CN106290139B - 流动腐蚀介质中的混凝土腐蚀电化学实验装置 - Google Patents

流动腐蚀介质中的混凝土腐蚀电化学实验装置 Download PDF

Info

Publication number
CN106290139B
CN106290139B CN201610855753.XA CN201610855753A CN106290139B CN 106290139 B CN106290139 B CN 106290139B CN 201610855753 A CN201610855753 A CN 201610855753A CN 106290139 B CN106290139 B CN 106290139B
Authority
CN
China
Prior art keywords
corrosion
concrete
electrode
electrochemical
corrosive medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610855753.XA
Other languages
English (en)
Other versions
CN106290139A (zh
Inventor
田一梅
宋雅荣
张茹芳
张海亚
王学彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610855753.XA priority Critical patent/CN106290139B/zh
Publication of CN106290139A publication Critical patent/CN106290139A/zh
Application granted granted Critical
Publication of CN106290139B publication Critical patent/CN106290139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种流动腐蚀介质中的混凝土腐蚀电化学实验装置,包括圆柱玻璃腔体及其下面设置的底座和上面设置的顶盖;底座上设置有10~12个工作电极,顶盖上与底座的对应位置设置有参比电极,顶盖的中央设置有1个辅助电极,还设置有1个理化性质监测探头。所述工作电极为碳钢电极或球墨铸铁电极,其高度为5‑18mm,是实验装置内混凝土浇筑总厚度与拟监测混凝土层厚度值之差。本发明打破了传统电化学装置中单一的腐蚀介质‑金属电极体系,实现了电化学方法在混凝土腐蚀研究领域的应用;通过改变工作电极的种类以及高度,可模拟多种金属‑混凝土体系在流动腐蚀介质中的腐蚀过程,对城市给排水管道的寿命预测和腐蚀防护意义重大。

