CN106273498A - 智能化鞋垫3d打印系统及打印方法 - Google Patents

智能化鞋垫3d打印系统及打印方法 Download PDF

Info

Publication number
CN106273498A
CN106273498A CN201610786645.1A CN201610786645A CN106273498A CN 106273498 A CN106273498 A CN 106273498A CN 201610786645 A CN201610786645 A CN 201610786645A CN 106273498 A CN106273498 A CN 106273498A
Authority
CN
China
Prior art keywords
pressure
shoe pad
foot
data
master control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610786645.1A
Other languages
English (en)
Inventor
黄弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ming Ming (shanghai) International Trading Co Ltd
Original Assignee
Ming Ming (shanghai) International Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming Ming (shanghai) International Trading Co Ltd filed Critical Ming Ming (shanghai) International Trading Co Ltd
Priority to CN201610786645.1A priority Critical patent/CN106273498A/zh
Publication of CN106273498A publication Critical patent/CN106273498A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof
    • B29L2031/507Insoles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

本发明提供了一种智能化鞋垫3D打印系统及打印方法,属于鞋垫生产设备领域,打印系统包括压力取样装置、3D扫描装置、主控系统和3D打印机;压力取样装置用于采集足部不同位置的压力数据;3D扫描装置用于扫描足部图像取得足部的三维模型数据;主控系统分别与压力取样装置和3D扫描装置电性连接,3D打印机与主控系统电性连接,3D打印机根据主控系统输出的鞋垫硬度数据和鞋垫形状数据打印鞋垫。本发明能够针对不同用户的足部情况,为用户制定符合自身人体生物力学的鞋垫,实现保健或者疾病预防及治疗功能。生产效率高,对相关人员的经验及技术水平要求低,能够广泛应用于医学领域,或者保健运动领域。

