CN106253032A - 一种环形腔太赫兹波参量振荡器 - Google Patents

一种环形腔太赫兹波参量振荡器 Download PDF

Info

Publication number
CN106253032A
CN106253032A CN201610918770.3A CN201610918770A CN106253032A CN 106253032 A CN106253032 A CN 106253032A CN 201610918770 A CN201610918770 A CN 201610918770A CN 106253032 A CN106253032 A CN 106253032A
Authority
CN
China
Prior art keywords
mgo
crystal
linbo
reflecting mirror
thz wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610918770.3A
Other languages
English (en)
Other versions
CN106253032B (zh
Inventor
李忠洋
王思磊
王孟涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Priority to CN201610918770.3A priority Critical patent/CN106253032B/zh
Publication of CN106253032A publication Critical patent/CN106253032A/zh
Application granted granted Critical
Publication of CN106253032B publication Critical patent/CN106253032B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种环形腔太赫兹波参量振荡器,包括泵浦源、第一反射镜、第二反射镜、第三反射镜、第四反射镜、第一MgO:LiNbO3晶体、第二MgO:LiNbO3晶体、第三MgO:LiNbO3晶体、第四MgO:LiNbO3晶体、第五MgO:LiNbO3晶体和第六MgO:LiNbO3晶体。经光学参量效应产生的四束太赫兹波,其中两束太赫兹波作为种子光可以增强光学参量效应,继而可以有效放大另外两束太赫兹波;Stokes光在环形腔中谐振放大,且可以重复使用,有效提高光学转换效率;太赫兹波垂直于MgO:LiNbO3晶体出射,不需要任何耦合输出装置,有效减小太赫兹波输出损耗;通过改变泵浦光和Stokes光之间的夹角,可以得到频率调谐的太赫兹波,调谐方式简单,操作灵活。

Description

一种环形腔太赫兹波参量振荡器
技术领域
本发明属于太赫兹波技术领域,具体涉及一种环形腔太赫兹波参量振荡器。
背景技术
太赫兹波(THz),是指频率处于0.1-10THz (1THz=1012Hz)范围内的电磁波,位于微波与红外辐射之间,在长波长处与毫米波重合,在短波长处与红外波重合,是电子学与光子学、宏观理论向微观理论的过渡区域。介于微波波段和红外波段之间的太赫兹波具有许多特殊的性质:
(1)大量有机分子、半导体的子带和微带、转动和振动跃迁能量都在太赫兹波范围,太赫兹波的光谱分辨特性使得太赫兹波探测技术,尤其是太赫兹波光谱成像技术,除了能辨别物质的形貌外,还能鉴别物质的组成成分。
(2)从其透过不同材料的光谱及成像来看,太赫兹波辐射能穿透非金属和非极性材料,如纺织品、纸板、塑料、木料等包装物。
(3)太赫兹波的另一显著特点是它的安全性,能量仅有毫电子伏特,与X射线相比具有低能性,不会引起生物组织的光离化,从而可应用于人体安全检查或生物医学成像等方面。
