个曲线的圆心,以(3.75mm,-1.25mm)为一端点,以(6.25mm,-1.25mm)为另一端点,半径r2=1.25mm,作出圆周角为180°,方向为向y轴负方向凸出的圆弧,然后以(7.5mm,-1.25mm)为第三个曲线的圆心,以(6.25mm,-1.25mm)为一端点,以(7.5mm,0mm)为另一端点,半径r3=1.25mm,作出圆周角为90°,方向为向x轴负方向及y轴正方向凸出的圆弧,以(7.5mm,-2.5mm)为第四个曲线的圆心,以(7.5mm,0mm)为一端点,以(10mm,-2.5mm)为另一端点,半径r4=2.5mm,作出圆周角为90°,方向为向x轴及y轴正方向凸出的圆弧;以(13.75mm,-2.5mm)为第五个曲线的圆心,以(10mm,-2.5mm)为一端点,以H(14.72057mm,-6.1222mm)为另一端点,半径r5=3.75mm,作出圆周角为105°,方向为向x轴及y轴负方向凸出的圆弧,得到初始图形一,以直线y=-x为对称轴,将初始图形一进行镜面对称,得到初始图形二,将线段HW、线段LW、初始图形一和初始图形二合并得到旋转图形一,将旋转图形一以点为旋转点,顺时针旋转60°并整体缩小为原来的0.8倍,得到旋转图形二,将旋转图形一以点为旋转点,顺时针旋转120°,得到旋转图形三,将旋转图形一以点为旋转点,顺时针旋转180°并整体缩小为原来的0.8倍,得到旋转图形四,将旋转图形一以点为旋转点,顺时针旋转240°,得到旋转图形五;将旋转图形一以点为旋转点,顺时针旋转300°并整体缩小为原来的0.8倍,得到旋转图形六,旋转图形一、旋转图形二、旋转图形三、旋转图形四、旋转图形五和旋转图形六合并得到封闭图形,将封闭图形的圆形覆盖面半径缩小为原来的0.77234倍得到所需金属天线贴片4的设计形状及尺寸,按照设计形状及尺寸裁剪得到金属天线贴片4;以接地板3的底面中心为圆心,分别作内环半径为10mm、环宽为0.25mm的环形缺口一,内环半径为12mm、环宽为0.25mm的环形缺口二和内环半径为14mm、环宽为0.25mm的环形缺口三;所述圆柱形金属导体5的一端与金属天线贴片4连接,圆柱形金属导体5的材料为铜,其底面半径r=0.5mm,厚度d=2.54mm,圆柱形金属导体5与金属天线贴片4的连接处圆心与介质基板2四条侧边的垂直距离分别为16.59mm、16.59mm、13.41mm和13.41mm,与圆柱形金属导体5相对的接地板3上圆孔7的孔径R=1.9mm,所述圆柱形金属导体5另一端的输出接口与能量管理电路相连,该能量管理电路用于将吸收到的能量进行储存。
图3是利用HFSS天线模拟仿真软件模拟的低损耗射频能量吸收微带天线的回波损耗图,由图可知,该低损耗射频能量吸收微带天线的回波损耗为-44dB,比其它相同体积天线的回波损耗还要小,性能非常好。
图4是利用HFSS天线模拟仿真软件模拟的低损耗射频能量吸收微带天线3D增益图,由图可知,该低损耗射频能量吸收微带天线在2.45GHz的最大增益为3.62dB,方向性非常稳定。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (1)