Description

智能化鞋垫3D打印系统及打印方法
技术领域
本发明涉及鞋垫生产设备领域,尤其是涉及一种智能化鞋垫3D打印系统及打印方法。
背景技术
随着生活水平的不断提高,以及我国老龄化社会的到来,人们的健康管理意识更趋成熟和重视。而脚痛、脚跟疼痛、膝盖酸痛是困扰人们的多发常见病,根据US PublicHealth Services(美国公众健康中心)调查结果显示,87%的人口足部有不正常的现象。脚是人的地基,当脚底无法平衡支撑身体重量,就会连带影响到膝盖,臀部,骨盘,脊椎,颈椎等部位的平衡,进而压迫这些部位的肌肉神经以致造成疼痛状况。日积月累,一些足骨、脊椎、颈椎等问题便积劳成疾,成为难于治愈的顽症,诸如腰椎间盘突出、膨出、滑脱、腰椎骨质增生及其导致的坐骨神经痛、下肢酸麻胀痛、行走受限及卧床不起;颈椎病、颈椎突出、颈椎膨出、颈椎骨质增生;腰椎颈椎骨质增生、膝关节增生、脚根增生及骨性关节炎。
而为了治疗这些疾病,不仅需要投入的大量时间和经济成本,而且还会给病人及家属带来严重的精神折磨。因此,解决上述疾病的关键在于预防,这需要我们更加关注足部健康。众所周知,合适的鞋子和鞋垫对足部保健起到至关重要的作用,因此如何制造符合人体生物力学的鞋垫,是相关领域的技术人员努力解决的问题。
现有技术中,已经出现了少量的保健鞋垫的生产方法,其原理是利用足底压力测量装置测量出足部受力状况,然后由专业的医师根据压力参数指定鞋垫生产方案,再交由专业的生产技师制造个性化鞋垫。其缺点是,生产效率低,生产难度大,对相关人员的经验及技术水平要求较高。因此,成本很高,无法在大范围内推广普及。
发明内容
本发明的目的在于提供一种能够实现自动化测量,利用3D打印技术直接打印生产鞋垫的智能系统及方法。
本发明提供的智能化鞋垫3D打印系统,包括:
压力取样装置,用于采集足部不同位置的压力数据;
3D扫描装置,用于扫描足部图像,取得足部的三维模型数据;
主控系统,所述主控系统分别与压力取样装置和3D扫描装置电性连接,所述主控系统将压力取样装置获取的压力数据转化为3D打印机能够识别的鞋垫硬度数据,将3D扫描装置获取的三维模型数据转化为3D打印机能够识别的鞋垫形状数据;
3D打印机,所述3D打印机与主控系统电性连接,3D打印机根据主控系统输出的鞋垫硬度数据和鞋垫形状数据打印鞋垫。
进一步地,所述压力取样装置包括用于检测在静态下足部不同位置压力数值的静态取样装置,以及用于检测在动态下足部不同位置压力数值的动态取样装置。
进一步地,所述静态取样装置为足底压力板,所述动态取样装置为设有多个压力测量装置的电子鞋垫。
此外,本发明还提供一种智能化鞋垫3D打印方法,包括如下步骤:
步骤一,由压力取样装置采集足部不同位置的压力数据;
步骤二,由3D扫描装置扫描足部图像,取得足部的三维模型数据;
步骤三,由主控系统将压力取样装置获取的压力数据转化为3D打印机能够识别的鞋垫硬度数据,将3D扫描装置获取的三维模型数据转化为3D打印机能够识别的鞋垫形状数据;
步骤四,由3D打印机根据主控系统输出的鞋垫硬度数据和鞋垫形状数据来打印鞋垫。
进一步地,所述步骤一中,由静态取样装置采集人体在静止站立状态下,足部不同位置的压力数据;由动态取样装置采集在走路及跑步状态下,足部不同位置的压力数据。
进一步地,所述步骤一中,将脚部划分为若干区域,每个区域内设置至少一个压力取样点。
进一步地,在所述步骤三中,主控系统计算出每个区域内的所有的压力取样点取得压力数值的平均值,根据平均值的数值大小将对应区域划分至不同阶层,相同阶层的区域其鞋垫硬度数据相同,不同阶层的区域其鞋垫硬度数据不相同。
进一步地,将脚部划分为后足跟部、内足弓部、横足弓部、外足弓部以及前脚掌部,其中后足跟部设置一个压力取样点,内足弓部设置六个压力取样点,横足弓部设置三个压力取样点,外足弓部设置三个压力取样点,前脚掌部设置三个压力取样点。
进一步地,在所述步骤三中,根据平均值的数值大小将对应区域划分至六个不同阶层,其中第一阶层的压力数值为0-1000,第二阶层的压力数值为1001-2000,第三阶层的压力数值为2001-3000,第四阶层的压力数值为3001-4000,第五阶层的压力数值为4001-5000,第五阶层的压力数值为5000以上。
进一步地,在所述步骤四中,3D打印机通过选择不同的打印材料、或者不同的材料分布密度、或者不同的材料厚度来调整鞋垫硬度。