Description

流动腐蚀介质中的混凝土腐蚀电化学实验装置
技术领域
本发明属于电化学实验装置,主要涉及一种流动腐蚀介质中的混凝土腐蚀电化学实验装置。
背景技术
市政给排水管网是重要的城市基础设施,对城市的发展建设、人民生活水平的提高,以及生态环境的保护意义重大。由胶凝材料(如水泥)将骨料(砂、石)胶结成型的混凝土管材已广泛应用于市政管网中,这种混凝土管材极易在多种腐蚀介质中发生腐蚀破坏。然而,国内外关于管网腐蚀的研究大多集中于金属管道,却忽略了多种混凝土管材的腐蚀问题。其一,铸铁金属管一般带有水泥砂浆内衬(水泥、砂、水配合而成,属于混凝土材料),而现有研究往往忽略了腐蚀介质中水泥砂浆内衬的腐蚀及失效分析,与实际运行情况相背离;其二,钢筋混凝土污水管道作为一种典型的混凝土管道,在污水等介质中的腐蚀问题极为严重,容易产生破损、地面塌陷、污水泄漏等事故,造成严重的环境污染。因此,寻找一种行之有效的混凝土腐蚀检测方法、解析混凝土的腐蚀行为迫在眉睫。
电化学测量方法作为观测材料耐腐蚀性能的一种重要手段,由于其快速、可连续监测等优点而被广泛用于金属供水管道的腐蚀研究中,但其在混凝土管材的腐蚀研究中应用较少。由于受到混凝土材料导电性差、制备困难、操作难以标准化等条件限制,现有的电化学装置通常以单一金属工作电极浸入腐蚀介质为研究对象,难以用于混凝土材料的腐蚀监测,因而限制了电化学方法在混凝土管道腐蚀研究领域的应用。
发明内容
本发明旨在提供一种新型流动腐蚀介质中的混凝土腐蚀电化学实验装置,打破传统电化学装置在混凝土腐蚀研究中的局限性,以实时监测流动腐蚀介质中混凝土不同深度的腐蚀情况,并可用于模拟带有水泥砂浆内衬层的铸铁-内衬体系的腐蚀,增强了该装置的普遍适用性,对城市给排水管道的寿命预测和腐蚀防护意义重大。
本发明通过如下技术方案予以实现。
一种流动腐蚀介质中的混凝土腐蚀电化学实验装置,包括腔体、底座、顶盖和工作电极,其特征在于,所述腔体为圆柱玻璃腔体1,圆柱玻璃腔体1的下面设置有底座2,圆柱玻璃腔体1的上面设置有顶盖5;
底座2上设置有10~12个工作电极测孔3,工作电极测孔3内设置有工作电极4;底座2与圆柱玻璃腔体1相固定,顶盖5待圆柱玻璃腔体1内工作电极4安装完毕,且浇注混凝土并经过风干、硬化后,再固定于圆柱玻璃腔体1的上面;
顶盖5上与底座2的对应位置设置有10~12个参比电极测孔6,参比电极测孔6内设置有参比电极7;顶盖5的中央设置有1个辅助电极测孔12,辅助电极测孔12内设置有辅助电极8;顶盖5上还设置有1个腐蚀介质理化性质检测孔9,理化性质监测探头通过该检测孔伸入实验装置内部;
圆柱玻璃腔体1侧壁的下部设置有腐蚀介质进口11、其侧壁上部置有腐蚀介质出口10;
所述工作电极4的高度为5-18mm,是实验装置内混凝土浇筑总厚度与拟监测混凝土层厚度值之差,工作电极(4)的高度不相一致。
所述工作电极4为碳钢电极或者球墨铸铁电极,为圆柱体,该圆柱体侧面包裹或者涂覆绝缘材料,圆柱体顶部为圆形且表面裸露金属作为工作面;工作电极4密封固定在工作电极测孔3内,通过外接金属接头与外部电化学测量装置相连接;
所述参比电极7为饱和甘汞参比电极,由金属汞、甘汞和饱和氯化钾电解液组成,通过外接金属接头与外部电化学测量装置相连接。
所述辅助电极8为铂片电极,通过外接金属接头与外部的测量装置相连接。
所述工作电极测孔3、参比电极测孔6、辅助电极测孔12及腐蚀介质理化性质检测孔9的直径均为8-10mm。
所述底座2和顶盖5均为聚四氟乙烯材料。
所述的腐蚀介质为再生水或污水。
该流动腐蚀介质中的混凝土腐蚀电化学实验装置通过腐蚀介质进口11和腐蚀介质出口10接入循环系统,进行腐蚀介质的电化学动态监测。
该流动腐蚀介质中的混凝土腐蚀电化学实验装置的高度为80-150mm,直径为100-150mm,实验装置内混凝土浇筑总厚度为20-30mm。
本发明有益效果如下:
(1)本发明是一种流动腐蚀介质中的混凝土腐蚀电化学实验装置,打破了传统电化学装置中单一的腐蚀介质-金属电极体系,引入了混凝土结构,实现了电化学方法在混凝土腐蚀研究领域的应用。
(2)本发明通过改变工作电极的种类以及高度,可模拟多种金属-混凝土体系的腐蚀过程,并针对不同深度混凝土层进行实时原位监测,便于研究混凝土材料的腐蚀及失效机理,对城市给排水管道的寿命预测和腐蚀防护意义重大。
(3)本发明可模拟流动腐蚀介质中钢筋混凝土的腐蚀,对混凝土表面以下不同深度混凝土层的腐蚀行为进行电化学测量,从而推测出混凝土腐蚀过程中的分层情况、微观结构及性能,以探究混凝土管道的腐蚀进程及腐蚀机理。
(4)本发明可模拟流动腐蚀介质中带有不同厚度水泥砂浆内衬层的铸铁-内衬体系的腐蚀,考察内衬层厚度对铸铁保护效果的影响,研究内衬的溶解、腐蚀、剥离的综合作用机理,评价其在不同腐蚀阶段对铸铁管道的保护作用。
(5)本发明装置可与多种单通道、多通道电化学工作站连接,通过交流阻抗谱、动电位扫描、开路电位等测量手段,可准确获得静态或流动体系下腐蚀过程中的腐蚀数据,操作简便,应用范围广,便于建立高效的电化学表征手段。