1.低损耗射频能量吸收微带天线,其特征在于包括由上到下尺寸一致且相互贴合的介质覆盖层、介质基板和接地板,其中与介质覆盖层贴合一侧的介质基板上贴附有金属天线贴片,介质基板的中部设有垂直贯穿介质基板的圆柱形金属导体,接地板上设有三条环状缺口及与圆柱形金属导体底面同心的圆孔;所述介质覆盖层的材料为Rogers RO6002,介电常数εr=2.94,厚度d=0.51mm,长度和宽度均为30mm;所述金属天线贴片的圆形覆盖面的半径为0.1132λ,其中λ=122mm,λ为2.45GHz射频的波长,厚度为0.02mm,材料为铜,所述介质基板的材料为Rogers RO6010,介电常数εr=10.2,厚度d=2.54mm,长度和宽度均为30mm,金属天线贴片的中心点与介质基板上表面的中心点位置一致;所述金属天线贴片的设计形状及尺寸满足如下要求,建立平面直角坐标系,将原点(0mm,-2.5mm)作为起点,(13.75mm,-2.5mm)为另一端点沿x轴正方向做出一条长为13.75mm的线段一,以点(13.75mm,-2.5mm)为旋转点,将线段一沿逆时针方向旋转105°,与曲线方程的交点为H(14.72057mm,-6.1222mm),以直线y=-x为对称轴作镜面对称得到点L(6.1222mm,-14.72057mm),将线段一以直线y=-x为对称轴作镜面对称得到线段二,线段一和线段二的交点为分别连接点H(14.72057mm,-6.1222mm)、和L(6.1222mm,-14.72057mm)、得到线段HW和线段LW,再次将原点(0mm,0mm)作为起点,沿x轴正方向作出一条长为2.5mm的线段,以(2.5mm,-1.25mm)为第一个曲线的圆心,以(2.5mm,0mm)为一端点,以(3.75mm,-1.25mm)为另一端点,半径r1=1.25mm,作出圆周角为90°,方向为向x轴及y轴正方向凸出的圆弧,以(5mm,-1.25mm)为第二个曲线的圆心,以(3.75mm,-1.25mm)为一端点,以(6.25mm,-1.25mm)为另一端点,半径r2=1.25mm,作出圆周角为180°,方向为向y轴负方向凸出的圆弧,然后以(7.5mm,-1.25mm)为第三个曲线的圆心,以(6.25mm,-1.25mm)为一端点,以(7.5mm,0mm)为另一端点,半径r3=1.25mm,作出圆周角为90°,方向为向x轴负方向及y轴正方向凸出的圆弧,以(7.5mm,-2.5mm)为第四个曲线的圆心,以(7.5mm,0mm)为一端点,以(10mm,-2.5mm)为另一端点,半径r4=2.5mm,作出圆周角为90°,方向为向x轴及y轴正方向凸出的圆弧;以(13.75mm,-2.5mm)为第五个曲线的圆心,以(10mm,-2.5mm)为一端点,以H(14.72057mm,-6.1222mm)为另一端点,半径r5=3.75mm,作出圆周角为105°,方向为向x轴及y轴负方向凸出的圆弧,得到初始图形一,以直线y=-x为对称轴,将初始图形一进行镜面对称,得到初始图形二,将线段HW、线段LW、初始图形一和初始图形二合并得到旋转图形一,将旋转图形一以点为旋转点,顺时针旋转60°并整体缩小为原来的0.8倍,得到旋转图形二,将旋转图形一以点为旋转点,顺时针旋转120°,得到旋转图形三,将旋转图形一以点为旋转点,顺时针旋转180°并整体缩小为原来的0.8倍,得到旋转图形四,将旋转图形一以点为旋转点,顺时针旋转240°,得到旋转图形五;将旋转图形一以点为旋转点,顺时针旋转300°并整体缩小为原来的0.8倍,得到旋转图形六,旋转图形一、旋转图形二、旋转图形三、旋转图形四、旋转图形五和旋转图形六合并得到封闭图形,将封闭图形的圆形覆盖面半径缩小为原来的0.77234倍得到所需金属天线贴片的设计形状及尺寸,按照设计形状及尺寸裁剪得到金属天线贴片;以接地板的底面中心为圆心,分别作内环半径为10mm、环宽为0.25mm的环形缺口一,内环半径为12mm、环宽为0.25mm的环形缺口二和内环半径为14mm、环宽为0.25mm的环形缺口三;所述圆柱形金属导体的一端与金属天线贴片连接,圆柱形金属导体的材料为铜,其底面半径r=0.5mm,厚度d=2.54mm,圆柱形金属导体与金属天线贴片的连接处圆心与介质基板四条侧边的垂直距离分别为16.59mm、16.59mm、13.41mm和13.41mm,与圆柱形金属导体相对的接地板上圆孔的孔径R=1.9mm,所述圆柱形金属导体另一端的输出接口与能量管理电路相连,该能量管理电路用于将吸收到的能量进行储存。
CN201610816497.3A 2016-09-11 2016-09-11 低损耗射频能量吸收微带天线 Withdrawn CN106299655A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610816497.3A CN106299655A (zh) 2016-09-11 2016-09-11 低损耗射频能量吸收微带天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610816497.3A CN106299655A (zh) 2016-09-11 2016-09-11 低损耗射频能量吸收微带天线

Publications (1)

Publication Number Publication Date
CN106299655A true CN106299655A (zh) 2017-01-04

Family

ID=57710763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610816497.3A Withdrawn CN106299655A (zh) 2016-09-11 2016-09-11 低损耗射频能量吸收微带天线

Country Status (1)

Country Link
CN (1) CN106299655A (zh)

Similar Documents

Publication Publication Date Title
CN106299655A (zh) 低损耗射频能量吸收微带天线
CN106229665A (zh) 高频功率吸收型微带天线
CN106329104A (zh) 射频能量吸收边角变换天线
CN106229662A (zh) 射频高效吸收天线
CN106252867A (zh) 射频高效吸收天线
CN106299652A (zh) 低损耗射频能量收集微带天线
CN106410391A (zh) 九角电磁波能量接收型天线
CN106374200A (zh) 高增益十角高频功率吸收型微带天线
CN106229663A (zh) 九角不等变换射频高效吸收天线
CN107994351A (zh) 改善入射角稳定性吸波体
CN106384872A (zh) 减弱后瓣影响的高频吸收天线
CN108063308A (zh) Koch分形结构低损耗电磁能转换器
CN106329103A (zh) 射频高效吸收微带天线
CN106252869A (zh) 电磁波能量收集系统
CN106252864A (zh) 七角变换电磁能量接收天线
CN106252866A (zh) 十角不等射频能量吸收型天线
CN106374202A (zh) 高频能量储存装置
CN106252863A (zh) 双角叠加射频能量接收天线
CN108039575A (zh) 衰减入射电磁波转换系统
CN106299659A (zh) 低损耗九角不等电磁能量收集天线
CN106450721A (zh) 降低回波损耗射频高效吸收天线
CN107994349A (zh) 基于几何学的吸波体系统
CN106410383A (zh) 低损耗不等角变换电磁能量收集天线
CN106410392A (zh) 电磁波能量收集天线
CN106299656A (zh) 2.48GHz高频信号收集装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170104

WW01 Invention patent application withdrawn after publication