本发明的有益效果是:本发明提供的智能化鞋垫3D打印系统,由压力取样装置采集足部不同位置的压力数据,由3D扫描装置取得足部的三维模型数据,再经过主控系统的数据处理,使3D打印机能够根据足部的不同位置的压力值,打印鞋垫各个位置的硬度,根据3D扫描装置获取的三维模型数据打印鞋垫形状,因此,能够针对不同用户的足部情况,为用户制定符合自身人体生物力学的鞋垫,实现保健或者疾病预防及治疗功能。由于该智能化鞋垫3D打印系统采用主控系统智能、自动的将压力取样装置以及3D扫描装置获取的数据转化成鞋垫形状和硬度,生产效率高,对相关人员的经验及技术水平要求低,能够广泛应用于医学领域,或者保健运动领域。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的智能化鞋垫3D打印系统的结构方框图。
附图标记:
1-压力取样装置;2-3D扫描装置;3-主控系统;
4-3D打印机;11-静态取样装置;12-动态取样装置。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
图1为本发明提供的智能化鞋垫3D打印系统的结构方框图。
参阅图1,本发明提供一种智能化鞋垫3D打印系统,包括:
压力取样装置1,用于采集足部不同位置的压力数据;
3D扫描装置2,用于扫描足部图像,取得足部的三维模型数据;
主控系统3,所述主控系统3分别与压力取样装置1和3D扫描装置2电性连接,主控系统3将压力取样装置1获取的压力数据转化为3D打印机4能够识别的鞋垫硬度数据,将3D扫描装置2获取的三维模型数据转化为3D打印机4能够识别的鞋垫形状数据;
3D打印机4,3D打印机4与主控系统3电性连接,3D打印机4根据主控系统3输出的鞋垫硬度数据和鞋垫形状数据打印鞋垫。
本发明提供的智能化鞋垫3D打印系统,由压力取样装置1采集足部不同位置的压力数据,由3D扫描装置2取得足部的三维模型数据,再经过主控系统3的数据处理,使3D打印机4能够根据足部的不同位置的压力值,打印鞋垫各个位置的硬度,根据3D扫描装置2获取的三维模型数据打印鞋垫形状,因此,能够针对不同用户的足部情况,为用户制定符合自身人体生物力学的鞋垫,实现保健或者疾病预防及治疗功能。
相较于现有技术,由于该智能化鞋垫3D打印系统采用主控系统3智能、自动的将压力取样装置1以及3D扫描装置2获取的数据转化成鞋垫形状和硬度,生产效率高,对相关人员的经验及技术水平要求低,能够广泛应用于医学领域,或者保健运动领域。
在本实施例中,压力取样装置1包括用于检测在静态下足部不同位置压力数值的静态取样装置11,以及用于检测在动态下足部不同位置压力数值的动态取样装置12。通过采集静态数据和动态数据能够更全面、更准确的反应足部受力状况,设计的鞋垫更加符合人体生物力学,穿着更加健康。
具体来说,静态取样装置11为足底压力板,足底压力板上设置多个压力传感器,分别采集不同区域的压力值。动态取样装置12为设有多个压力测量装置的电子鞋垫,电子鞋垫可采用现有技术中存在的动态检测装置,如申请号为CN201610024649.6的在先发明公开了一种基于PVDF的鞋内置动态足底压力传感器,即能够用于此实施例中。
此外,本发明还提供一种智能化鞋垫3D打印方法,包括如下步骤:
步骤一,由压力取样装置1采集足部不同位置的压力数据;
步骤二,由3D扫描装置2扫描足部图像,取得足部的三维模型数据;
步骤三,由主控系统3将压力取样装置1获取的压力数据转化为3D打印机4能够识别的鞋垫硬度数据,将3D扫描装置2获取的三维模型数据转化为3D打印机4能够识别的鞋垫形状数据;
步骤四,由3D打印机4根据主控系统3输出的鞋垫硬度数据和鞋垫形状数据来打印鞋垫。
相较于现有技术,本发明还提供的智能化鞋垫3D打印方法,能够针对不同用户的足部情况,为用户制定符合自身人体生物力学的鞋垫,实现保健或者疾病预防及治疗功能;具有生产效率高,对相关人员的经验及技术水平要求低等优点,能够广泛应用于医学领域,或者保健运动领域。
在步骤一中,由静态取样装置11采集人体在静止站立状态下,足部不同位置的压力数据;由动态取样装置12采集在走路及跑步状态下,足部不同位置的压力数据。
通过采集静态数据和动态数据能够更全面、更准确的反应足部受力状况,设计的鞋垫更加符合人体生物力学,穿着更加健康。
具体来说,在步骤一中,将脚部划分为后足跟部、内足弓部、横足弓部、外足弓部以及前脚掌部五个区域,每个区域内设置至少一个压力取样点,取样点的数量根据不同区域的受力状况不同而不同,其中后足跟部设置一个压力取样点,内足弓部设置六个压力取样点,横足弓部设置三个压力取样点,外足弓部设置三个压力取样点,前脚掌部设置三个压力取样点。
上述分区方法和取样的布置方法能够较全面的反应足底受力状况,但是本发明的分区方法和取样的布置方法并不局限于此,也可划分更多的区域,设置更多的取样点,以获得更加准确的压力数值;同样,也可在此基础上,减少若干部分区域的划分,减少取样点的数量,以降低成本。
在步骤三中,主控系统3计算出每个区域内的所有的压力取样点取得压力数值的平均值,根据平均值的数值大小将对应区域划分至不同阶层,相同阶层的区域其鞋垫硬度数据相同,不同阶层的区域其鞋垫硬度数据不相同。
