CN106299020B - 集成电灯打标除尘装置 - Google Patents

集成电灯打标除尘装置 Download PDF

Info

Publication number
CN106299020B
CN106299020B CN201610655692.2A CN201610655692A CN106299020B CN 106299020 B CN106299020 B CN 106299020B CN 201610655692 A CN201610655692 A CN 201610655692A CN 106299020 B CN106299020 B CN 106299020B
Authority
CN
China
Prior art keywords
glass
microcavity
fluorescence
pmax
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610655692.2A
Other languages
English (en)
Other versions
CN106299020A (zh
Inventor
朱永嘉
曹鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Mingxin Microelectronics Co., Ltd.
Original Assignee
Taizhou Mingxin Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Mingxin Microelectronics Co Ltd filed Critical Taizhou Mingxin Microelectronics Co Ltd
Priority to CN201610655692.2A priority Critical patent/CN106299020B/zh
Publication of CN106299020A publication Critical patent/CN106299020A/zh
Application granted granted Critical
Publication of CN106299020B publication Critical patent/CN106299020B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/17Cleaning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及集成电灯打标除尘装置,包括安装底座、设置于安装底座上的送料轨道、设置于送料轨道上的送料机构和用于驱动送料机构的送料驱动装置;送料驱动装置设置于安装底座的下方。

