CN106289340A - 一种基于tfbg‑spr的多通道光纤传感器 - Google Patents

一种基于tfbg‑spr的多通道光纤传感器 Download PDF

Info

Publication number
CN106289340A
CN106289340A CN201610970283.1A CN201610970283A CN106289340A CN 106289340 A CN106289340 A CN 106289340A CN 201610970283 A CN201610970283 A CN 201610970283A CN 106289340 A CN106289340 A CN 106289340A
Authority
CN
China
Prior art keywords
tfbg
sensor
spr
gold film
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610970283.1A
Other languages
English (en)
Other versions
CN106289340B (zh
Inventor
帅少杰
沈常宇
孙志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610970283.1A priority Critical patent/CN106289340B/zh
Publication of CN106289340A publication Critical patent/CN106289340A/zh
Application granted granted Critical
Publication of CN106289340B publication Critical patent/CN106289340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Abstract

本发明公开了一种基于TFBG‑SPR的多通道光纤传感器,由宽带光源,偏振控制器,第一传感器,第一铬‑金膜,第一TFBG,第二传感器,第二铬‑金膜,第二TFBG,第三传感器,第三铬‑金膜,第三TFBG,光谱仪组成。宽带光源发射波长1500nm~1570nm的光,通过偏振控制器调整偏振态后沿传输光纤入射第一传感器。当入射光传输至第一传感器时,激发出大量的沿反向传输的包层模,当入射光继续传输至第二传感器时,激发出大量的沿反向传输的包层模,当入射光继续传输至第三传感器时,激发出大量的沿反向传输的包层模,光谱仪检测到总的透射光谱的信息。

Description

一种基于TFBG-SPR的多通道光纤传感器
本发明属于光纤传感技术领域,具体涉及一种基于TFBG-SPR的多通道光纤传感器技术领域。
背景技术
当入射光传输至TFBG倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,绝大多数的光被反射进光纤的包层,从而激发出大量的沿反向传输的包层模。被激发出的包层模能够与外界环境产生强烈的作用,对外界折射率、温度、等环境变化非常敏感,因此,TFBG在一些传感方面具有独特的优势。
TFBG-SPR传感器,具有温度交叉敏感性最小的特点同时又保证了光纤结构的完整性。目前的传感器只有单个通道传输信息的功能,对比多通道传输,其传输的数据量以及便捷性都有所欠缺。
发明内容
针对现有技术的不足,本发明的目的在于提供一种基于TFBG-SPR的多通道光纤传感器,通过改变每个传感器中的TFBG的倾斜角来改变这个传感器工作的中心波长,该结构易于实现。
本发明通过以下技术方案实现:一种基于TFBG-SPR的多通道光纤传感器,由宽带光源(1),偏振控制器(2),第一传感器(3),第一铬-金膜(4),第一TFBG(5),第二传感器(6),第二铬-金膜(7),第二TFBG(8),第三传感器(9),第三铬-金膜(10),第三TFBG(11),光谱仪(12)组成,其特征在于:光源(1)和偏振控制器(2)用传输光纤相连,偏振控制器(2)通过传输光纤与第一传感器(3)左端相连,第一传感器(3)右端通过传输光纤与第二传感器(6)左端相连,第二传感器(6)右端通过传输光纤与第三传感器(9)左端相连,第三传感器(9)右端通过传输光纤与光谱仪(12)相连。
所述的第一传感器(3)用一个纤芯刻有第一TFBG(5)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第一铬-金膜(4),膜的厚度约为50nm,工作波长为1500nm-1570nm。
所述的第一TFBG(5)的倾斜角为4.5°,长度为1cm,与第二TFBG(8)相距3cm。
所述的第二传感器(6)用一个纤芯刻有第二TFBG(8)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第二铬-金膜(7),膜的厚度约为50nm,工作波长为1500nm-1570nm。
所述的第二TFBG(8)的倾斜角为6°,长度为1cm,与第三TFBG(11)相距3cm。
所述的第三传感器(9)用一个纤芯刻有第三TFBG(11)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第三铬-金膜(10),膜的厚度约为50nm,工作波长为1500nm-1570nm。
所述的第三TFBG(11)的倾斜角为4°,长度为1cm。
所述的光谱仪(12)型号为Si720。
本发明的工作原理是:宽带光源(1)发射波长1500nm~1570nm的光束,通过偏振控制器(2)调整偏振态后沿传输光纤入射第一传感器(3)。由于第一传感器(3)内刻有第一TFBG(5),当入射光传输至第一TFBG(5)倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,从而激发出大量的沿反向传输的包层模,当入射光继续传输至第二TFBG(8)倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,激发出大量的沿反向传输的包层模,当入射光继续传输至第三TFBG(11)倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,从而激发出大量的沿反向传输的包层模,光谱仪(12)检测到入射光传输至第一传感器(3),第二传感器(6)、第三传感器(9)之后总的透射光谱的信息(参见附图2)。
入射光传输至每个传感器后所激发的包层模的开始波长可以根据以下公式计算出:
λ s t a r t = λ B r a g g 2 ( 1 + n c l a d n e f f ) - - - ( 1 )
式中,λstart表示包层模开始耦合的波长,λBragg表示布拉格共振波长,neff表示在λBragg时的纤芯的有效折射率,nclad表示包层的有效折射率。
在TFBG中传播的光的偏振状况分别定义为P偏振态和S偏振态,P偏振态的极化方向是平行于光栅面,S偏振态的极化方向是垂直于光栅平面,P偏振态比S态损耗大,当入射光偏振态为S偏振态时该传感器开启,为P态时该传感器关闭。
本发明的有益效果是:(1)建立了多通道的TFBG-SPR传感器,不用为了单独使用某个传感器而建立起完整的一套装置。(2)可以根据需求,通过调整偏振控制器调整光的偏振态来选择使用哪个传感器。因此,本发明为多通道的TFBG-SPR传感器提供了一种切实可行的方案。
附图说明
图1是一种基于TFBG-SPR的多通道光纤传感器的系统原理图。
图2是一种基于TFBG-SPR的多通道光纤传感器的透射光谱图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
参见附图1,一种基于TFBG-SPR的多通道光纤传感器,由宽带光源(1),偏振控制器(2),第一传感器(3),第一铬-金膜(4),第一TFBG(5),第二传感器(6),第二铬-金膜(7),第二TFBG(8),第三传感器(9),第三铬-金膜(10),第三TFBG(11),光谱仪(12)组成,其特征在于:光源(1)和偏振控制器(2)用传输光纤相连,偏振控制器(2)通过传输光纤与第一传感器(3)左端相连,第一传感器(3)右端通过传输光纤与第二传感器(6)左端相连,第二传感器(6)右端通过传输光纤与第三传感器(9)左端相连,第三传感器(9)右端通过传输光纤与光谱仪(12)相连;第一传感器(3)用一个纤芯刻有第一TFBG(5)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第一铬-金膜(4),膜的厚度约为50nm,工作波长为1500nm-1570nm;第一TFBG(5)的倾斜角为4.5°,长度为1cm,与第二TFBG(8)相距3cm;第二传感器(6)用一个纤芯刻有第二TFBG(8)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第二铬-金膜(7),膜的厚度约为50nm,工作波长为1500nm-1570nm;第二TFBG(8)的倾斜角为6°,长度为1cm,与第三TFBG(11)相距3cm;第三传感器(9)用一个纤芯刻有第三TFBG(11)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第三铬-金膜(10),膜的厚度约为50nm,工作波长为1500nm-1570nm;第三TFBG(11)的倾斜角为4°,长度为1cm;光谱仪(12)型号为Si720。
本发明的工作原理是:宽带光源(1)发射波长1500nm~1570nm的光束,通过偏振控制器(2)调整偏振态后沿传输光纤入射第一传感器(3)。由于第一传感器(3)内刻有第一TFBG(5),当入射光传输至第一TFBG(5)倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,从而激发出大量的沿反向传输的包层模,当入射光继续传输至第二TFBG(8)倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,激发出大量的沿反向传输的包层模,当入射光继续传输至第三TFBG(11)倾斜的光栅面时,满足布拉格反射条件的光被反射回在纤芯中传输,从而激发出大量的沿反向传输的包层模,光谱仪(12)检测到入射光传输至第一传感器(3),第二传感器(6)、第三传感器(9)之后总的透射光谱的信息(参见附图2)。

Claims (8)