(6)本发明在顶部设置了腐蚀介质理化性质监测孔,监测探头可通过该孔伸入流动介质中进行实时理化性质监测,从而获得相关水质数据资料,以分析腐蚀过程中混凝土的溶出过程,有利于多角度考察混凝土的腐蚀与破坏。
附图说明
图1为流动腐蚀介质中的金属腐蚀电化学实验装置的结构主视图;
图2为流动腐蚀介质中的金属腐蚀电化学实验装置的结构俯视图。
本发明的附图标记如下:
1———圆柱玻璃腔体 2———底座
3———工作电极测孔 4———工作电极
5———顶盖 6———参比电极测孔
7———参比电极 8———辅助电极
9———腐蚀介质理化性质监测孔 10———腐蚀介质出口
11———腐蚀介质进口。 12———辅助电极测孔
具体实施方式
下面结合附图及实施例对本发明作进一步描述。
参见图1、图2,圆柱玻璃腔体1的下面设置有底座2,其上面设置有顶盖5;
底座2上设置有12个工作电极测孔3,工作电极测孔3内设置有工作电极4;底座2与圆柱玻璃腔体1相固定;顶盖5固定于圆柱玻璃腔体1的上面;
顶盖5上与底座2的对应位置设置有12个参比电极测孔6,参比电极测孔6内设置有参比电极7;顶盖5的中央设置有1个辅助电极测孔12;顶盖5上还设置有1个腐蚀介质理化性质检测孔9,理化性质监测探头通过该检测孔伸入实验装置内部;
所述工作电极4为碳钢电极或者球墨铸铁电极,工作电极4的高度不相一致。
圆柱玻璃腔体1侧壁下部设置有腐蚀介质进口11、其侧壁上部设置腐蚀介质出口10。
本发明的流动腐蚀介质中的混凝土腐蚀电化学实验装置的具体安装步骤如下:
先将工作电极4经由工作电极测孔3插入玻璃圆柱腔体1内,工作电极4与聚四氟乙烯底座2进行密封固定,再将混凝土由上而下浇注至指定厚度并经过风干、硬化后,再将聚四氟乙烯顶盖5固定于圆柱玻璃腔体1上。各参比电极7经参比电极测孔6插入圆柱玻璃腔体1内,并与聚四氟乙烯顶盖5密封固定,并同时安装辅助电极8。再将工作电极4、参比电极7及辅助电极8的外接金属接头连接至电化学工作站。流动腐蚀介质经由圆柱玻璃空体1上的腐蚀介质进口11和腐蚀介质出口10通过实验装置。腐蚀介质理化性质监测孔9通入理化性质监测探头以实时监测,从而获得更多的数据资料,以更好地分析流动腐蚀过程。
本发明与多通道电化学工作站联用,可同时在线监测多个工作电极的电化学参数。利用三电极体系测量原理,工作电极4为金属材料,辅助电极8与工作电极4形成电流回路以测得工作电极4与辅助电极8的电位差,并根据参比电极7的恒定电位,即可测得工作电极4的电极电位。同时,结合电流的测定结果可以得出相应的电化学曲线。另一方面,通过交流阻抗谱、动电位扫描、开路电位等测量手段,可准确获得静态或流动体系下腐蚀过程中的腐蚀数据,从而模拟、监测出多种混凝土层的腐蚀及失效机理。
下面以监测带有水泥砂浆内衬层的球磨铸铁管道的腐蚀状况为例,本装置设置12支球墨铸铁金属工作电极,工作电极的高度分别为17mm,14mm,11mm和8mm 4种规格,每种规格对应3支。水泥砂浆内衬层的组成比例为水、水泥和砂的质量比为0.6:1:3.5。由于所要监测的球磨铸铁管道水泥砂浆内衬层的厚度分别为3mm,6mm,9mm,12mm,根据工作电极的高度为实验装置内混凝土浇筑总厚度与拟监测混凝土层厚度之差的原则,所以,实验装置内混凝土浇筑总厚度为20mm。参比电极为饱和甘汞电极SCE(市售产品),腐蚀介质为再生水。按照装置图接好各电极以及进出口,待实验装置内腐蚀介质的表面流速约为0.8m/s稳定后,打开电化学工作站,输入球墨铸铁金属材料特性和实验条件(25℃下)等基本参数,选择动电位扫描法(-0.06V-0.06V,相对于开路电位),扫描速度:0.1mV/s。该装置连续运行3个月后,测得内衬深度为3mm,6mm,9mm,12mm处的球磨铸铁腐蚀电位分别为-0.57mVSCE,-0.34mVSCE,-0.20mVSCE,-0.18mVSCE,差异较明显,与文献中结果基本一致(参考文献:[1]Serdar M,
Figure GDA0004222678730000041
LV,/>
Figure GDA0004222678730000042
D.水泥砂浆中的不锈钢在氯离子环境下的长期腐蚀行为[J].腐蚀科学,2013,69:149-157。[2]宋雅荣,田一梅,赵欣等.球墨铸铁内衬水泥砂浆管道在再生水中的腐蚀行为[J].国际电化学科学,2016,11:7031-7047.)。通过比较球墨铸铁的腐蚀速率,可间接评价内衬层的保护性能,并结合交流阻抗谱、开路电位等测量,得出水泥砂浆内衬对金属管材的保护作用随内衬厚度的增加而增强的结论。
本发明同样适用于钢筋混凝土污水管道腐蚀状况的监测。
本发明一方面打破了传统电化学装置中单一的腐蚀介质-金属电极体系,引入混凝土结构,实现了电化学方法在混凝土腐蚀研究领域的应用;另一方面,通过改变工作电极的种类以及高度,可模拟多种金属-混凝土体系在流动腐蚀介质中的腐蚀过程,并针对不同深度混凝土层进行实时原位监测,便于研究混凝土材料的腐蚀及失效机理,对城市给排水管道的寿命预测和腐蚀防护意义重大。

