CN106289554A - 一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用 - Google Patents

一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用 Download PDF

Info

Publication number
CN106289554A
CN106289554A CN201610608237.7A CN201610608237A CN106289554A CN 106289554 A CN106289554 A CN 106289554A CN 201610608237 A CN201610608237 A CN 201610608237A CN 106289554 A CN106289554 A CN 106289554A
Authority
CN
China
Prior art keywords
sensing chip
temperature
ionic liquid
temperature sensing
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610608237.7A
Other languages
English (en)
Other versions
CN106289554B (zh
Inventor
王亚培
陶行磊
贾晗钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renmin University of China
Original Assignee
Renmin University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renmin University of China filed Critical Renmin University of China
Priority to CN201610608237.7A priority Critical patent/CN106289554B/zh
Publication of CN106289554A publication Critical patent/CN106289554A/zh
Application granted granted Critical
Publication of CN106289554B publication Critical patent/CN106289554B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用。所述温度传感芯片包括纸基底以及所述纸基底内部储存的离子液体,根据所述离子液体的电导率随温度的变化实现温度的检测。与传统的近红外传感芯片相比,该传感芯片减小了芯片的体积和成本,结构简单,操作方便,响应速度超快(响应时间6s),方便携带,价格低廉,可以大批量生产。且二维温度传感阵列具有材料简单,结构简易,制备方便等特点。

Description

一种超快响应的可二维阵列化的温度传感芯片及其制备方法 与应用
技术领域
本发明涉及一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用,属于温度传感器领域。
背景技术
温度传感器作为开发最早以及应用最广泛的一类传感器,其市场份额远远超过其它传感器。传统的温度传感器基于工作物质热胀冷缩的原理来实现对温度的测量,由于建立在热平衡的基础上,因此需要较长的响应时间,如传统的温度计需要数分钟才能精确检测出待测的温度。基于热电偶的电子温度传感器因其便携性和实用性在诸多领域有着很广阔的应用前景,但依然存在响应速度慢、材料的环境友好性差以及降解难等一系列问题。响应速度过慢严重限制了温度传感器在工业生产、科学研究等领域的高端应用,是温度传感器急需解决的一个重要技术难题。
离子液体作为新型的电介质材料因具有高灵敏的温度响应特性而备受人们关注。离子液体是仅由阴、阳离子构成的纯净物。常见的阳离子有季铵阳离子、季鏻阳离子、咪唑阳离子和吡啶阳离子等,阴离子有卤素阴离子、四氟硼酸根、三氟甲磺酰亚胺根等。离子液体因其熔点低于室温或接近室温而呈液态,从而具有一定的流动性。同时,离子液体自身可忽略不计的蒸汽压,使其在空气中不会因挥发而消失殆尽。此外,离子液体具有良好的热稳定性、化学稳定性、较高的离子电导率以及适中的粘度,使得离子液体在常作为电化学窗口在分析及能源领域有着广阔的应用前景。
现有的基于离子液体的温度传感器的基底主要采用聚二甲基硅氧烷,该温度传感器存在制备繁琐、响应速度慢等缺点。随着现代温度传感器的技术发展和更高性能要求,快速响应、制备简易、成本低廉,同时兼具柔性与可折叠能力的温度传感器成为现代温度传感器必须要考虑的因素。
发明内容
本发明的目的是提供一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用,该方法利用离子液体可借助毛细作用力以及物理吸附保留在纸的多孔纤维结构内部的特点,将纸作为离子液体温度传感芯片的基底,结构简单,原料来源广泛,成本低廉,响应速度快。
本发明提供的温度传感芯片,它包括纸基底以及内部储存的离子液体,根据所述离子液体的电导率随温度的变化实现温度的检测。由于离子液体的电导率受温度影响很大,仅仅一摄氏度的温差就能够产生显著的响应信号,而且离子液体暴露在环境中,热传导和热接触都在极短的时间内完成,因此当外界温度发生变化传递至基底上时,使得基底内部储存的离子液体的电导率随温度而发生变化,这种变化可以通过电化学设备快速检测出来。
上述的温度传感芯片中,通过笔写或打印的方式将所述离子液体转移到所述纸基底上,得到所述温度传感芯片。
上述的温度传感芯片中,所述纸基底为具有多孔纤维结构的纸张,包括但不限于打印纸张。所述纸基底的厚度可为0.01mm~1mm。所述纸基底具体可为国际标准化组织规定的A4纸。
上述的温度传感芯片中,所述离子液体可为1-辛基-3-甲基双三氟甲烷磺酰亚胺盐([OMIm][Tf2N])、1-丁基-3-甲基双三氟甲烷磺酰亚胺盐([BMIm][Tf2N])和1-乙基-3-甲基双三氟甲烷磺酰亚胺盐([EMIm][Tf2N])中任一种。
上述的温度传感芯片中,所述温度传感芯片还包括2个电极;所述2个电极均与所述离子液体接触。所述温度传感芯片内部储存的离子液体能与待测物实现快速的热交换,进而改变离子液体的电导率,再通过所述2个电极和电化学设备检测离子液体的电导率变化,将电导率改变量与温度一一对应,实现对温度的精确检测;此外,还可进一步对传感基元进行集成获得二维阵列的温度传感器芯片。
本发明还提供了上述温度传感芯片的制备方法,它包括将所述离子液体直接转移到所述纸基底上的步骤。
上述的制备方法中,所述离子液体通过笔写或打印的方式转移到所述纸基底上,所述笔写具体可为将中性圆珠笔芯中的墨水替换为所述离子液体在所述纸基底上进行书写,如画出一条直线。
上述的制备方法中,所述方法还包括在所述纸基底上固定2个电极,并使所述2个电极均与所述离子液体接触的步骤。
所述2个电极具体可为金电极。
所述固定可为镀或者涂抹,如使用磁控溅射镀金或者涂抹银浆。
所述2个电极的形状可为长方形,大小可为0.5cm×1cm。
所述2个电极之间设有间距,所述间距的长度可为0.5cm。
上述的温度传感芯片在制备二维温度传感阵列中的应用,也在本发明的保护范围内。
本发明进一步提供了一种二维温度传感阵列,所述二维温度传感阵列中的每个传感单元为上述任一项所述的温度传感芯片。
上述二维温度传感阵列的制备方法,也在本发明的保护范围内,包括如下步骤:
1)在所述纸基底上镀上个n个(如8个)平行的电极条带;
2)在步骤1)中所述纸基底的背面,沿着所述电极条带的长度方向,在每个所述电极条带上转移n个等距离的离子液体液滴,并使所述液滴透过所述纸基底与所述电极条带接触;
3)垂直与所述金属条带的方向,在步骤2)中所述离子液体的上方镀上n个平行的电极条带,形成n×n的二维阵列,即可得到所述二维温度传感阵列。
上述的制备方法中,所述离子液体通过笔写或打印的方式转移到所述电极条带上,所述笔写具体可为将中性圆珠笔芯中的墨水替换为所述离子液体在所述纸基底上进行书写。
本发明具有如下有益效果:
与传统的近红外传感芯片相比,该传感芯片减小了芯片的体积和成本,结构简单,操作方便,响应速度超快(响应时间6s),方便携带,价格低廉,可以大批量生产。且二维温度传感阵列具有材料简单,结构简易,制备方便等特点。
附图说明
图1为实施例1中制备离子液体纸基温度传感芯片的示意图。
图2为实施例1中离子液体纸基温度传感芯片的实物照片。