1.一种基于TFBG-SPR的多通道光纤传感器,由宽带光源(1),偏振控制器(2),第一传感器(3),第一铬-金膜(4),第一TFBG(5),第二传感器(6),第二铬-金膜(7),第二TFBG(8),第三传感器(9),第三铬-金膜(10),第三TFBG(11),光谱仪(12)组成,其特征在于:光源(1)和偏振控制器(2)用传输光纤相连,偏振控制器(2)通过传输光纤与第一传感器(3)左端相连,第一传感器(3)右端通过传输光纤与第二传感器(6)左端相连,第二传感器(6)右端通过传输光纤与第三传感器(9)左端相连,第三传感器(9)右端通过传输光纤与光谱仪(12)相连。
2.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的第一传感器(3)用一个纤芯刻有第一TFBG(5)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第一铬-金膜(4),膜的厚度约为50nm,工作波长为1500nm-1570nm。
3.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的第一TFBG(5)的倾斜角为4.5°,长度为1cm,与第二TFBG(8)相距3cm。
4.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的第二传感器(6)用一个纤芯刻有第二TFBG(8)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第二铬-金膜(7),膜的厚度约为50nm,工作波长为1500nm-1570nm。
5.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的第二TFBG(8)的倾斜角为6°,长度为1cm,与第三TFBG(11)相距3cm。
6.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的第三传感器(9)用一个纤芯刻有第三TFBG(11)的标准的单模光纤构成,单模光纤型号为康宁SMF-28,表面均匀镀上第三铬-金膜(10),膜的厚度约为50nm,工作波长为1500nm-1570nm。
7.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的第三TFBG(11)的倾斜角为4°,长度为1cm。
8.根据权利要求1所述的一种基于TFBG-SPR的多通道光纤传感器,其特征在于:所述的光谱仪(12)型号为Si720。
CN201610970283.1A 2016-11-02 2016-11-02 一种基于tfbg-spr的多通道光纤传感器 Active CN106289340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610970283.1A CN106289340B (zh) 2016-11-02 2016-11-02 一种基于tfbg-spr的多通道光纤传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610970283.1A CN106289340B (zh) 2016-11-02 2016-11-02 一种基于tfbg-spr的多通道光纤传感器

Publications (2)

Publication Number Publication Date
CN106289340A true CN106289340A (zh) 2017-01-04
CN106289340B CN106289340B (zh) 2019-10-15

Family

ID=57720819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610970283.1A Active CN106289340B (zh) 2016-11-02 2016-11-02 一种基于tfbg-spr的多通道光纤传感器

Country Status (1)

Country Link
CN (1) CN106289340B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679860A (zh) * 2017-03-16 2017-05-17 中国计量大学 一种基于tfbg的横向压力传感器
CN106706562A (zh) * 2017-01-12 2017-05-24 天津大学 基于全光纤的气液混合测量装置及远程气液混合测量系统
RU2735631C1 (ru) * 2019-09-16 2020-11-05 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Волоконно-оптический плазмонный датчик показателя преломления жидкости

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349643A (zh) * 2008-08-18 2009-01-21 中国人民解放军第三军医大学第一附属医院 一种多通道表面等离子波传感检测系统
CN102213675A (zh) * 2011-03-31 2011-10-12 大连理工大学 角度调谐式多通道光纤表面等离子体共振传感探头
CN102507503A (zh) * 2011-10-24 2012-06-20 天津大学 具有温度自补偿的光纤表面等离子共振葡萄糖传感器
CN104215610A (zh) * 2014-06-16 2014-12-17 中国计量学院 基于等离子谐振腔的光纤表面等离子体传感器
CN104458658A (zh) * 2014-11-07 2015-03-25 中国计量学院 基于倾斜光纤光栅表面等离子体共振生物传感器
US20150140556A1 (en) * 2012-06-20 2015-05-21 Spartan Bioscience Inc. Optical fiber with grating and particulate coating
CN105092535A (zh) * 2015-07-09 2015-11-25 哈尔滨工程大学 分布式表面等离子体共振光纤传感器
CN105980835A (zh) * 2013-12-02 2016-09-28 蒙斯大学 气体传感器
CN206132086U (zh) * 2016-11-02 2017-04-26 中国计量大学 一种基于tfbg‑spr的多通道光纤传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349643A (zh) * 2008-08-18 2009-01-21 中国人民解放军第三军医大学第一附属医院 一种多通道表面等离子波传感检测系统
CN102213675A (zh) * 2011-03-31 2011-10-12 大连理工大学 角度调谐式多通道光纤表面等离子体共振传感探头
CN102507503A (zh) * 2011-10-24 2012-06-20 天津大学 具有温度自补偿的光纤表面等离子共振葡萄糖传感器
US20150140556A1 (en) * 2012-06-20 2015-05-21 Spartan Bioscience Inc. Optical fiber with grating and particulate coating
CN105980835A (zh) * 2013-12-02 2016-09-28 蒙斯大学 气体传感器
CN104215610A (zh) * 2014-06-16 2014-12-17 中国计量学院 基于等离子谐振腔的光纤表面等离子体传感器
CN104458658A (zh) * 2014-11-07 2015-03-25 中国计量学院 基于倾斜光纤光栅表面等离子体共振生物传感器
CN105092535A (zh) * 2015-07-09 2015-11-25 哈尔滨工程大学 分布式表面等离子体共振光纤传感器
CN206132086U (zh) * 2016-11-02 2017-04-26 中国计量大学 一种基于tfbg‑spr的多通道光纤传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHE CAUCHETEUR: "Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry", 《OPTICS EXPRESS》 *
刘卫东 等: "TFBG的Fabry-Perot干涉型纵向", 《中国计量学院学报》 *
顾雪平: "倾斜光纤光栅SPR传感器光谱特性研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106706562A (zh) * 2017-01-12 2017-05-24 天津大学 基于全光纤的气液混合测量装置及远程气液混合测量系统
CN106679860A (zh) * 2017-03-16 2017-05-17 中国计量大学 一种基于tfbg的横向压力传感器
RU2735631C1 (ru) * 2019-09-16 2020-11-05 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Волоконно-оптический плазмонный датчик показателя преломления жидкости

Also Published As

Publication number Publication date
CN106289340B (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN106959077A (zh) 一种多芯光纤光栅万向弯曲传感器
WO2008111320A1 (ja) 光ファイバセンサ
WO2008042959A3 (en) Fiber optic device for measuring a parameter of interest
CN106289340A (zh) 一种基于tfbg‑spr的多通道光纤传感器
CN111412938B (zh) 一种三参数测量的混合结构干涉仪传感器
CN107421469A (zh) 一种基于倾斜少模光纤光栅的扭转传感器
CN103063238A (zh) 一种基于马赫曾德尔干涉的全光纤传感器
CN101476978B (zh) 一种测量单模光纤几何参数的方法
CN102621099A (zh) 一种微纳光纤折射率传感器及其制备方法
CN111121838A (zh) 一种倾斜光栅分束的双芯光纤Michelson干涉仪
CN102749304A (zh) 高灵敏度光子晶体光纤折射率传感器及制法
CN105973279A (zh) 一种单端反射式长周期光纤光栅传感器及其制作工艺
CN106524935B (zh) 一种熔接长周期光纤光栅的双程mz结构测量应变的方法
CN206132086U (zh) 一种基于tfbg‑spr的多通道光纤传感器
CN102998039A (zh) 基于光纤环镜的保偏光纤的应力、扭曲同时测量的传感器
CN102494816B (zh) 一种基于光子晶体光纤的压力传感方法及传感器
CN206095937U (zh) 一种基于pcf空气腔和倾斜光纤光栅的相对湿度传感器
CN108918466A (zh) 一种基于光纤线内分束器的多重迈克尔逊干涉仪
CN205664848U (zh) 一种单端反射式长周期光纤光栅传感器
CN206696180U (zh) 一种基于模式激发细芯光纤的高折射率传感器
WO2013073524A1 (ja) 光学式センサ
CN104280364A (zh) 一种基于花生形结构的马赫曾德干涉仪的折射率传感器
CN105372206B (zh) 用于多种气体折射率检测的并行远距离光纤传感系统
CN209247579U (zh) 一种测量液体表面张力的光纤传感器
CN204374080U (zh) 一种基于双球形结构的马赫-曾德折射率传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Shen Changyu

Inventor after: Shuai Shaojie

Inventor after: Sun Zhiqiang

Inventor before: Shuai Shaojie

Inventor before: Shen Changyu

Inventor before: Sun Zhiqiang

GR01 Patent grant
GR01 Patent grant