Claims (9)

1.一种流动腐蚀介质中的混凝土腐蚀电化学实验装置,包括腔体、底座、顶盖和工作电极,其特征在于,所述腔体为圆柱玻璃腔体(1),圆柱玻璃腔体(1)的下面设置有底座(2),圆柱玻璃腔体(1)的上面设置有顶盖(5);
底座(2)上设置有10~12个工作电极测孔(3),工作电极测孔(3)内设置有工作电极(4);底座(2)与圆柱玻璃腔体(1)相固定,顶盖(5)待圆柱玻璃腔体(1)内工作电极(4)安装完毕,且浇注混凝土并经过风干、硬化后,再固定于圆柱玻璃腔体(1)的上面;
顶盖(5)上与底座(2)的对应位置设置有10~12个参比电极测孔(6),参比电极测孔(6)内设置有参比电极(7);顶盖(5)的中央设置有1个辅助电极测孔(12),辅助电极测孔(12)内设置有辅助电极(8);顶盖(5)上还设置有1个腐蚀介质理化性质检测孔(9),理化性质监测探头通过该检测孔伸入实验装置内部;
圆柱玻璃腔体(1)侧壁的下部设置有腐蚀介质进口(11)、其侧壁上部置有腐蚀介质出口(10);
所述工作电极(4)的高度为5-18mm,是实验装置内混凝土浇筑总厚度与拟监测混凝土层厚度值之差,工作电极(4)的高度不相一致。
2.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,所述工作电极(4)为碳钢电极或者球墨铸铁电极,为圆柱体,该圆柱体侧面包裹或者涂覆绝缘材料,圆柱体顶部为圆形且表面裸露金属作为工作面;工作电极(4)密封固定在工作电极测孔(3)内,通过外接金属接头与外部电化学测量装置相连接。
3.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,所述参比电极(7)为饱和甘汞参比电极,由金属汞、甘汞和饱和氯化钾电解液组成,通过外接金属接头与外部电化学测量装置相连接。
4.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,所述辅助电极(8)为铂片电极,通过外接金属接头与外部的测量装置相连接。
5.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,所述工作电极测孔(3)、参比电极测孔(6)、辅助电极测孔(12)及腐蚀介质理化性质检测孔(9)的直径均为8-10mm。
6.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,所述底座(2)和顶盖(5)均为聚四氟乙烯材料。
7.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,所述的腐蚀介质为再生水或污水。
8.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,该流动腐蚀介质中的混凝土腐蚀电化学实验装置通过腐蚀介质进口(11)和腐蚀介质出口(10)接入循环系统,进行腐蚀介质的电化学动态监测。
9.根据权利要求1所述的流动腐蚀介质中的混凝土腐蚀电化学实验装置,其特征在于,该流动腐蚀介质中的混凝土腐蚀电化学实验装置的高度为80-150mm,直径为100-150mm,实验装置内混凝土浇筑总厚度为20-30mm。
CN201610855753.XA 2016-09-27 2016-09-27 流动腐蚀介质中的混凝土腐蚀电化学实验装置 Active CN106290139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610855753.XA CN106290139B (zh) 2016-09-27 2016-09-27 流动腐蚀介质中的混凝土腐蚀电化学实验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610855753.XA CN106290139B (zh) 2016-09-27 2016-09-27 流动腐蚀介质中的混凝土腐蚀电化学实验装置

Publications (2)