图3为实施例1中离子液体纸基温度传感芯片对温度的响应图。
图4为实施例1中纸基温度传感芯片对不同测试温度的响应时间图。
图5为实施例2中制备二维温度传感阵列的示意图。
图6为实施例2中基于离子液体的二维温度传感阵列的实物照片。
图7为实施例2中二维温度传感阵列在温度场中的二维成像图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中使用的离子液体(1-乙基-3-甲基双三氟甲烷磺酰亚胺盐)([EMIm][Tf2N])购自兰州中科凯特科工贸有限公司。
实施例1、离子液体纸基温度传感芯片的制备及对温度的响应
(1)离子液体纸基温度传感芯片的制备
如图1所示,按照如下步骤制备温度传感芯片:
1)金电极沉积:通过磁控溅射镀膜仪(型号:JCP-200,北京泰科诺科技有限公司)在一张3cm×3cm的A4纸镀上特定形状的2个金电极,金电极的大小为0.5cm×1cm,2个金电极之间的距离为0.5cm。
2)笔写:将得到的芯片用装有离子液体的笔芯(将中性圆珠笔笔芯中的墨水替换为离子液体得到装有离子液体的笔芯)画出一条直线,并使离子液体与2个金电极相连接。
3)连接导线:将上述芯片的两电极与两根导线相连接,并用导电胶把电极与导线之间紧密贴合,使导线与导电胶充分接触。
制备得到的温度传感芯片的实物照片如图2所示。
(2)离子液体纸基温度传感芯片对温度的响应
将制备的温度传感芯片的电极接入到电化学工作站(型号:CHI660E,上海辰华仪器有限公司),方法采用电流-时间曲线法,设定输出电压恒定为1.0V,对温度传感芯片进行恒电位扫描,得到的电流-时间曲线仅与芯片的电阻变化有关,具体实验过程及结果如下:
选取恒温加热台(型号:BP-2B,北京创世微纳科技有限公司)作为恒温测试装置,温度可设定为30℃至65℃之间任意值,并控制室温恒定为25℃。
1)调节恒温加热台的温度恒定为45℃,将上述温度传感芯片的电极线接入到电化学工作站,同时对芯片进行恒电位扫描,电压设置为1.0V,记录电流-时间曲线,观察电流随温度改变而发生的变化,设定加热温度的时间为2min,冷却时间为2min,持续14个循环,其中,响应值(ΔG/G0)的计算依赖一个设定的公式:ΔG/G0=[1-I/I0]×100%,其中I表示实时电流,而I0表示初始测试时的起始电流。
实验结果如图3所示,由图3可知,在14个循环中,每个循环的响应值基本一致,即在温差为20K时,每个循环的响应值都在60%左右。
2)将上述温度传感芯片的电极连线接入到电化学工作站,对芯片进行恒电位扫描,电压设置为1.0V,记录电流-时间曲线,观察电流随温度变化产生的变化,设定加热温度时间为2min,冷却时间为2min。其中,依次调节加热温度从30℃递增至60℃,使温差值依次为5K、10K、15K、20K、25K、30K和35K。
实验结果如图4所示,由图4可知,所述超快响应温度传感芯片在所有温差下的响应时间为6s。在30℃~60℃之间,响应值ΔG/G0随着温差的上升而上升,呈规律性增加。其中ΔG/G0与温差ΔT的关系方程如式(1):
Δ G / G 0 + 1 = A · exp ( - B C + 1 / Δ T ) - - - ( 1 )
式(1)中,A=1.059,B=0.024,C=0.008。
实施例2、二维温度传感阵列的制备及对温度场的成像
(1)二维温度传感阵列的制备
如图5所示,按照如下步骤制备二位温度传感芯片:
1)金电极沉积:通过磁控溅射镀膜仪(型号:JCP-200,北京泰科诺科技有限公司)在一张6cm×6cm的A4纸镀上特定形状的8个金电极条带,金电极条带的大小为4.5cm×0.5cm,每个金电极之间的距离为0.5cm。
2)翻面并笔写:用装有离子液体的中性圆珠笔在镀有金电极条带的纸张背面点出离子液体液滴,使离子液体透过纸能与金电极接触。一共点64个点,每个点相距0.5cm。
3)金电极沉积:在点有离子液体的一面通过磁控溅射镀膜仪镀上特定形状的8个金电极,金电极的大小为4.5cm×0.5cm,每个金电极之间的距离为0.5cm。金电极都与离子液体接触且与第一次镀的金电极成直角。
4)与导线连接:将上述芯片的16个电极与16根导线相连接,并用导电胶把电极与导线之间紧密贴合,使导线与导电胶充分接触。
制备得到的二维温度传感阵列如图6所示。
(2)二维温度传感芯片对温度场的成像
将制备的二维温度传感阵列芯片的电极接入到Keithley(型号:4200-SCS,ATektronix Company),方法采用电流-时间曲线法,设定输出电压恒定为1.0V,对二维温度传感芯片进行恒电位扫描,得到的电流-时间曲线仅仅与外界的温度变化有关,具体实验过程及结果如下:
选取恒温加热棒作为恒温测试装置,温度可设定为25℃至65℃之间任意值,并保持室温为25℃。
1)调节恒温加热棒的温度恒定为29℃,将上述二维温度传感芯片的电极线接入到Keithley,同时对芯片进行恒电位扫描,电压设置为1.0V,记录电流-时间曲线,当加热棒接触其中的一个点时观察各个点的电流随温度改变而发生的变化,设定加热温度的时间为2min,冷却时间为2min,持续多个循环,其中,响应值(ΔG/G0)的计算依赖一个设定的公式:ΔG/G0=[1-I/I0]×100%,其中I表示实时电流,而I0表示初始测试时的起始电流。
根据图4说明所给出的ΔG/G0与温差ΔT的关系即公式(1),计算出当加热棒接触其中一个点时阵列的温度值。
实验结果如图7所示,可知只有与恒温加热棒接触的点能测出温度变化,证明二维温度传感阵列的可靠性。