具体来说,根据平均值的数值大小将对应区域划分至六个不同阶层,其中第一阶层的压力数值为0-1000,第二阶层的压力数值为1001-2000,第三阶层的压力数值为2001-3000,第四阶层的压力数值为3001-4000,第五阶层的压力数值为4001-5000,第五阶层的压力数值为5000以上。
阶层数量越多,对鞋垫硬度的控制越精确,对3D打印机4的加工精度要求也越高,生产成本也越高。根据平均值的数值大小将对应区域划分至六个不同阶层中的一个,是综合考虑成本和效果的结果。
在本实施例的步骤四中,3D打印机4通过选择不同的打印材料、或者不同的材料分布密度、或者不同的材料厚度来调整鞋垫硬度,也可将三种处理方法选择结合使用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种智能化鞋垫3D打印系统,其特征在于,包括:
压力取样装置,用于采集足部不同位置的压力数据;
3D扫描装置,用于扫描足部图像,取得足部的三维模型数据;
主控系统,所述主控系统分别与压力取样装置和3D扫描装置电性连接,所述主控系统将压力取样装置获取的压力数据转化为3D打印机能够识别的鞋垫硬度数据,将3D扫描装置获取的三维模型数据转化为3D打印机能够识别的鞋垫形状数据;
3D打印机,所述3D打印机与主控系统电性连接,3D打印机根据主控系统输出的鞋垫硬度数据和鞋垫形状数据打印鞋垫。
2.根据权利要求1所述的智能化鞋垫3D打印系统,其特征在于,所述压力取样装置包括用于检测在静态下足部不同位置压力数值的静态取样装置,以及用于检测在动态下足部不同位置压力数值的动态取样装置。
3.根据权利要求2所述的智能化鞋垫3D打印系统,其特征在于,所述静态取样装置为足底压力板,所述动态取样装置为设有多个压力测量装置的电子鞋垫。
4.一种智能化鞋垫3D打印方法,其特征在于,包括如下步骤:
步骤一,由压力取样装置采集足部不同位置的压力数据;
步骤二,由3D扫描装置扫描足部图像,取得足部的三维模型数据;
步骤三,由主控系统将压力取样装置获取的压力数据转化为3D打印机能够识别的鞋垫硬度数据,将3D扫描装置获取的三维模型数据转化为3D打印机能够识别的鞋垫形状数据;
步骤四,由3D打印机根据主控系统输出的鞋垫硬度数据和鞋垫形状数据来打印鞋垫。
5.根据权利要求4所述的智能化鞋垫3D打印方法,其特征在于,所述步骤一中,由静态取样装置采集人体在静止站立状态下,足部不同位置的压力数据;由动态取样装置采集在走路及跑步状态下,足部不同位置的压力数据。
6.根据权利要求4或5所述的智能化鞋垫3D打印方法,其特征在于,所述步骤一中,将脚部划分为若干区域,每个区域内设置至少一个压力取样点。
7.根据权利要求6所述的智能化鞋垫3D打印方法,其特征在于,在所述步骤三中,主控系统计算出每个区域内的所有的压力取样点取得压力数值的平均值,根据平均值的数值大小将对应区域划分至不同阶层,相同阶层的区域其鞋垫硬度数据相同,不同阶层的区域其鞋垫硬度数据不相同。
8.根据权利要求7所述的智能化鞋垫3D打印方法,其特征在于,将脚部划分为后足跟部、内足弓部、横足弓部、外足弓部以及前脚掌部,其中后足跟部设置一个压力取样点,内足弓部设置六个压力取样点,横足弓部设置三个压力取样点,外足弓部设置三个压力取样点,前脚掌部设置三个压力取样点。
9.根据权利要求7或8所述的智能化鞋垫3D打印方法,其特征在于,在所述步骤三中,根据平均值的数值大小将对应区域划分至六个不同阶层,其中第一阶层的压力数值为0-1000,第二阶层的压力数值为1001-2000,第三阶层的压力数值为2001-3000,第四阶层的压力数值为3001-4000,第五阶层的压力数值为4001-5000,第五阶层的压力数值为5000以上。
10.根据权利要求4所述的智能化鞋垫3D打印方法,其特征在于,在所述步骤四中,3D打印机通过选择不同的打印材料、或者不同的材料分布密度、或者不同的材料厚度来调整鞋垫硬度。
CN201610786645.1A 2016-08-31 2016-08-31 智能化鞋垫3d打印系统及打印方法 Pending CN106273498A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610786645.1A CN106273498A (zh) 2016-08-31 2016-08-31 智能化鞋垫3d打印系统及打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610786645.1A CN106273498A (zh) 2016-08-31 2016-08-31 智能化鞋垫3d打印系统及打印方法