(4)太赫兹波辐射具有很好的空间、时间相干性。
(5)太赫兹波带宽很宽,能够在目前隐身技术所能对抗的波段之外工作,所以可用它来探测隐身目标,以其作为辐射源的超宽带雷达能够获得隐形飞机的图像。
缺少的能够产生高功率、高质量、高效率的太赫兹波,且低成本并能在室温下运转的太赫兹源是目前面临的主要问题。目前太赫兹波的产生方法主要有电子学方法和光子学方法。电子学方法是一般将电磁辐射的波长从毫米波延伸到太赫兹波波段,也就相当于一个频率变大的过程,但是当频率大于1THz时会遇到很大的障碍,以至于效率变的很低,同时电子学方法产生的太赫兹波辐射源体积庞大,限制了其在很多领域中的应用。而光子学方法其主要方向就是把可见光或者红外光向太赫兹波波段转换。此方法的优势在于产生的太赫兹波辐射源具有很高的相干性和方向性,但是现阶段产生的太赫兹波功率和效率都较低。
发明内容
本发明的目的是提供一种环形腔太赫兹波参量振荡器,用以解决现有太赫兹波功率低、效率低等问题。
本发明的目的是以下述方式实现的:
一种环形腔太赫兹波参量振荡器,包括泵浦源、第一反射镜、第二反射镜、第三反射镜、第四反射镜、第一MgO:LiNbO3晶体、第二MgO:LiNbO3晶体、第三MgO:LiNbO3晶体、第四MgO:LiNbO3晶体、第五MgO:LiNbO3晶体和第六MgO:LiNbO3晶体;
泵浦源发出的泵浦光经第一反射镜反射后依次入射第一MgO:LiNbO3晶体、第三MgO:LiNbO3晶体和第二MgO:LiNbO3晶体,经光学参量效应产生Stokes光、第一太赫兹波和第二太赫兹波;Stokes光在由第二反射镜、第三反射镜和第三MgO:LiNbO3晶体、第六MgO:LiNbO3晶体的全反射面组成的环形腔中振荡,第一太赫兹波垂直于第三MgO:LiNbO3晶体的出射面沿Y轴正向出射,第二太赫兹波垂直于第三MgO:LiNbO3晶体的出射面沿Y轴负向出射;
泵浦光从第二MgO:LiNbO3晶体出射后经第四反射镜反射后依次入射第五MgO:LiNbO3晶体、第六MgO:LiNbO3晶体和第四MgO:LiNbO3晶体,经光学参量效应产生Stokes光、第三太赫兹波和第四太赫兹波;Stokes光在由第二反射镜、第三反射镜和第三MgO:LiNbO3晶体、第六MgO:LiNbO3晶体的全反射面组成的环形腔中振荡,第三太赫兹波垂直于第六MgO:LiNbO3晶体的出射面沿Y轴负向出射,第四太赫兹波垂直于第六MgO:LiNbO3晶体的出射面沿Y轴正向出射;
沿Y轴负向传播的第二太赫兹波入射到第四太赫兹波的出射点,作为种子光增强第六MgO:LiNbO3晶体中的光学参量效应,有效放大Stokes光和第三太赫兹波;沿Y轴正向传播的第四太赫兹波入射到第二太赫兹波的出射点,作为种子光增强第三MgO:LiNbO3晶体中的光学参量效应,有效放大Stokes光和第一太赫兹波。
还包括泵浦光回收盒,泵浦光从第四MgO:LiNbO3晶体出射后被泵浦光回收盒回收。
所述泵浦源采用Nd:YAG脉冲激光器,波长为1064nm,重复频率为20Hz,单脉冲能量为160mJ,偏振方向为Z轴。
所述第一反射镜、第二反射镜、第三反射镜和第四反射镜均为平面镜,且角度均可调节,第一反射镜和第四反射镜对泵浦光全反射,第二反射镜和第三反射镜对Stokes光全反射。
所述第一MgO:LiNbO3晶体、第二MgO:LiNbO3晶体和第三MgO:LiNbO3晶体的光轴沿Z轴,MgO掺杂浓度为5mol%,三块晶体紧贴在一起,沿Y轴对称放置;第四MgO:LiNbO3晶体、第五MgO:LiNbO3晶体和第六MgO:LiNbO3晶体的光轴沿Z轴,MgO掺杂浓度为5mol%,三块晶体紧贴在一起,沿Y轴对称放置;第一MgO:LiNbO3晶体、第二MgO:LiNbO3晶体、第四MgO:LiNbO3晶体和第五MgO:LiNbO3晶体是完全相同的,晶体在X-Y平面为直角梯形;第三MgO:LiNbO3晶体和第六MgO:LiNbO3晶体是完全相同的,在X-Y平面为矩形。