Description

集成电灯打标除尘装置
技术领域
本申请涉及除尘领域,尤其涉及集成电灯打标除尘装置。
背景技术
相关技术中采用的除尘装置存在以下技术问题,结构设置不合理,体积较大,使整个装置的维修成本加大。
发明内容
为克服相关技术中存在的问题,本申请提供集成电灯打标除尘装置。
本申请通过以下技术方案实现:
本申请的实施例涉及集成电灯打标除尘装置,包括安装底座、设置于安装底座上的送料轨道、设置于送料轨道上的送料机构和用于驱动送料机构的送料驱动装置;送料驱动装置设置于安装底座的下方。
本发明的实施例提供的集成电灯打标除尘装置,结构设置合理,将送料驱动装置设置于安装底座的另一侧,优化了除尘装置的结构,解决了上述问题。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本发明的结构示意图。
图2是本发明的荧光集光太阳能光伏电池结构截面示意图。
图3是本发明的荧光集光太阳能光伏电池结构俯视示意图。
图4是本发明的荧光集太阳能光伏电池的制备工艺流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不只是所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用性和/或其他材料的使用。另外,以下描述的第一特征在第二特征值“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本申请的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
荧光集光太阳能光伏器件由荧光材料、透明光波导介质和太阳能电池三部分组成。将荧光材料均匀分散在平板透明介质中(如平板玻璃)或涂覆于透明介质表面,在侧面耦合太阳能电池,即可组成LSC(荧光集光太阳能光伏器件,luminescent solarconcentrator)。荧光材料吸收入射太阳光后重新发出荧光,小于全反射临界角的荧光逃逸出透明介质,形成一个逃逸光锥;而大于临界角的荧光则会产生全反射,被约束在透明介质内,经过多次全反射到达侧面的太阳能电池,以实现将大面积的太阳光聚集到小面积太阳能电池上的目的。
目前存在的问题:LSC器件存在的光波导介质导致的损耗,使得LSC的光电转换效率未有较大突破。荧光材料发射的荧光在光波导介质传输过程中遇到灰尘、气泡等时,由于缺陷折射率与光波导介质不同,产生光的散射,一部分光逃逸出光波导介质。
为克服相关技术中存在的问题,本申请提供集成电灯打标除尘装置。
下面的实施例详细描述了本发明的实施方法。
应用场景1:
图1是本发明的结构示意图,如图1所示的集成电灯打标除尘装置,包括安装底座7、设置于安装底座7上的送料轨道9、设置于送料轨道9上的送料机构8和用于驱动送料机构8的送料驱动装置10;送料驱动装置10设置于安装底座7的下方。
本发明的实施例提供的集成电灯打标除尘装置,结构设置合理,将送料驱动装置设置于安装底座的另一侧,优化了除尘装置的结构,解决了上述问题。
优选地,送料驱动装置10设置于安装底座7上。
优选地,送料驱动装置10内采用太阳能电池11供电,太阳能电池11由荧光集光太阳能光伏电池构成。
图2是本发明的荧光集光太阳能光伏电池结构截面示意图;图3是本发明的荧光集光太阳能光伏电池结构俯视示意图。如图2和图3所示的所述荧光集光太阳能光伏电池的夹层结构为两层石英玻璃1构成外框,中间注有荧光溶液3;所述石英玻璃内侧设置有微腔结构2,所述夹层两侧耦合有反射镜5,另两侧粘贴有效率17%的商品单晶硅太阳能电池6;所述荧光溶液3中添加有浓度23~40ppm的纳米银颗粒4。
优选地,图4是本发明的荧光集太阳能光伏电池的制备工艺流程图。如图4所示,所述荧光集光太阳能光伏电池的制备步骤如下:
S1、石英玻璃(1)的疏水化处理:将多片石英玻璃浸泡在铬酸洗液中过夜,然后经2%HF浸泡2小时,5%H2O2浸泡1小时,最后采用二次蒸馏水浸泡后用超纯水冲洗干净;其中,石英玻璃的尺寸为5cm×2cm×1cm;
S2、将100mg PVC、5.0mg ECCH和10ml呋喃溶液混合,并在负压为1±0.1MPa的大气压中浸置10min后制得溶液A,将经步骤(1)处理过的石英玻璃置于THF气氛中,并将溶液A旋转涂覆于石英玻璃片上,于干燥箱中烘干后,得到第一层感光膜;
S3、玻璃的微腔结构制备:将经步骤S2处理的的玻璃在水氢火焰机加热下,制备成中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,玻璃两端各留有0.5~1cm的长度;将制好的半腔玻璃放入充满氮气的工作台中备用;
S4、荧光溶液(3)的配置:取质量比为3:1的吲哚二碳菁染料和Red305,使其充分混合,将吲哚二碳菁染料和Red 305混合,然后以0.5%wt吲哚二碳菁的浓度将混合物染料溶于环己烷中,配制成500ml溶液,将该溶液置于水浴80摄氏度,随后加入纳米银颗粒(4)使其浓度达到23~40ppm,然后超声10min,其中纳米银颗粒粒径为50nm;;纳米银颗粒;
S5、荧光集光太阳能光伏电池的制备:将经步骤S3处理的玻璃边缘一侧放置一片厚度为0.5mm的载玻片,使两片玻璃之间形成0.5mm的间隙,然后将玻璃的其余三侧固封住,利用注射器将经步骤(4)配置好的染料溶液注入玻璃之间,使玻璃的微腔完全充满染料为止,然后取出载玻片,再使用固化胶将载玻片侧固封住,形成荧光集光太阳能光伏器件,然后将其余两侧边耦合反射镜(5),反射镜反光一面朝外,最后采用紫外固化胶在夹层结构两四侧粘贴效率17%的商品单晶硅太阳能电池(6),通过电路板引出电极,完成荧光集光太阳能光伏电池的制备。
优选地,染料Red305与吲哚二碳菁染料的混合荧光染料的激发波长为360nm。为了作对比,制作了没有微腔的玻璃荧光集光太阳能器件;结果如表1所示,经测试发现,没有微腔的器件侧面收集荧光强度随光源的距离增大而减小,其损耗系数为0.039cm-1,具有微腔的器件损耗系数为0.010cm-1。有微腔的荧光强度大于无微腔的器件,且荧光强度的衰减速率较慢。(主要是由于有微腔的荧光中心分散均匀,且微腔的全反射作用强,且放置在充满氮气的工作台面上制备器件,有效的避免了灰尘、气泡和其他环境因素的影响,因此,制备出的光伏器件荧光传输损耗小,而且荧光传输效率高。)
表1有微腔和无微腔器件侧面探测荧光强度与光源距离变化值
采用太阳光模拟器光源,太阳能电池的最大输出功率Pmax为:Pmax=Voc×Isc×FF,其中Voc是开路电压,Isc为短路电流,FF为填充因子;LSC系统效率ηpanel为:ηpanel=Pmax(LSC)/(ApanelPin),其中,Apanel及Pin分别为LSC的面积和入射光功率密度(100mW/cm2)。此外,还定义了功率增益G来衡量LSC的集光性能:G=Pmax(耦合电池)/Pmax(所用电池),其中,Pmax(耦合电池)为耦合于LSC电池的最大输出功率,Pmax(所用电池)为使用的电池在标准光源下的最大输出功率,功率增益G表示电池耦合于LSC前后的输出功率之比。
测试发现,当纳米银浓度为35ppm时,有微腔的光电转换效率达到9.15%,无微腔的光电转换效率为4.05%。
通过测试,通过微腔与纳米银的协同作用,利用太阳能的效率较高,光电转换效率高,并且制作简单,维护成本低,抗干扰能力强,能为送料驱动装置提供足够的电源,因此本发明具备一定的应用前景。
应用场景2:
图1是本发明的结构示意图,如图1所示的集成电灯打标除尘装置,包括安装底座7、设置于安装底座7上的送料轨道9、设置于送料轨道9上的送料机构8和用于驱动送料机构8的送料驱动装置10;送料驱动装置10设置于安装底座7的下方。
本发明的实施例提供的集成电灯打标除尘装置,结构设置合理,将送料驱动装置设置于安装底座的另一侧,优化了除尘装置的结构,解决了上述问题。
优选地,送料驱动装置10设置于安装底座7上。
优选地,送料驱动装置10内采用太阳能电池11供电,太阳能电池11由荧光集光太阳能光伏电池构成。
图2是本发明的荧光集光太阳能光伏电池结构截面示意图;图3是本发明的荧光集光太阳能光伏电池结构俯视示意图。如图2和图3所示的所述荧光集光太阳能光伏电池的夹层结构为两层石英玻璃1构成外框,中间注有荧光溶液3;所述石英玻璃内侧设置有微腔结构2,所述夹层两侧耦合有反射镜5,另两侧粘贴有效率17%的商品单晶硅太阳能电池6;所述荧光溶液3中添加有浓度23~40ppm的纳米银颗粒4。
优选地,图4是本发明的荧光集太阳能光伏电池的制备工艺流程图。如图4所示,所述荧光集光太阳能光伏电池的制备步骤如下:
S1、石英玻璃(1)的疏水化处理:将多片石英玻璃浸泡在铬酸洗液中过夜,然后经2%HF浸泡2小时,5%H2O2浸泡1小时,最后采用二次蒸馏水浸泡后用超纯水冲洗干净;其中,石英玻璃的尺寸为5cm×2cm×1cm;
S2、将80mg PVC、5.0mg ECCH和10ml呋喃溶液混合,并在负压为1±0.1MPa的大气压中浸置10min后制得溶液A,将经步骤(1)处理过的石英玻璃置于THF气氛中,并将溶液A旋转涂覆于石英玻璃片上,于干燥箱中烘干后,得到第一层感光膜;
S3、玻璃的微腔结构制备:将经步骤S2处理的的玻璃在水氢火焰机加热下,制备成中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,玻璃两端各留有0.5~1cm的长度;将制好的半腔玻璃放入充满氮气的工作台中备用;
S4、荧光溶液(3)的配置:取质量比为3:1的吲哚二碳菁染料和Red305,使其充分混合,将吲哚二碳菁染料和Red 305混合,然后以0.5%wt吲哚二碳菁的浓度将混合物染料溶于环己烷中,配制成500ml溶液,将该溶液置于水浴80摄氏度,随后加入纳米银颗粒(4)使其浓度达到23~40ppm,然后超声10min,其中纳米银颗粒粒径为40nm;;纳米银颗粒;
S5、荧光集光太阳能光伏电池的制备:将经步骤S3处理的玻璃边缘一侧放置一片厚度为0.5mm的载玻片,使两片玻璃之间形成0.5mm的间隙,然后将玻璃的其余三侧固封住,利用注射器将经步骤(4)配置好的染料溶液注入玻璃之间,使玻璃的微腔完全充满染料为止,然后取出载玻片,再使用固化胶将载玻片侧固封住,形成荧光集光太阳能光伏器件,然后将其余两侧边耦合反射镜(5),反射镜反光一面朝外,最后采用紫外固化胶在夹层结构两四侧粘贴效率17%的商品单晶硅太阳能电池(6),通过电路板引出电极,完成荧光集光太阳能光伏电池的制备。
优选地,染料Red305与吲哚二碳菁染料的混合荧光染料的激发波长为360nm。为了作对比,制作了没有微腔的玻璃荧光集光太阳能器件;结果如表1所示,经测试发现,没有微腔的器件侧面收集荧光强度随光源的距离增大而减小,其损耗系数为0.039cm-1,具有微腔的器件损耗系数为0.010cm-1。有微腔的荧光强度大于无微腔的器件,且荧光强度的衰减速率较慢。(主要是由于有微腔的荧光中心分散均匀,且微腔的全反射作用强,且放置在充满氮气的工作台面上制备器件,有效的避免了灰尘、气泡和其他环境因素的影响,因此,制备出的光伏器件荧光传输损耗小,而且荧光传输效率高。)
表1有微腔和无微腔器件侧面探测荧光强度与光源距离变化值
采用太阳光模拟器光源,太阳能电池的最大输出功率Pmax为:Pmax=Voc×Isc×FF,其中Voc是开路电压,Isc为短路电流,FF为填充因子;LSC系统效率ηpanel为:ηpanel=Pmax(LSC)/(ApanelPin),其中,Apanel及Pin分别为LSC的面积和入射光功率密度(100mW/cm2)。此外,还定义了功率增益G来衡量LSC的集光性能:G=Pmax(耦合电池)/Pmax(所用电池),其中,Pmax(耦合电池)为耦合于LSC电池的最大输出功率,Pmax(所用电池)为使用的电池在标准光源下的最大输出功率,功率增益G表示电池耦合于LSC前后的输出功率之比。
测试发现,当纳米银浓度为32ppm时,有微腔的光电转换效率达到8.97%,无微腔的光电转换效率为3.89%。
通过测试,通过微腔与纳米银的协同作用,利用太阳能的效率较高,光电转换效率高,并且制作简单,维护成本低,抗干扰能力强,能为送料驱动装置提供足够的电源,因此本发明具备一定的应用前景。
应用场景3:
图1是本发明的结构示意图,如图1所示的集成电灯打标除尘装置,包括安装底座7、设置于安装底座7上的送料轨道9、设置于送料轨道9上的送料机构8和用于驱动送料机构8的送料驱动装置10;送料驱动装置10设置于安装底座7的下方。
本发明的实施例提供的集成电灯打标除尘装置,结构设置合理,将送料驱动装置设置于安装底座的另一侧,优化了除尘装置的结构,解决了上述问题。
优选地,送料驱动装置10设置于安装底座7上。
优选地,送料驱动装置10内采用太阳能电池11供电,太阳能电池11由荧光集光太阳能光伏电池构成。
图2是本发明的荧光集光太阳能光伏电池结构截面示意图;图3是本发明的荧光集光太阳能光伏电池结构俯视示意图。如图2和图3所示的所述荧光集光太阳能光伏电池的夹层结构为两层石英玻璃1构成外框,中间注有荧光溶液3;所述石英玻璃内侧设置有微腔结构2,所述夹层两侧耦合有反射镜5,另两侧粘贴有效率17%的商品单晶硅太阳能电池6;所述荧光溶液3中添加有浓度23~40ppm的纳米银颗粒4。
优选地,图4是本发明的荧光集太阳能光伏电池的制备工艺流程图。如图4所示,所述荧光集光太阳能光伏电池的制备步骤如下:
S1、石英玻璃(1)的疏水化处理:将多片石英玻璃浸泡在铬酸洗液中过夜,然后经2%HF浸泡2小时,5%H2O2浸泡1小时,最后采用二次蒸馏水浸泡后用超纯水冲洗干净;其中,石英玻璃的尺寸为5cm×2cm×1cm;
S2、将90mg PVC、5.0mg ECCH和10ml呋喃溶液混合,并在负压为1±0.1MPa的大气压中浸置10min后制得溶液A,将经步骤(1)处理过的石英玻璃置于THF气氛中,并将溶液A旋转涂覆于石英玻璃片上,于干燥箱中烘干后,得到第一层感光膜;
S3、玻璃的微腔结构制备:将经步骤S2处理的的玻璃在水氢火焰机加热下,制备成中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,玻璃两端各留有0.5~1cm的长度;将制好的半腔玻璃放入充满氮气的工作台中备用;
S4、荧光溶液(3)的配置:取质量比为3:1的吲哚二碳菁染料和Red305,使其充分混合,将吲哚二碳菁染料和Red 305混合,然后以0.5%wt吲哚二碳菁的浓度将混合物染料溶于环己烷中,配制成500ml溶液,将该溶液置于水浴80摄氏度,随后加入纳米银颗粒(4)使其浓度达到23~40ppm,然后超声10min,其中纳米银颗粒粒径为60nm;;纳米银颗粒;
S5、荧光集光太阳能光伏电池的制备:将经步骤S3处理的玻璃边缘一侧放置一片厚度为0.5mm的载玻片,使两片玻璃之间形成0.5mm的间隙,然后将玻璃的其余三侧固封住,利用注射器将经步骤(4)配置好的染料溶液注入玻璃之间,使玻璃的微腔完全充满染料为止,然后取出载玻片,再使用固化胶将载玻片侧固封住,形成荧光集光太阳能光伏器件,然后将其余两侧边耦合反射镜(5),反射镜反光一面朝外,最后采用紫外固化胶在夹层结构两四侧粘贴效率17%的商品单晶硅太阳能电池(6),通过电路板引出电极,完成荧光集光太阳能光伏电池的制备。
优选地,染料Red305与吲哚二碳菁染料的混合荧光染料的激发波长为360nm。为了作对比,制作了没有微腔的玻璃荧光集光太阳能器件;结果如表1所示,经测试发现,没有微腔的器件侧面收集荧光强度随光源的距离增大而减小,其损耗系数为0.039cm-1,具有微腔的器件损耗系数为0.010cm-1。有微腔的荧光强度大于无微腔的器件,且荧光强度的衰减速率较慢。(主要是由于有微腔的荧光中心分散均匀,且微腔的全反射作用强,且放置在充满氮气的工作台面上制备器件,有效的避免了灰尘、气泡和其他环境因素的影响,因此,制备出的光伏器件荧光传输损耗小,而且荧光传输效率高。)
表1有微腔和无微腔器件侧面探测荧光强度与光源距离变化值
采用太阳光模拟器光源,太阳能电池的最大输出功率Pmax为:Pmax=Voc×Isc×FF,其中Voc是开路电压,Isc为短路电流,FF为填充因子;LSC系统效率ηpanel为:ηpanel=Pmax(LSC)/(ApanelPin),其中,Apanel及Pin分别为LSC的面积和入射光功率密度(100mW/cm2)。此外,还定义了功率增益G来衡量LSC的集光性能:G=Pmax(耦合电池)/Pmax(所用电池),其中,Pmax(耦合电池)为耦合于LSC电池的最大输出功率,Pmax(所用电池)为使用的电池在标准光源下的最大输出功率,功率增益G表示电池耦合于LSC前后的输出功率之比。
测试发现,当纳米银浓度为29ppm时,有微腔的光电转换效率达到8.75%,无微腔的光电转换效率为3.68%。
通过测试,通过微腔与纳米银的协同作用,利用太阳能的效率较高,光电转换效率高,并且制作简单,维护成本低,抗干扰能力强,能为送料驱动装置提供足够的电源,因此本发明具备一定的应用前景。
应用场景4:
图1是本发明的结构示意图,如图1所示的集成电灯打标除尘装置,包括安装底座7、设置于安装底座7上的送料轨道9、设置于送料轨道9上的送料机构8和用于驱动送料机构8的送料驱动装置10;送料驱动装置10设置于安装底座7的下方。
本发明的实施例提供的集成电灯打标除尘装置,结构设置合理,将送料驱动装置设置于安装底座的另一侧,优化了除尘装置的结构,解决了上述问题。
优选地,送料驱动装置10设置于安装底座7上。
优选地,送料驱动装置10内采用太阳能电池11供电,太阳能电池11由荧光集光太阳能光伏电池构成。
图2是本发明的荧光集光太阳能光伏电池结构截面示意图;图3是本发明的荧光集光太阳能光伏电池结构俯视示意图。如图2和图3所示的所述荧光集光太阳能光伏电池的夹层结构为两层石英玻璃1构成外框,中间注有荧光溶液3;所述石英玻璃内侧设置有微腔结构2,所述夹层两侧耦合有反射镜5,另两侧粘贴有效率17%的商品单晶硅太阳能电池6;所述荧光溶液3中添加有浓度23~40ppm的纳米银颗粒4。
优选地,图4是本发明的荧光集太阳能光伏电池的制备工艺流程图。如图4所示,所述荧光集光太阳能光伏电池的制备步骤如下:
S1、石英玻璃(1)的疏水化处理:将多片石英玻璃浸泡在铬酸洗液中过夜,然后经2%HF浸泡2小时,5%H2O2浸泡1小时,最后采用二次蒸馏水浸泡后用超纯水冲洗干净;其中,石英玻璃的尺寸为5cm×2cm×1cm;
S2、将120mg PVC、5.0mg ECCH和10ml呋喃溶液混合,并在负压为1±0.1MPa的大气压中浸置10min后制得溶液A,将经步骤(1)处理过的石英玻璃置于THF气氛中,并将溶液A旋转涂覆于石英玻璃片上,于干燥箱中烘干后,得到第一层感光膜;
S3、玻璃的微腔结构制备:将经步骤S2处理的的玻璃在水氢火焰机加热下,制备成中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,玻璃两端各留有0.5~1cm的长度;将制好的半腔玻璃放入充满氮气的工作台中备用;
S4、荧光溶液(3)的配置:取质量比为3:1的吲哚二碳菁染料和Red305,使其充分混合,将吲哚二碳菁染料和Red 305混合,然后以0.5%wt吲哚二碳菁的浓度将混合物染料溶于环己烷中,配制成500ml溶液,将该溶液置于水浴80摄氏度,随后加入纳米银颗粒(4)使其浓度达到23~40ppm,然后超声10min,其中纳米银颗粒粒径为70nm;;纳米银颗粒;
S5、荧光集光太阳能光伏电池的制备:将经步骤S3处理的玻璃边缘一侧放置一片厚度为0.5mm的载玻片,使两片玻璃之间形成0.5mm的间隙,然后将玻璃的其余三侧固封住,利用注射器将经步骤(4)配置好的染料溶液注入玻璃之间,使玻璃的微腔完全充满染料为止,然后取出载玻片,再使用固化胶将载玻片侧固封住,形成荧光集光太阳能光伏器件,然后将其余两侧边耦合反射镜(5),反射镜反光一面朝外,最后采用紫外固化胶在夹层结构两四侧粘贴效率17%的商品单晶硅太阳能电池(6),通过电路板引出电极,完成荧光集光太阳能光伏电池的制备。
优选地,染料Red305与吲哚二碳菁染料的混合荧光染料的激发波长为360nm。为了作对比,制作了没有微腔的玻璃荧光集光太阳能器件;结果如表1所示,经测试发现,没有微腔的器件侧面收集荧光强度随光源的距离增大而减小,其损耗系数为0.039cm-1,具有微腔的器件损耗系数为0.010cm-1。有微腔的荧光强度大于无微腔的器件,且荧光强度的衰减速率较慢。(主要是由于有微腔的荧光中心分散均匀,且微腔的全反射作用强,且放置在充满氮气的工作台面上制备器件,有效的避免了灰尘、气泡和其他环境因素的影响,因此,制备出的光伏器件荧光传输损耗小,而且荧光传输效率高。)
表1有微腔和无微腔器件侧面探测荧光强度与光源距离变化值
采用太阳光模拟器光源,太阳能电池的最大输出功率Pmax为:Pmax=Voc×Isc×FF,其中Voc是开路电压,Isc为短路电流,FF为填充因子;LSC系统效率ηpanel为:ηpanel=Pmax(LSC)/(ApanelPin),其中,Apanel及Pin分别为LSC的面积和入射光功率密度(100mW/cm2)。此外,还定义了功率增益G来衡量LSC的集光性能:G=Pmax(耦合电池)/Pmax(所用电池),其中,Pmax(耦合电池)为耦合于LSC电池的最大输出功率,Pmax(所用电池)为使用的电池在标准光源下的最大输出功率,功率增益G表示电池耦合于LSC前后的输出功率之比。
测试发现,当纳米银浓度为38ppm时,有微腔的光电转换效率达到8.93%,无微腔的光电转换效率为3.88%。
通过测试,本发明的胎压报警装置通过微腔与纳米银的协同作用,利用太阳能的效率较高,光电转换效率高,并且制作简单,维护成本低,抗干扰能力强,具备一定的应用前景。
有微腔的光电转换效率达到7.85%,无微腔的光电转换效率为4.05%。
通过测试,通过微腔与纳米银的协同作用,利用太阳能的效率较高,光电转换效率高,并且制作简单,维护成本低,抗干扰能力强,能为送料驱动装置提供足够的电源,因此本发明具备一定的应用前景。
应用场景5:
图1是本发明的结构示意图,如图1所示的集成电灯打标除尘装置,包括安装底座7、设置于安装底座7上的送料轨道9、设置于送料轨道9上的送料机构8和用于驱动送料机构8的送料驱动装置10;送料驱动装置10设置于安装底座7的下方。
本发明的实施例提供的集成电灯打标除尘装置,结构设置合理,将送料驱动装置设置于安装底座的另一侧,优化了除尘装置的结构,解决了上述问题。
优选地,送料驱动装置10设置于安装底座7上。
优选地,送料驱动装置10内采用太阳能电池11供电,太阳能电池11由荧光集光太阳能光伏电池构成。
图2是本发明的荧光集光太阳能光伏电池结构截面示意图;图3是本发明的荧光集光太阳能光伏电池结构俯视示意图。如图2和图3所示的所述荧光集光太阳能光伏电池的夹层结构为两层石英玻璃1构成外框,中间注有荧光溶液3;所述石英玻璃内侧设置有微腔结构2,所述夹层两侧耦合有反射镜5,另两侧粘贴有效率17%的商品单晶硅太阳能电池6;所述荧光溶液3中添加有浓度23~40ppm的纳米银颗粒4。
优选地,图4是本发明的荧光集太阳能光伏电池的制备工艺流程图。如图4所示,所述荧光集光太阳能光伏电池的制备步骤如下:
S1、石英玻璃1的疏水化处理:将多片石英玻璃浸泡在铬酸洗液中过夜,然后经2%HF浸泡2小时,5%H2O2浸泡1小时,最后采用二次蒸馏水浸泡后用超纯水冲洗干净;其中,石英玻璃的尺寸为5cm×2cm×1cm;
S2、将140mg PVC、5.0mg ECCH和10ml呋喃溶液混合,并在负压为1±0.1MPa的大气压中浸置10min后制得溶液A,将经步骤(1)处理过的石英玻璃置于THF气氛中,并将溶液A旋转涂覆于石英玻璃片上,于干燥箱中烘干后,得到第一层感光膜;
S3、玻璃的微腔结构制备:将经步骤S2处理的的玻璃在水氢火焰机加热下,制备成中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,玻璃两端各留有0.5~1cm的长度;将制好的半腔玻璃放入充满氮气的工作台中备用;
S4、荧光溶液3的配置:取质量比为3:1的吲哚二碳菁染料和Red 305,使其充分混合,将吲哚二碳菁染料和Red 305混合,然后以0.5%wt吲哚二碳菁的浓度将混合物染料溶于环己烷中,配制成500ml溶液,将该溶液置于水浴80摄氏度,随后加入纳米银颗粒(4)使其浓度达到23~40ppm,然后超声10min,其中纳米银颗粒粒径为80nm;;纳米银颗粒;
S5、荧光集光太阳能光伏电池的制备:将经步骤S3处理的玻璃边缘一侧放置一片厚度为0.5mm的载玻片,使两片玻璃之间形成0.5mm的间隙,然后将玻璃的其余三侧固封住,利用注射器将经步骤(4)配置好的染料溶液注入玻璃之间,使玻璃的微腔完全充满染料为止,然后取出载玻片,再使用固化胶将载玻片侧固封住,形成荧光集光太阳能光伏器件,然后将其余两侧边耦合反射镜(5),反射镜反光一面朝外,最后采用紫外固化胶在夹层结构两四侧粘贴效率17%的商品单晶硅太阳能电池(6),通过电路板引出电极,完成荧光集光太阳能光伏电池的制备。
优选地,染料Red305与吲哚二碳菁染料的混合荧光染料的激发波长为360nm。为了作对比,制作了没有微腔的玻璃荧光集光太阳能器件;结果如表1所示,经测试发现,没有微腔的器件侧面收集荧光强度随光源的距离增大而减小,其损耗系数为0.039cm-1,具有微腔的器件损耗系数为0.010cm-1。有微腔的荧光强度大于无微腔的器件,且荧光强度的衰减速率较慢。(主要是由于有微腔的荧光中心分散均匀,且微腔的全反射作用强,且放置在充满氮气的工作台面上制备器件,有效的避免了灰尘、气泡和其他环境因素的影响,因此,制备出的光伏器件荧光传输损耗小,而且荧光传输效率高。)
表1有微腔和无微腔器件侧面探测荧光强度与光源距离变化值
采用太阳光模拟器光源,太阳能电池的最大输出功率Pmax为:Pmax=Voc×Isc×FF,其中Voc是开路电压,Isc为短路电流,FF为填充因子;LSC系统效率ηpanel为:ηpanel=Pmax(LSC)/(ApanelPin),其中,Apanel及Pin分别为LSC的面积和入射光功率密度(100mW/cm2)。此外,还定义了功率增益G来衡量LSC的集光性能:G=Pmax(耦合电池)/Pmax(所用电池),其中,Pmax(耦合电池)为耦合于LSC电池的最大输出功率,Pmax(所用电池)为使用的电池在标准光源下的最大输出功率,功率增益G表示电池耦合于LSC前后的输出功率之比。
测试发现,当纳米银浓度为40ppm时,有微腔的光电转换效率达到8.58%,无微腔的光电转换效率为3.53%。
通过测试,通过微腔与纳米银的协同作用,利用太阳能的效率较高,光电转换效率高,并且制作简单,维护成本低,抗干扰能力强,能为送料驱动装置提供足够的电源,因此本发明具备一定的应用前景。
本申请的实施例提供的技术方案可以包括以下有益效果:
1.本发明中采用的荧光集太阳能光伏器件,由于在制备过程中在玻璃中制备了微腔结构,光线通过微腔表面不断的发生全反射,将光约束在微腔的赤道表面且沿微腔最大直径处绕行,由于全反射的作用,渗出微腔球体以外的光线非常微弱,能将光很好的约束在微腔内,几乎没有任何损失,能很好的运用和存储能量;由于微腔在制备过程中处于充满氮气的工作平台中,且微腔外围还有玻璃体包覆,因此微腔中通过注入荧光材料所发射的荧光在超白光伏玻璃的传输过程中避免了灰尘、气泡和其他环境因素的干扰,最大限度的减少了入射的光发生散射,进而避免了光逃逸的情况。增强了光伏器件的光电转换性能。
2.本发明的荧光溶液中加入了23~40ppm的纳米银颗粒,该纳米银颗粒与染料分子混合,由于纳米银颗粒表面等离激元耦合作用,加之合适的浓度,会大大增加染料分子的荧光效应,从而增强该光伏器件的光电转换效率;在对于太阳光的反射方面,本发明在荧光集光太阳能光伏电池的两侧耦合有反射镜,其可以保证太阳光充分被积聚在微腔结构中,进一步避免了太阳光外溢现象,提高光电转换效率。
3.进一步的所述纳米银浓度与所述微腔尺寸产生协同作用,当微腔直径为500μm时,随着纳米银浓度的增加,光电转换性能先增大后减小,纳米银最佳浓度为35ppm。
4.由于本发明的制备过程非常简单,因此节省了大量的人力和物力,具有潜在的大范围推广运用的潜能。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (3)

1.集成电灯打标除尘装置,其特征在于,包括安装底座、设置于安装底座上的送料轨道、设置于送料轨道上的送料机构和用于驱动送料机构的送料驱动装置;送料驱动装置设置于安装底座的下方;送料驱动装置内采用太阳能电池供电,太阳能电池由荧光集光太阳能光伏电池构成;所述荧光集光太阳能光伏电池的夹层结构为两层石英玻璃构成外框;所述两层石英玻璃的中间注有荧光溶液;所述石英玻璃内侧设置有微腔结构,所述夹层结构的两侧耦合有反射镜,另两侧粘贴有效率17%的商品单晶硅太阳能电池;所述微腔结构是中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,石英玻璃两端各留有0.5~1cm的长度;所述荧光集光太阳能光伏电池的制备步骤如下:
S1、石英玻璃的疏水化处理:将多片石英玻璃浸泡在铬酸洗液中过夜,然后经2%HF浸泡2小时,5%H2O2浸泡1小时,最后采用二次蒸馏水浸泡后用超纯水冲洗干净;其中,石英玻璃的尺寸为5cm×2cm×1cm;
S2、将100mg PVC、5.0mg ECCH和10ml呋喃溶液混合,并在负压为1±0.1MPa的大气压中浸置10min后制得溶液A,将经步骤S1处理过的石英玻璃置于THF气氛中,并将溶液A旋转涂覆于石英玻璃片上,于干燥箱中烘干后,得到第一层感光膜;
S3、石英玻璃的微腔结构制备:将经步骤S2处理的石英玻璃在水氢火焰机加热下,制备成中部上凸且呈半圆形的连续半腔状形成连续的微腔结构,所述微腔的数量为50~100个,石英玻璃两端各留有0.5~1cm的长度;将制好的微腔玻璃放入充满氮气的工作台中备用;
S4、荧光溶液的配置:取质量比为3:1的吲哚二碳菁染料和Red 305,使其充分混合,将吲哚二碳菁染料和Red 305混合,然后以0.5%wt吲哚二碳菁的浓度将混合物染料溶于环己烷中,配制成500ml溶液,将该溶液置于水浴80摄氏度,随后加入纳米银颗粒使其浓度达到23~40ppm,然后超声10min,其中纳米银颗粒粒径为50nm;
S5、荧光集光太阳能光伏电池的制备:将经步骤S3处理的微腔玻璃边缘一侧放置一片厚度为0.5mm的载玻片,使两片微腔玻璃之间形成0.5mm的间隙,然后将微腔玻璃的其余三侧固封住,利用注射器将经步骤S4配置好的荧光溶液注入玻璃之间,使微腔玻璃的微腔完全充满染料为止,然后取出载玻片,再使用固化胶将载玻片侧固封住,形成荧光集光太阳能光伏器件,然后将其余两侧边耦合反射镜,反射镜反光一面朝外,最后采用紫外固化胶在夹层结构另外两侧粘贴效率17%的商品单晶硅太阳能电池,通过电路板引出电极,完成荧光集光太阳能光伏电池的制备。
2.根据权利要求1所述的集成电灯打标除尘装置,其特征在于,送料驱动装置与安装底座直接接触。
3.根据权利要求1所述的集成电灯打标除尘装置,其特征在于,对于所述荧光集光太阳能光伏电池的测试过程中,采用太阳光模拟器光源,太阳能电池的最大输出功率Pmax为:Pmax=Voc×Isc×FF,其中Voc是开路电压,Isc为短路电流,FF为填充因子;LSC系统效率ηpanel为:ηpanel=Pmax/Apanel*Pin,其中,Apanel及Pin分别为LSC的面积和入射光功率密度,Pmax为LSC的最大输出功率,入射光功率密度D的单位为100mW/cm2;此外,还定义了功率增益G来衡量LSC的集光性能:G=Pmax耦合电池/Pmax所用电池,其中,Pmax耦合电池为耦合于LSC电池的最大输出功率,Pmax所用电池为使用的电池在标准光源下的最大输出功率,功率增益G表示电池耦合于LSC前后的输出功率之比;所述微腔结构直径为500μm时,随着纳米银浓度的增加,光电转换性能先增大后减小,对应所述纳米银浓度为35ppm时,光电转换效率达到9.15%。
CN201610655692.2A 2016-08-10 2016-08-10 集成电灯打标除尘装置 Expired - Fee Related CN106299020B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610655692.2A CN106299020B (zh) 2016-08-10 2016-08-10 集成电灯打标除尘装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610655692.2A CN106299020B (zh) 2016-08-10 2016-08-10 集成电灯打标除尘装置

Publications (2)

Publication Number Publication Date
CN106299020A CN106299020A (zh) 2017-01-04
CN106299020B true CN106299020B (zh) 2017-11-28

Family

ID=57668441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610655692.2A Expired - Fee Related CN106299020B (zh) 2016-08-10 2016-08-10 集成电灯打标除尘装置

Country Status (1)

Country Link
CN (1) CN106299020B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227939A (en) * 1979-01-08 1980-10-14 California Institute Of Technology Luminescent solar energy concentrator devices
CN102632726A (zh) * 2012-03-20 2012-08-15 杭州长川科技有限公司 集成电路打标除尘装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108408A2 (en) * 2008-01-14 2009-09-03 Massachusetts Institute Of Technology Hybrid solar concentrator
WO2014136115A1 (en) * 2013-03-07 2014-09-12 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Non-selfabsorbing luminescent solar concentrator
ITMI20131062A1 (it) * 2013-06-26 2014-12-27 Eni Spa Dispositivo per la concentrazione della luce

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227939A (en) * 1979-01-08 1980-10-14 California Institute Of Technology Luminescent solar energy concentrator devices
CN102632726A (zh) * 2012-03-20 2012-08-15 杭州长川科技有限公司 集成电路打标除尘装置

Also Published As

Publication number Publication date
CN106299020A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
McKenna et al. Towards efficient spectral converters through materials design for luminescent solar devices
Correia et al. Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials
Li et al. Recent advances in green fabrication of luminescent solar concentrators using nontoxic quantum dots as fluorophores
van Sark et al. Upconversion in solar cells
Liu et al. Scattering enhanced quantum dots based luminescent solar concentrators by silica microparticles
Kinderman et al. IV performance and stability study of dyes for luminescent plate concentrators
CN110246922B (zh) 一种基于光谱上转换技术的量子点荧光太阳集光器、平板型聚光光伏器及其制备方法
EP2511962A2 (en) Solar Cell Using Polymer-Dispersed Liquid Crystals
CN110246904B (zh) 一种基于光谱下转换技术的量子点荧光太阳集光器、平板型聚光光伏器及其制备方法
Dhamo et al. Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cd‐Free Ternary AIS/ZnS Quantum Dots
CN106856396A (zh) 一种平面荧光聚光器
Huang et al. Large-area transparent “quantum dot glass” for building-integrated photovoltaics
CN105099358A (zh) 一种量子点掺杂型太阳能荧光聚光发电系统及其制造方法
Liu et al. Red-emissive carbon quantum dots enable high efficiency luminescent solar concentrators
Lu et al. Improving power conversion efficiency in luminescent solar concentrators using nanoparticle fluorescence and scattering
Ying et al. Thin-film luminescent solar concentrators using inorganic phosphors
CN106299020B (zh) 集成电灯打标除尘装置
CN106254982B (zh) 可产生三维立体声效果的耳机
CN106284759B (zh) 活动隔墙
Son et al. A mechanoresponsive smart window based on multifunctional luminescent solar concentrator
CN106247678B (zh) 一种开式吸收式热泵
CN106176071B (zh) 一种用于医学领域的自供能轮椅
Yu et al. Integration of Conjugated Copolymers‐Based Luminescent Solar Concentrators with Excellent Color Rendering and Organic Photovoltaics for Efficiently Converting Light to Electricity
CN108231939B (zh) 一种基于光谱转换的荧光太阳能聚光器件
CN106247503A (zh) 一种具有不间断供能作用的户外空调

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20170802

Address after: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Applicant after: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

Address before: Zhenhai District 315202 Zhejiang city of Ningbo Province Rong Luo Road No. 372

Applicant before: Li Haixian

TA01 Transfer of patent application right
CB03 Change of inventor or designer information

Inventor after: Zhu Yongjia

Inventor after: Cao Xin

Inventor before: The inventor has waived the right to be mentioned

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20171023

Address after: 225300 Fenghuang East Road, hailing Industrial Park, Taizhou, Jiangsu, 76

Applicant after: Taizhou Mingxin Microelectronics Co., Ltd.

Address before: 510640 Guangdong City, Tianhe District Province, No. five, road, public education building, unit 371-1, unit 2401

Applicant before: Guangdong Gaohang Intellectual Property Operation Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171128

Termination date: 20190810

CF01 Termination of patent right due to non-payment of annual fee