Publications (1)

Publication Number Publication Date
CN106273498A true CN106273498A (zh) 2017-01-04

Family

ID=57673198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610786645.1A Pending CN106273498A (zh) 2016-08-31 2016-08-31 智能化鞋垫3d打印系统及打印方法

Country Status (1)

Country Link
CN (1) CN106273498A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107274478A (zh) * 2017-05-19 2017-10-20 重庆邮电大学 一种婴幼儿足生物力学异常智能检测与辅诊矫正系统
CN107928001A (zh) * 2017-11-29 2018-04-20 太原理工大学 基于生物力学的客制化鞋垫制备方法
CN108288304A (zh) * 2018-02-23 2018-07-17 新百丽鞋业(深圳)有限公司 鞋垫及中底的制作方法、系统及终端设备
CN108308789A (zh) * 2017-11-22 2018-07-24 广州万思拓材料科技有限公司 一种基于3d打印的个人定制脚踩部件及其制作方法
CN108544752A (zh) * 2018-04-17 2018-09-18 武汉体素科技有限公司 一种鞋垫的制作方法
CN108652131A (zh) * 2018-04-24 2018-10-16 东莞理工学院 一种个性化鞋垫制作方法
CN108995209A (zh) * 2018-08-29 2018-12-14 深圳市合泰英龙科技有限公司 一种全自动3d鞋垫打印机
CN109043737A (zh) * 2018-08-13 2018-12-21 顾萧 一种基于三维扫描和三维建模的定制鞋系统
CN109349744A (zh) * 2018-10-30 2019-02-19 广州万思拓材料科技有限公司 一种定制脚踩组件的制作方法
CN109532023A (zh) * 2018-11-27 2019-03-29 福建泉州匹克体育用品有限公司 一种匹配足形和区域密度可变的柔性3d打印鞋垫和打印方法
CN110978494A (zh) * 2019-11-21 2020-04-10 二十三运动科技(深圳)有限公司 自助3d鞋垫打印系统以及装置
CN111225580A (zh) * 2017-06-07 2020-06-02 派德爱克发有限公司 制造使鞋适应于用户脚的特定变形的装置的方法及装置
US10964123B2 (en) 2018-11-23 2021-03-30 Industrial Technology Research Institute Insole design method and insole design system
CN113021713A (zh) * 2021-03-09 2021-06-25 广州市网能产品设计有限公司 一种硅胶鞋垫制作方法、应用该方法制作的模具及鞋垫
CN114662170A (zh) * 2022-03-21 2022-06-24 北京存钱罐科技有限公司 用于生成鞋垫信息的方法、装置、设备和计算机可读介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201267478Y (zh) * 2008-09-17 2009-07-08 山东理工大学 鞋垫式足底压力测量装置
CN101711614A (zh) * 2008-10-06 2010-05-26 华渥股份有限公司 客制化鞋垫影像感测系统及方法
CN101808544A (zh) * 2007-09-18 2010-08-18 埃索莱斯有限责任公司 用于生产鞋垫的方法和设备
CN101964010A (zh) * 2010-09-25 2011-02-02 四川大学 定制化鞋垫的设计方法
CN102793542A (zh) * 2012-08-21 2012-11-28 北京加华丰业科技有限公司 一种采集脚底压力和脚部外形三维数据的装置
CN104647757A (zh) * 2015-01-26 2015-05-27 刘轶 一种3d打印鞋垫的制作方法
CN104699908A (zh) * 2015-03-24 2015-06-10 唐力 3d矫形鞋垫的制作方法
CN105172137A (zh) * 2015-08-17 2015-12-23 广州万碧生物科技有限公司 一种康复鞋垫的制作方法、装置及系统
CN105243547A (zh) * 2015-09-17 2016-01-13 王刚 一种鞋类个性定制服务平台及其定制方法
CN105711091A (zh) * 2016-02-03 2016-06-29 华南理工大学 一种个性化3d打印鞋垫及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808544A (zh) * 2007-09-18 2010-08-18 埃索莱斯有限责任公司 用于生产鞋垫的方法和设备
CN201267478Y (zh) * 2008-09-17 2009-07-08 山东理工大学 鞋垫式足底压力测量装置
CN101711614A (zh) * 2008-10-06 2010-05-26 华渥股份有限公司 客制化鞋垫影像感测系统及方法
CN101964010A (zh) * 2010-09-25 2011-02-02 四川大学 定制化鞋垫的设计方法
CN102793542A (zh) * 2012-08-21 2012-11-28 北京加华丰业科技有限公司 一种采集脚底压力和脚部外形三维数据的装置
CN104647757A (zh) * 2015-01-26 2015-05-27 刘轶 一种3d打印鞋垫的制作方法
CN104699908A (zh) * 2015-03-24 2015-06-10 唐力 3d矫形鞋垫的制作方法
CN105172137A (zh) * 2015-08-17 2015-12-23 广州万碧生物科技有限公司 一种康复鞋垫的制作方法、装置及系统
CN105243547A (zh) * 2015-09-17 2016-01-13 王刚 一种鞋类个性定制服务平台及其定制方法
CN105711091A (zh) * 2016-02-03 2016-06-29 华南理工大学 一种个性化3d打印鞋垫及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
国家康复辅具研究中心: "《足部矫治原理与实践》", 28 February 2010, 中国社会出版社 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107274478A (zh) * 2017-05-19 2017-10-20 重庆邮电大学 一种婴幼儿足生物力学异常智能检测与辅诊矫正系统
CN107274478B (zh) * 2017-05-19 2020-09-29 重庆邮电大学 一种婴幼儿足生物力学异常智能检测与辅诊矫正系统
CN111225580A (zh) * 2017-06-07 2020-06-02 派德爱克发有限公司 制造使鞋适应于用户脚的特定变形的装置的方法及装置
CN111225580B (zh) * 2017-06-07 2021-09-21 派德爱克发有限公司 制造使鞋适应于用户脚的特定变形的装置的方法及装置
CN108308789A (zh) * 2017-11-22 2018-07-24 广州万思拓材料科技有限公司 一种基于3d打印的个人定制脚踩部件及其制作方法
CN107928001A (zh) * 2017-11-29 2018-04-20 太原理工大学 基于生物力学的客制化鞋垫制备方法
CN108288304A (zh) * 2018-02-23 2018-07-17 新百丽鞋业(深圳)有限公司 鞋垫及中底的制作方法、系统及终端设备
CN108544752A (zh) * 2018-04-17 2018-09-18 武汉体素科技有限公司 一种鞋垫的制作方法
CN108652131A (zh) * 2018-04-24 2018-10-16 东莞理工学院 一种个性化鞋垫制作方法
CN109043737A (zh) * 2018-08-13 2018-12-21 顾萧 一种基于三维扫描和三维建模的定制鞋系统
CN108995209A (zh) * 2018-08-29 2018-12-14 深圳市合泰英龙科技有限公司 一种全自动3d鞋垫打印机
CN109349744A (zh) * 2018-10-30 2019-02-19 广州万思拓材料科技有限公司 一种定制脚踩组件的制作方法
US10964123B2 (en) 2018-11-23 2021-03-30 Industrial Technology Research Institute Insole design method and insole design system
CN109532023A (zh) * 2018-11-27 2019-03-29 福建泉州匹克体育用品有限公司 一种匹配足形和区域密度可变的柔性3d打印鞋垫和打印方法
CN110978494A (zh) * 2019-11-21 2020-04-10 二十三运动科技(深圳)有限公司 自助3d鞋垫打印系统以及装置
CN113021713A (zh) * 2021-03-09 2021-06-25 广州市网能产品设计有限公司 一种硅胶鞋垫制作方法、应用该方法制作的模具及鞋垫
CN114662170A (zh) * 2022-03-21 2022-06-24 北京存钱罐科技有限公司 用于生成鞋垫信息的方法、装置、设备和计算机可读介质
CN114662170B (zh) * 2022-03-21 2023-01-06 北京存钱罐科技有限公司 用于生成鞋垫信息的方法、装置、设备和计算机可读介质

Similar Documents

Publication Publication Date Title
CN106273498A (zh) 智能化鞋垫3d打印系统及打印方法
Tsung et al. Effectiveness of insoles on plantar pressure redistribution
Mueller et al. Efficacy and mechanism of orthotic devices to unload metatarsal heads in people with diabetes and a history of plantar ulcers
Randolph et al. Reliability of measurements of pressures applied on the foot during walking by a computerized insole sensor system
AU2014346863B2 (en) Actuated foot orthotic with sensors
US20160331071A1 (en) Systems and methods for making custom orthotics
CN109820281A (zh) 基于糖尿病患者足部组织层次力学特性的个性化鞋垫优化设计方法
Telfer et al. Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography
CN104257393A (zh) 一种足压监测鞋垫及其监测系统
Ganesan et al. Design and development of customised split insole using additive manufacturing technique
BR112021002103B1 (pt) Método para projeto de palmilhas
Zequera et al. Performance of insole in reducing plantar pressure on diabetic patients in the early stages of the disease
KR20210106721A (ko) 족부 맞춤 3d 인솔 모델링 방법 및 서버
Lewis Finite element analysis of a model of a therapeutic shoe: effect of material selection for the outsole
Akhlaghi et al. In-shoe step-to-step pressure variations
Zequera et al. Effectiveness of moulded insoles in reducing plantar pressure in diabetic patients
Shaulian et al. A novel graded-stiffness footwear device for heel ulcer prevention and treatment: a finite element-based study
Péruchon et al. Wearable unrestraining footprint analysis system. Applications to human gait study
Trudeau et al. The calcaneus adducts more than the shoe's heel during running
Yick et al. Analysis of insole geometry and deformity by using a three-dimensional image processing technique: a preliminary study
Cheng et al. Effects of arch support doses on the center of pressure and pressure distribution of running using statistical parametric mapping
Resch et al. Dynamic plantar pressure measurement in 49 patients with diabetic neuropathy with or without foot ulcers
Guo et al. Biomechanical investigation of a custom-made insole to decrease plantar pain of children with flatfoot: A technical note
Sweeney An investigation into the variable biomechanical responses to antipronation foot orthoses
Van Gheluwe et al. Research and clinical synergy in foot and lower extremity biomechanics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170104