所述第一MgO:LiNbO3晶体、第二MgO:LiNbO3晶体、第四MgO:LiNbO3晶体和第五MgO:LiNbO3晶体的直角梯形的锐角为64.2°,直角梯形沿X轴的两个直角边长度分别为40mm和57.4mm,直角梯形沿Y轴的直角边长度为36mm,直角梯形的斜边长度为40mm。
所述第三MgO:LiNbO3晶体和第六MgO:LiNbO3晶体在X轴和Y轴方向的尺寸分别为8mm和3mm。
本发明提供的一种环形腔太赫兹波参量振荡器与现有的基于光学参量效应的太赫兹辐射源相比,具有以下优点:
(1)经光学参量效应产生的四束太赫兹波,其中两束太赫兹波作为种子光可以增强光学参量效应,继而可以有效放大另外两束太赫兹波。
(2)Stokes光在环形腔中谐振放大,且可以重复使用,有效提高光学转换效率。
(3)太赫兹波垂直于MgO:LiNbO3晶体出射,不需要任何耦合输出装置,有效减小太赫兹波输出损耗。
(4)通过改变泵浦光和Stokes光之间的夹角,可以得到频率调谐的太赫兹波,调谐方式简单,操作灵活。
附图说明
图1是本发明实施例的结构原理图。
图2是MgO:LiNbO3晶体中泵浦光、Stokes光和太赫兹波相位匹配示意图,图中kp、ks、kT分别为泵浦光、Stokes光、太赫兹波的波矢,θ角为泵浦光波矢kp与Stokes光波矢ks之间的夹角。
其中,1是泵浦源;2是泵浦光;3是第一反射镜;4是Stokes光;5是第二反射镜;6是第三反射镜;7是第四反射镜;8是第一MgO:LiNbO3晶体;9是第二MgO:LiNbO3晶体;10是第三MgO:LiNbO3晶体;11是第一太赫兹波;12是第二太赫兹波;13是第四MgO:LiNbO3晶体;14是第五MgO:LiNbO3晶体;15是第六MgO:LiNbO3晶体;16是第三太赫兹波;17是第四太赫兹波;18是泵浦光回收盒。
具体实施方式
下面结合附图对本发明做进一步详细的说明。
如附图1所示,一种环形腔太赫兹波参量振荡器,包括泵浦源1、第一反射镜3、第二反射镜5、第三反射镜6、第四反射镜7、第一MgO:LiNbO3晶体8、第二MgO:LiNbO3晶体9、第三MgO:LiNbO3晶体10、第四MgO:LiNbO3晶体13、第五MgO:LiNbO3晶体14和第六MgO:LiNbO3晶体15;
泵浦源1发出的泵浦光2经第一反射镜3反射后依次入射第一MgO:LiNbO3晶体8、第三MgO:LiNbO3晶体10和第二MgO:LiNbO3晶体9,经光学参量效应产生Stokes光4、第一太赫兹波11和第二太赫兹波12;Stokes光4在由第二反射镜5、第三反射镜6和第三MgO:LiNbO3晶体10、第六MgO:LiNbO3晶体15的全反射面组成的环形腔中振荡,第一太赫兹波11垂直于第三MgO:LiNbO3晶体10的出射面沿Y轴正向出射,第二太赫兹波12垂直于第三MgO:LiNbO3晶体10的出射面沿Y轴负向出射;
泵浦光2从第二MgO:LiNbO3晶体9出射后经第四反射镜7反射后依次入射第五MgO:LiNbO3晶体14、第六MgO:LiNbO3晶体15和第四MgO:LiNbO3晶体13,经光学参量效应产生Stokes光4、第三太赫兹波16和第四太赫兹波17;Stokes光4在由第二反射镜5、第三反射镜6和第三MgO:LiNbO3晶体10、第六MgO:LiNbO3晶体15的全反射面组成的环形腔中振荡,第三太赫兹波16垂直于第六MgO:LiNbO3晶体15的出射面沿Y轴负向出射,第四太赫兹波17垂直于第六MgO:LiNbO3晶体15的出射面沿Y轴正向出射;