Claims (10)

1.一种温度传感芯片,其特征在于:所述温度传感芯片包括纸基底以及所述纸基底内部储存的离子液体,根据所述离子液体的电导率随温度的变化实现温度的检测。
2.根据权利要求1所述的温度传感芯片,其特征在于:所述纸基底为打印纸张;和/或,所述离子液体为1-辛基-3-甲基双三氟甲烷磺酰亚胺盐、1-丁基-3-甲基双三氟甲烷磺酰亚胺盐和1-乙基-3-甲基双三氟甲烷磺酰亚胺盐中任一种。
3.根据权利要求1或2所述的温度传感芯片,其特征在于:所述温度传感芯片还包括2个电极;所述2个电极均与所述离子液体接触。
4.权利要求1-3中任一项所述的温度传感芯片的制备方法,它包括如下步骤:将所述离子液体转移到所述纸基底上。
5.根据权利要求4所述的制备方法,其特征在于:所述离子液体通过笔写或打印的方式转移到所述纸基底上。
6.根据权利要求4或5所述的制备方法,其特征在于:所述方法还包括在所述纸基底上固定2个电极,并使所述2个电极与所述离子液体接触的步骤。
7.根据权利要求6所述的制备方法,其特征在于:所述固定为镀或者涂抹。
8.权利要求1-3中任一项所述的温度传感芯片在制备二维温度传感阵列中的应用。
9.一种二维温度传感阵列,其特征在于:所述二维温度传感阵列中的每个传感单元为权利要求1-3中任一项所述的温度传感芯片。
10.权利要求9所述的二维温度传感阵列的制备方法,它包括如下步骤:
1)在所述纸基底上镀上个n个平行的电极条带;
2)在步骤1)中所述纸基底的背面,沿着所述电极条带的长度方向,在每个所述电极条带上转移n个等距离的离子液体液滴,并使所述液滴透过所述纸基底与所述电极条带接触;
3)垂直与所述金属条带的方向,在步骤2)中所述离子液体的上方镀上n个平行的电极条带,形成n×n的二维阵列,即可得到所述二维温度传感阵列。
CN201610608237.7A 2016-07-28 2016-07-28 一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用 Expired - Fee Related CN106289554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610608237.7A CN106289554B (zh) 2016-07-28 2016-07-28 一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610608237.7A CN106289554B (zh) 2016-07-28 2016-07-28 一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106289554A true CN106289554A (zh) 2017-01-04
CN106289554B CN106289554B (zh) 2019-02-26