Publication Number Publication Date
CN106290139A CN106290139A (zh) 2017-01-04
CN106290139B true CN106290139B (zh) 2023-07-07

Family

ID=57715559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610855753.XA Active CN106290139B (zh) 2016-09-27 2016-09-27 流动腐蚀介质中的混凝土腐蚀电化学实验装置

Country Status (1)

Country Link
CN (1) CN106290139B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706511B (zh) * 2017-02-16 2023-08-11 天津大学 一种两侧开口的电化学反应釜及其使用方法
CN107607463B (zh) * 2017-09-15 2020-03-06 天津大学 一种混凝土污水管腐蚀检测方法
CN108760614A (zh) * 2018-04-25 2018-11-06 上海海事大学 冲刷腐蚀在线电化学测试装置及方法
CN113092354A (zh) * 2021-03-09 2021-07-09 山东科技大学 一种用于模拟滨海金属矿充填假底钢筋腐蚀的实验装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972873A (ja) * 1995-09-04 1997-03-18 Nisshin Steel Co Ltd ステンレス鋼配管の耐食性評価方法
CN2741038Y (zh) * 2004-11-13 2005-11-16 中国海洋大学 流动介质腐蚀实验装置
CN202110125U (zh) * 2011-04-07 2012-01-11 长沙理工大学 模拟钢筋混凝土电化学腐蚀的实验室检测试块
CN202956331U (zh) * 2012-11-21 2013-05-29 中国石油大学(华东) 管线内壁腐蚀不均匀性检测装置
CN103983565B (zh) * 2014-05-20 2017-01-04 宁波工程学院 一种混凝土结构钢筋锈蚀可视化试验装置及其操作方法
CN104713820A (zh) * 2015-03-25 2015-06-17 天津大学 一种检测金属在混凝土中腐蚀状态的方法
CN206281763U (zh) * 2016-09-27 2017-06-27 天津大学 一种流动腐蚀介质中的混凝土腐蚀电化学实验装置

Also Published As

Publication number Publication date
CN106290139A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN106290139B (zh) 流动腐蚀介质中的混凝土腐蚀电化学实验装置
Raupach et al. Macrocell sensor systems for monitoring of the corrosion risk of the reinforcement in concrete structures
CN206281763U (zh) 一种流动腐蚀介质中的混凝土腐蚀电化学实验装置
CN103674807B (zh) 一种水泥基材料氯离子渗透深度测试方法
CN104568733A (zh) 流动腐蚀介质中的金属腐蚀电化学实验装置
CN107941686A (zh) 研究铁质管道电化学腐蚀和管网水质变化的试验模拟平台
Raupach et al. Condition survey with embedded sensors regarding reinforcement corrosion
CN107607463B (zh) 一种混凝土污水管腐蚀检测方法
Sassolini et al. Screen-printed electrode as a cost-effective and miniaturized analytical tool for corrosion monitoring of reinforced concrete
KR101207612B1 (ko) 철근콘크리트 구조물의 전식감지용 갈바닉센서를 이용한 전식감지 시험셀
Tan et al. Mapping non-uniform corrosion using the wire beam electrode method. II. Crevice corrosion and crevice corrosion exemption
Cheytani et al. The applicability of the Wenner method for resistivity measurement of concrete in atmospheric conditions
Tian et al. The micro-solution electrochemical method to evaluate rebar corrosion in reinforced concrete structures
Dunn et al. Corrosion monitoring of steel reinforced concrete structures using embedded instrumentation
Blackwood et al. Factors influencing exfiltration processes in sewers
Elsener Long‐term durability of electrochemical chloride extraction
CN204679400U (zh) 一种供水管道耐腐蚀研究用具有多种涂层可更换工作电极
CN204346882U (zh) 流动腐蚀介质中的金属腐蚀电化学实验装置
Feng et al. Influence of urban rail transit on corrosion of buried steel GAS pipeline
CN209945971U (zh) 一种原位评估在役钢筋混凝土结构耐久性的装置
CN107505357A (zh) 一种碱骨料反应程度测试方法及测试装置
CN104931411A (zh) 供水管道耐腐蚀研究用具有多种涂层的可更换工作电极
Lee et al. Characteristics of OCP of reinforced concrete using socket-type electrodes during periodic salt damage test
Azoor et al. Corrosion of cast iron pipelines buried in Fraser River silt subject to climate-induced moisture variations
Angst Monitoring corrosion of steel in concrete structures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant