CN106291199A - 基于粒子滤波的赝电容型超级电容器寿命预测方法 - Google Patents

基于粒子滤波的赝电容型超级电容器寿命预测方法 Download PDF

Info

Publication number
CN106291199A
CN106291199A CN201610808372.6A CN201610808372A CN106291199A CN 106291199 A CN106291199 A CN 106291199A CN 201610808372 A CN201610808372 A CN 201610808372A CN 106291199 A CN106291199 A CN 106291199A
Authority
CN
China
Prior art keywords
ultracapacitor
particle filter
capacity
life
capacitance type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610808372.6A
Other languages
English (en)
Inventor
卢向军
周振威
谢安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University of Technology
Original Assignee
Xiamen University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University of Technology filed Critical Xiamen University of Technology
Priority to CN201610808372.6A priority Critical patent/CN106291199A/zh
Publication of CN106291199A publication Critical patent/CN106291199A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

一种基于粒子滤波的赝电容型超级电容器寿命预测方法,包括:S1,建立赝电容型超级电容器的容量退化模型;S2,利用粒子滤波算法良好确定模型中的待定参数,从而建立粒子滤波状态方程;S3,确定超级电容器寿命预测过程中的粒子数目N、粒子滤波模型中的过程噪声ωk和观测噪声vk的协方差P和R以及超级电容器循环使用寿命结束的判定值K;S4,利用粒子滤波算法对超级电容器的循环使用寿命进行预测;S5,判断所述状态估计值是否到达超级电容器寿命的阈值,如果已到达阈值,则计算循环寿命预测结果Z;S6,根据超级电容器容量的概率密度分布以及容量和超级电容器循环使用寿命的对应关系计算超级电容器剩余使用寿命的概率密度分布,并输出结果。