Family

ID=57662887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610608237.7A Expired - Fee Related CN106289554B (zh) 2016-07-28 2016-07-28 一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106289554B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830893A (zh) * 2017-11-02 2018-03-23 厦门大学 一种多功能微流体柔性传感器
CN112345110A (zh) * 2020-04-16 2021-02-09 首都医科大学 一种低共熔溶剂型温度传感器的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215354A (zh) * 2014-08-29 2014-12-17 中国人民大学 一种柔性可拉伸温度传感芯片及其制备方法
WO2015104727A1 (en) * 2014-01-10 2015-07-16 Lithops S.R.L. Polymer electrolyte membranes and process for the production thereof
CN104833376A (zh) * 2015-04-24 2015-08-12 中国人民大学 一种自修复传感芯片及其制备方法
CN106233481A (zh) * 2014-02-17 2016-12-14 诺基亚技术有限公司 场效应传感器及相关联的方法
EP3105584A1 (en) * 2014-02-14 2016-12-21 Ecole Polytechnique Fédérale de Lausanne (EPFL) Molecular sensing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104727A1 (en) * 2014-01-10 2015-07-16 Lithops S.R.L. Polymer electrolyte membranes and process for the production thereof
EP3105584A1 (en) * 2014-02-14 2016-12-21 Ecole Polytechnique Fédérale de Lausanne (EPFL) Molecular sensing device
CN106233481A (zh) * 2014-02-17 2016-12-14 诺基亚技术有限公司 场效应传感器及相关联的方法
CN104215354A (zh) * 2014-08-29 2014-12-17 中国人民大学 一种柔性可拉伸温度传感芯片及其制备方法
CN104833376A (zh) * 2015-04-24 2015-08-12 中国人民大学 一种自修复传感芯片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICOLO DOSSI: "An electrochemical gas sensor based on paper supported room temperature ionic liquids", 《THE ROYAL SOCIETY OF CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830893A (zh) * 2017-11-02 2018-03-23 厦门大学 一种多功能微流体柔性传感器
CN107830893B (zh) * 2017-11-02 2019-08-02 厦门大学 一种多功能微流体柔性传感器
CN112345110A (zh) * 2020-04-16 2021-02-09 首都医科大学 一种低共熔溶剂型温度传感器的制造方法
CN112345110B (zh) * 2020-04-16 2023-04-07 首都医科大学 一种低共熔溶剂型温度传感器的制造方法

Also Published As

Publication number Publication date
CN106289554B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
Su et al. Novel flexible resistive-type humidity sensor
CN101776727B (zh) 一种利用真空环境测量电子元器件工作结温和热阻的方法
CN103293184B (zh) 一种基于准、非稳态法测试建筑材料导热系数的实验装置
CN102680512A (zh) 一种测量界面接触热阻的方法
CN101320007A (zh) 探针法材料导热系数测量装置
CN101788513A (zh) 一种材料导热系数的测量装置以及测量方法
CN106289554A (zh) 一种超快响应的可二维阵列化的温度传感芯片及其制备方法与应用
US4695709A (en) Method and apparatus for heating and controlling the temperature of ultra small volumes
WO2022095306A1 (zh) 加热组件、测温方法及气溶胶产生装置
CN105424972A (zh) 一种近壁面流速测量方法及装置
CN109142433B (zh) 一种基于交流法测量低维微纳材料热导率的方法
CN105486711A (zh) 基于红外热像仪的空间材料发射率测量系统及方法
CN102589739B (zh) 一种多用热电偶微电极及其制作方法
CN109765270A (zh) 一种测量非晶薄膜相变的系统及测量非晶薄膜相变的方法
CN101871900A (zh) 一类用于导热系数测量的传感器
CN106053527B (zh) 一种同时测试动力电池各向异性热扩散系数的方法
CN107192734A (zh) 一种利用瞬态平面热源法测试岩体热导率的传感器及其测试装置
CN206756727U (zh) 一种Seebeck系数测试装置
CN201222042Y (zh) 材料导热系数测量装置
CN207689405U (zh) 纳米材料热性能测试装置
CN102507035B (zh) 微小空间内温度精确测量装置及探头和测温方法
CN203546009U (zh) 一种聚合酶链反应板
CN203479710U (zh) 一种导电材料的发射率测量装置
CN108896602B (zh) 热传导测温装置及应用其的测温方法
Li et al. Highly sensitive flexible heat flux sensor based on a microhole array for ultralow to high temperatures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190226

Termination date: 20210728

CF01 Termination of patent right due to non-payment of annual fee