Description

基于粒子滤波的赝电容型超级电容器寿命预测方法
技术领域
本发明涉及一种基于粒子滤波的赝电容型超级电容器寿命预测方法。
背景技术
超级电容器是近十年来国内外发展起来的一种介于常规电容器与化学电池二者之间的新型储能元件。它具备传统电容那样的放电功率,也具备化学电池储备电荷的能力。与传统电容相比,超级电容器具备达到法拉级别的超大电容量、较高的能量、较宽的工作温度范围;与化学电池相比,超级电容器具有较高的比功率。因此超级电容器是一种高效、实用、环保的能量存储装置,其优越的性能得到各方的重视,目前发展十分迅速。赝电容型超级电容器是一类重要的超级电容器类型,其电极材料可发生高度可逆的氧化/还原反应,产生与电极充电电位有关的赝电容,其主要电极材料是导电聚合物(聚苯胺和聚吡咯等)和过渡金属氧化物(二氧化钌、二氧化锰等)。由于赝电容型超级电容器可逆的化学吸附/脱附过程不仅发生在电极表面而且可以深入其体相,因此其电容量和能量密度高于双电层电容器。
赝电容型超级电容器电极材料在充放电过程中会发生可逆的氧化还原反应,导致电极活性物质减少和材料结构发生变化,使得比容量降低,循环寿命性能恶化。此外,赝电容型超级电容器的结构设计、隔膜质量、环境温度、截止电压、电极材料的粘结强度等因素也会引起其性能衰减,减低使用寿命。意外的超级电容器寿命终结可能导致整个系统发生失效,因此应对超级电容器寿命情况进行科学的估计和预测,以进一步指导超级电容器的运行和维护,构建超级电容器的状态监测和健康管理系统。从已报道的资料来看,通过开展不同温度条件下的加速老化试验,基于Arrhenius模型可预测超级电容器寿命。高温加速老化方法假设活化能和指前因子为常数,与温度无关,但超级电容器的实际性能衰减情况复杂,因此Arrhenius方法预测结果与实际寿命存在较大偏差,无法满足大规模储能领域日益增长的可靠性与安全性需求。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种基于粒子滤波的赝电容型超级电容器寿命预测方法。
为解决上述技术问题,本发明采用了以下技术措施:
本发明提供一种基于粒子滤波的赝电容型超级电容器寿命预测方法,包括以下步骤:
S1,建立赝电容型超级电容器的容量退化模型:
其中,Ck表示第k次循环的充电容量,△tk为循环k和循环k+1的搁置时间间隔,ηC为库仑效率因子,β12为容量退化模型的待定参数;
S2,利用粒子滤波算法良好确定模型中的待定参数β12,从而建立粒子滤波状态方程;
S3,确定超级电容器寿命预测过程中的粒子数目N、粒子滤波模型中的过程噪声ωk和观测噪声vk的协方差P和R以及超级电容器循环使用寿命结束的判定值K;
S4,利用粒子滤波算法对超级电容器的循环使用寿命进行预测,包括以下步骤:
S41,粒子集初始化,k=0,对于i=1,2,…N,由先验概率的分布p(x0)生成采样粒子
S42,重要性采样,对于i=1,2,…N,采样并设置
S43,计算权重,
S44,归一化粒子权重,
S45,执行系统重采样,计算有效样本数当Neff≥Nthres,则 否则根据重要性权重进行重采样κi=l,得到重采样后的粒子集及权重;
S46,获得超级电容器容量的状态估计并令k=k+1,依次重复执行S41-S46步骤,根据状态空间模型对超级电容器容量状态进行迭更新代,并且每一步对应输出一个状态估计值;
S5,判断所述状态估计值是否到达超级电容器寿命的阈值,如果已到达阈值,则计算循环寿命预测结果Z;
S6,根据超级电容器容量的概率密度分布以及容量和超级电容器循环使用寿命的对应关系计算超级电容器剩余使用寿命的概率密度分布,并输出结果。
作为进一步改进的,在步骤S2中,所述利用粒子滤波算法良好确定模型中的待定参数β12的步骤包括:
S21,确认预测起始点M,其中,M之前为已知的超级电容器充放电历史数据;
S22,在一定的充放电电流密度、充放电深度、温度条件下,进行M次超级电容器容量循环寿命试验;
S23,对超级电容器测试数据进行预处理;
S24,根据预测起始点M,利用粒子滤波算法对M之前的超级电容器容量数据进行状态跟踪,从而确定所用的超级电容器经验模型中的未知参数β12,建立粒子滤波状态方程。
作为进一步改进的,在步骤S23中,所述对超级电容器测试数据进行预处理包括:移除离散点。
作为进一步改进的,所述M为10~100。
作为进一步改进的,所述赝电容型超级电容器的电极材料包括聚苯胺、聚吡咯、聚噻吩、二氧化锰、二氧化钌以及氧化镍。
本发明提供的基于粒子滤波的赝电容型超级电容器寿命预测方法具有以下优点:其一,可用于赝电容型超级电容器的寿命预测,以进一步指导赝电容型超级电容器的运行和维护,构建基于赝电容型超级电容器储能系统的状态监测和健康管理;其二,可用于赝电容型超级电容器的研发,迅速评价赝电容型超级电容器寿命性能,节省寿命评价时间,缩短开发周期。
附图说明
具体实施方式
下面结合具体实施方式对本发明作进一步详细描述。
建立赝电容型超级电容器参数模型:
随着赝电容型超级电容器充放电次数的增加,超级电容器正负极的电活性材料变少,电解质浓度降低,极板附近生成物堆积等,使得超级电容器容量逐渐减少。超级电容器容量的减少以库伦效率ηc来描述,其中ηc表示放电容量和充电容量之比。超级电容器充放电的电流强度、放电深度、工作温度都是影响库伦效率ηc的重要因素。
超级电容器在充放电过程和结束后其内部电荷有重新分布、均匀化的过程,因此超级电容器在充放电结束后电压有自充电过程,增加了下一个循环中的可用容量。这种自充电过程可用指数分布表示,因此超级电容器的容量退化过程满足:
C k + 1 = η C C k + β 1 exp ( - β 2 Δ t )
其中,Ck表示第k循环的充电容量,△tk为循环k和循环k+1的搁置时间间隔,ηC为库仑效率因子,β12为容量退化模型的待定参数。假定待定模型参数β12是时变的,同时容量Ck受到过程噪声影响。基于粒子滤波的赝电容型超级电容器容量退化状态空间模型为下式,用以描述参数β12和容量Ck的变化:
β 1 , k + 1 = β 1 , k + ω 1 , k β 2 , k + 1 = β 2 , k + ω 2 , k C k + 1 = η C C k + β 1 , k exp ( - β 2 , k Δ t ) + ω 3 , k
同时,容量Ck的量测值为:
C ~ k = C k + v k .
其中,ω1,k2,k3,k,vk为相互独立的零均值高斯噪声,服从标准正态分布,且相互独立,为k循环时的容量量测值。
令:
X = x 1 x 2 x 3 , X k = x 1 , k x 2 , k x 3 , k = β 1 , k β 2 , k C k , Y k = C ~ k , ω k = ω 1 , k ω 2 , k ω 3 , k , D = 0 0 1
则,容量退化模型的状态方程为:
X k + 1 = f ( X k ) + ω k Y k = DX k + v k
其中,
f ( X ) = x 1 x 2 η C x 3 + x 1 exp ( - x 2 Δ t ) .
粒子滤波的赝电容型超级电容器寿命预测程序
利用粒子滤波算法良好的状态跟踪能力确定模型中的未知参数,最后实现
超级电容器循环寿命的预测及预测结果的不确定性。预测的具体步骤如下:
预测起始点M的确认:
M之前为已知的超级电容器充放电历史数据,从M时开始进行预测算法,估计以后每一循环的超级电容器电容值。
超级电容器循环寿命试验的执行:
在一定的充放电电流密度、充放电深度、温度条件下,进行M次超级电容器容量循环寿命试验。
数据预处理:
对超级电容器测试数据进行预处理,如离散点的移除。由于预处理数据量过大会增大运算量,降低算法效率,所以需对数据进行必要的精简,可根据实际情况每L个点取一点,但要求精简后的预处理数据仍可代表数据的变化趋势。
确定模型未知参数:
根据预测起始点M,利用粒子滤波算法对M之前的超级电容器容量数据进行状态跟踪,以确定所用的超级电容器经验模型中的未知参数β12,建立粒子滤波状态方程。
粒子滤波算法的初始化:
确定超级电容器寿命预测过程中的相应参数:粒子数目N,粒子滤波模型中的过程噪声ωk和观测噪声vk的协方差P和R,超级电容器循环使用寿命结束的判定值K。
寿命预测:
利用粒子滤波算法对超级电容器的循环使用寿命进行预测,流程如下:
粒子集初始化:k=0。对于i=1,2,…N,由先验概率的分布p(x0)生成采样粒子
重要性采样:对于i=1,2,…N,采样并设置
计算权重:
归一化粒子权重:
执行系统重采样,计算有效样本数如Neff≥Nthres,则 否则根据重要性权重进行重采样κi=l,得到重采样后的粒子集及权重。
超级电容器容量的状态估计
令k=k+1,依次重复执行上述步骤,根据状态空间模型对超级电容器容量状态进行迭更新代,并且每一步对应输出一个状态估计值。
结果判定:
判断状态估计值是否到达超级电容器寿命的阈值(单位:F),如果已到达阈值,则计算循环寿命预测结果Z(单位:循环)。
概率密度分布计算:
根据超级电容器容量的概率密度分布以及容量和超级电容器循环使用寿命的对应关系计算超级电容器剩余使用寿命的概率密度分布,并输出结果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (5)

1.一种基于粒子滤波的赝电容型超级电容器寿命预测方法,包括以下步骤:
S1,建立赝电容型超级电容器的容量退化模型:
其中,Ck表示第k次循环的充电容量,△tk为循环k和循环k+1的搁置时间间隔,ηC为库仑效率因子,β12为容量退化模型的待定参数;
S2,利用粒子滤波算法良好确定模型中的待定参数β12,从而建立粒子滤波状态方程;
S3,确定超级电容器寿命预测过程中的粒子数目N、粒子滤波模型中的过程噪声ωk和观测噪声vk的协方差P和R以及超级电容器循环使用寿命结束的判定值K;
S4,利用粒子滤波算法对超级电容器的循环使用寿命进行预测,包括以下步骤:
S41,粒子集初始化,k=0,对于i=1,2,…N,由先验概率的分布p(x0)生成采样粒子
S42,重要性采样,对于i=1,2,…N,采样并设置
S43,计算权重,
S44,归一化粒子权重,
S45,执行系统重采样,计算有效样本数当Neff≥Nthres,则否则根据重要性权重进行重采样κi=l,得到重采样后的粒子集及权重;
S46,获得超级电容器容量的状态估计并令k=k+1,依次重复执行S41-S46步骤,根据状态空间模型对超级电容器容量状态进行迭更新代,并且每一步对应输出一个状态估计值;
S5,判断所述状态估计值是否到达超级电容器寿命的阈值,如果已到达阈值,则计算循环寿命预测结果Z;
S6,根据超级电容器容量的概率密度分布以及容量和超级电容器循环使用寿命的对应关系计算超级电容器剩余使用寿命的概率密度分布,并输出结果。
2.根据权利要求1所述的基于粒子滤波的赝电容型超级电容器寿命预测方法,其特征在于:在步骤S2中,所述利用粒子滤波算法良好确定模型中的待定参数β12的步骤包括:
S21,确认预测起始点M,其中,M之前为已知的超级电容器充放电历史数据;
S22,在一定的充放电电流密度、充放电深度、温度条件下,进行M次超级电容器容量循环寿命试验;
S23,对超级电容器测试数据进行预处理;
S24,根据预测起始点M,利用粒子滤波算法对M之前的超级电容器容量数据进行状态跟踪,从而确定所用的超级电容器经验模型中的未知参数β12,建立粒子滤波状态方程。
3.根据权利要求2所述的基于粒子滤波的赝电容型超级电容器寿命预测方法,其特征在于:在步骤S23中,所述对超级电容器测试数据进行预处理包括:移除离散点。
4.根据权利要求2所述的基于粒子滤波的赝电容型超级电容器寿命预测方法,其特征在于:所述M为10~100。
5.根据权利要求1所述的基于粒子滤波的赝电容型超级电容器寿命预测方法,其特征在于:所述赝电容型超级电容器的电极材料包括聚苯胺、聚吡咯、聚噻吩、二氧化锰、二氧化钌以及氧化镍。
CN201610808372.6A 2016-09-08 2016-09-08 基于粒子滤波的赝电容型超级电容器寿命预测方法 Pending CN106291199A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610808372.6A CN106291199A (zh) 2016-09-08 2016-09-08 基于粒子滤波的赝电容型超级电容器寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610808372.6A CN106291199A (zh) 2016-09-08 2016-09-08 基于粒子滤波的赝电容型超级电容器寿命预测方法

Publications (1)

Publication Number Publication Date
CN106291199A true CN106291199A (zh) 2017-01-04

Family

ID=57711222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610808372.6A Pending CN106291199A (zh) 2016-09-08 2016-09-08 基于粒子滤波的赝电容型超级电容器寿命预测方法

Country Status (1)

Country Link
CN (1) CN106291199A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255757A (zh) * 2017-05-25 2017-10-17 创驱(上海)新能源科技有限公司 一种基于动态容值修正的超级电容器荷电状态估计方法
CN111323663A (zh) * 2020-02-26 2020-06-23 中南大学 一种基于电流特征提取的电磁阀寿命预测方法及装置
JP2020180820A (ja) * 2019-04-24 2020-11-05 株式会社日立製作所 電池評価システム、電池評価方法及びプログラム
CN113655314A (zh) * 2021-08-12 2021-11-16 华南理工大学 一种超级电容循环寿命预测方法、系统、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090492A1 (en) * 1982-02-22 1983-10-05 Corning Glass Works Solid particulate filtering apparatus
KR20120072873A (ko) * 2010-12-24 2012-07-04 최쌍석 자동 부분 역세척이 가능한 미립자 여과장치
CN105445671A (zh) * 2015-12-29 2016-03-30 北京航天测控技术有限公司 一种基于无迹粒子滤波的锂离子电池寿命预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090492A1 (en) * 1982-02-22 1983-10-05 Corning Glass Works Solid particulate filtering apparatus
KR20120072873A (ko) * 2010-12-24 2012-07-04 최쌍석 자동 부분 역세척이 가능한 미립자 여과장치
CN105445671A (zh) * 2015-12-29 2016-03-30 北京航天测控技术有限公司 一种基于无迹粒子滤波的锂离子电池寿命预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
席志红 等: "一种基于UPF的改进粒子滤波算法", 《计算机仿真》 *
罗悦: "基于粒子滤波的锂离子电池剩余寿命预测方法研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255757A (zh) * 2017-05-25 2017-10-17 创驱(上海)新能源科技有限公司 一种基于动态容值修正的超级电容器荷电状态估计方法
CN107255757B (zh) * 2017-05-25 2019-08-23 创驱(上海)新能源科技有限公司 一种基于动态容值修正的超级电容器荷电状态估计方法
JP2020180820A (ja) * 2019-04-24 2020-11-05 株式会社日立製作所 電池評価システム、電池評価方法及びプログラム
JP7300878B2 (ja) 2019-04-24 2023-06-30 株式会社日立製作所 電池評価システム、電池評価方法及びプログラム
CN111323663A (zh) * 2020-02-26 2020-06-23 中南大学 一种基于电流特征提取的电磁阀寿命预测方法及装置
CN113655314A (zh) * 2021-08-12 2021-11-16 华南理工大学 一种超级电容循环寿命预测方法、系统、装置及介质
CN113655314B (zh) * 2021-08-12 2022-07-26 华南理工大学 一种超级电容循环寿命预测方法、系统、装置及介质

Similar Documents

Publication Publication Date Title
Meng et al. An optimized ensemble learning framework for lithium-ion battery state of health estimation in energy storage system
Jiang et al. A review on the state of health estimation methods of lead-acid batteries
Monem et al. Lithium-ion batteries: Evaluation study of different charging methodologies based on aging process
Eddahech et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks
CN106291199A (zh) 基于粒子滤波的赝电容型超级电容器寿命预测方法
CN105453381B (zh) 电池控制系统、车辆控制系统
Tsang et al. State of health detection for Lithium ion batteries in photovoltaic system
CN107329094A (zh) 动力电池健康状态估算方法及装置
CN108872869B (zh) 一种基于bp神经网络的锂离子电池劣化分类方法
He et al. State-of-health estimation based on real data of electric vehicles concerning user behavior
CN205693405U (zh) 电池组或电容器组管理系统
CN109143108A (zh) 一种基于电化学阻抗谱的锂离子电池soh的估计方法
CN106354964A (zh) 电动汽车用锂离子电容器荷电状态估计方法
CN104680024A (zh) 基于ga和arma模型的锂离子电池剩余使用寿命预测方法
Juang Online battery monitoring for state-of-charge and power capability prediction
Bohlen Impedance-based battery monitoring
Lin et al. Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning
CN104300184A (zh) 一种基于自适应-模糊推理系统实现电池充放电的方法
Lin et al. State of health estimation of lithium-ion batteries based on remaining area capacity
CN113255205B (zh) 基于电动汽车电池的生命周期成本和电池温度优化方法
Li et al. The state of charge estimation of lithium-ion battery based on battery capacity
Soltani et al. Degradation behaviour analysis and end-of-life prediction of lithium titanate oxide batteries
CN116679213A (zh) 基于集成深度学习的电动汽车动力电池soh估算方法
Poonam et al. Analysis of the effect of different factors on the degradation of supercapacitors
Bandong et al. Chaotic Behavior of Battery State of Health

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170104