沿Y轴负向传播的第二太赫兹波12入射到第四太赫兹波17的出射点,作为种子光增强第六MgO:LiNbO3晶体15中的光学参量效应,有效放大Stokes光4和第三太赫兹波16;沿Y轴正向传播的第四太赫兹波17入射到第二太赫兹波12的出射点,作为种子光增强第三MgO:LiNbO3晶体10中的光学参量效应,有效放大Stokes光4和第一太赫兹波11。
还包括泵浦光回收盒18,泵浦光2从第四MgO:LiNbO3晶体13出射后被泵浦光回收盒18回收。
泵浦源1采用Nd:YAG脉冲激光器,波长为1064nm,重复频率为20Hz,单脉冲能量为160mJ,偏振方向为Z轴。
第一反射镜3、第二反射镜5、第三反射镜6和第四反射镜7均为平面镜,且角度均可调节,第一反射镜3和第四反射镜7对泵浦光2全反射,第二反射镜5和第三反射镜6对Stokes光4全反射。
第一MgO:LiNbO3晶体8、第二MgO:LiNbO3晶体9和第三MgO:LiNbO3晶体10的光轴沿Z轴,MgO掺杂浓度为5mol%,三块晶体紧贴在一起,沿Y轴对称放置;第四MgO:LiNbO3晶体13、第五MgO:LiNbO3晶体14和第六MgO:LiNbO3晶体15的光轴沿Z轴,MgO掺杂浓度为5mol%,三块晶体紧贴在一起,沿Y轴对称放置;第一MgO:LiNbO3晶体8、第二MgO:LiNbO3晶体9、第四MgO:LiNbO3晶体13和第五MgO:LiNbO3晶体14是完全相同的,晶体在X-Y平面为直角梯形;第三MgO:LiNbO3晶体10和第六MgO:LiNbO3晶体15是完全相同的,在X-Y平面为矩形。
第一MgO:LiNbO3晶体8、第二MgO:LiNbO3晶体9、第四MgO:LiNbO3晶体13和第五MgO:LiNbO3晶体14的直角梯形的锐角为64.2°,直角梯形沿X轴的两个直角边长度分别为40mm和57.4mm,直角梯形沿Y轴的直角边长度为36mm,直角梯形的斜边长度为40mm。
第三MgO:LiNbO3晶体10和第六MgO:LiNbO3晶体15在X轴和Y轴方向的尺寸分别为8mm和3mm。
如图2所示,改变泵浦光2和Stokes光4之间的夹角θ,可以得到频率调谐的第一太赫兹波11、第二太赫兹波12、第三太赫兹波16和第四太赫兹波17,当θ角的范围在0.3356°-1.4686°变化时,可以得到频率范围在0.8-3.2THz的THz波,同时可以得到波长范围在1067-1076.2nm的Stokes光。在频率调谐过程中,第一太赫兹波11、第二太赫兹波12、第三太赫兹波16和第四太赫兹波17的频率始终相等,且第一太赫兹波11、第二太赫兹波12、第三太赫兹波16和第四太赫兹波17满足共线传播,第一太赫兹波11和第四太赫兹波17沿Y轴正向传播,第二太赫兹波12和第三太赫兹波16沿Y轴负向传播。
以上给出了具体的实施方式,但本发明不局限于所描述的实施方式。本发明的基本思路在于上述基本方案,对本领域普通技术人员而言,根据本发明的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本发明的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (7)

1.一种环形腔太赫兹波参量振荡器,其特征在于:包括泵浦源(1)、第一反射镜(3)、第二反射镜(5)、第三反射镜(6)、第四反射镜(7)、第一MgO:LiNbO3晶体(8)、第二MgO:LiNbO3晶体(9)、第三MgO:LiNbO3晶体(10)、第四MgO:LiNbO3晶体(13)、第五MgO:LiNbO3晶体(14)和第六MgO:LiNbO3晶体(15);
泵浦源(1)发出的泵浦光(2)经第一反射镜(3)反射后依次入射第一MgO:LiNbO3晶体(8)、第三MgO:LiNbO3晶体(10)和第二MgO:LiNbO3晶体(9),经光学参量效应产生Stokes光(4)、第一太赫兹波(11)和第二太赫兹波(12);Stokes光(4)在由第二反射镜(5)、第三反射镜(6)和第三MgO:LiNbO3晶体(10)、第六MgO:LiNbO3晶体(15)的全反射面组成的环形腔中振荡,第一太赫兹波(11)垂直于第三MgO:LiNbO3晶体(10)的出射面沿Y轴正向出射,第二太赫兹波(12)垂直于第三MgO:LiNbO3晶体(10)的出射面沿Y轴负向出射;
泵浦光(2)从第二MgO:LiNbO3晶体(9)出射后经第四反射镜(7)反射后依次入射第五MgO:LiNbO3晶体(14)、第六MgO:LiNbO3晶体(15)和第四MgO:LiNbO3晶体(13),经光学参量效应产生Stokes光(4)、第三太赫兹波(16)和第四太赫兹波(17);Stokes光(4)在由第二反射镜(5)、第三反射镜(6)和第三MgO:LiNbO3晶体(10)、第六MgO:LiNbO3晶体(15)的全反射面组成的环形腔中振荡,第三太赫兹波(16)垂直于第六MgO:LiNbO3晶体(15)的出射面沿Y轴负向出射,第四太赫兹波(17)垂直于第六MgO:LiNbO3晶体(15)的出射面沿Y轴正向出射;
沿Y轴负向传播的第二太赫兹波(12)入射到第四太赫兹波(17)的出射点,作为种子光增强第六MgO:LiNbO3晶体(15)中的光学参量效应,有效放大Stokes光(4)和第三太赫兹波(16);沿Y轴正向传播的第四太赫兹波(17)入射到第二太赫兹波(12)的出射点,作为种子光增强第三MgO:LiNbO3晶体(10)中的光学参量效应,有效放大Stokes光(4)和第一太赫兹波(11)。
2.根据权利要求1所述的环形腔太赫兹波参量振荡器,其特征在于:还包括泵浦光回收盒(18),泵浦光(2)从第四MgO:LiNbO3晶体(13)出射后被泵浦光回收盒(18)回收。
3.根据权利要求1所述的环形腔太赫兹波参量振荡器,其特征在于:所述泵浦源(1)采用Nd:YAG脉冲激光器,波长为1064nm,重复频率为20Hz,单脉冲能量为160mJ,偏振方向为Z轴。
4.根据权利要求1所述的环形腔太赫兹波参量振荡器,其特征在于:所述第一反射镜(3)、第二反射镜(5)、第三反射镜(6)和第四反射镜(7)均为平面镜,且角度均可调节,第一反射镜(3)和第四反射镜(7)对泵浦光(2)全反射,第二反射镜(5)和第三反射镜(6)对Stokes光(4)全反射。
5.根据权利要求1所述的环形腔太赫兹波参量振荡器,其特征在于:所述第一MgO:LiNbO3晶体(8)、第二MgO:LiNbO3晶体(9)和第三MgO:LiNbO3晶体(10)的光轴沿Z轴,MgO掺杂浓度为5mol%,三块晶体紧贴在一起,沿Y轴对称放置;第四MgO:LiNbO3晶体(13)、第五MgO:LiNbO3晶体(14)和第六MgO:LiNbO3晶体(15)的光轴沿Z轴,MgO掺杂浓度为5mol%,三块晶体紧贴在一起,沿Y轴对称放置;第一MgO:LiNbO3晶体(8)、第二MgO:LiNbO3晶体(9)、第四MgO:LiNbO3晶体(13)和第五MgO:LiNbO3晶体(14)是完全相同的,晶体在X-Y平面为直角梯形;第三MgO:LiNbO3晶体(10)和第六MgO:LiNbO3晶体(15)是完全相同的,在X-Y平面为矩形。
6.根据权利要求5所述的环形腔太赫兹波参量振荡器,其特征在于:所述第一MgO:LiNbO3晶体(8)、第二MgO:LiNbO3晶体(9)、第四MgO:LiNbO3晶体(13)和第五MgO:LiNbO3晶体(14)的直角梯形的锐角为64.2°,直角梯形沿X轴的两个直角边长度分别为40mm和57.4mm,直角梯形沿Y轴的直角边长度为36mm,直角梯形的斜边长度为40mm。
7.根据权利要求5所述的环形腔太赫兹波参量振荡器,其特征在于:所述第三MgO:LiNbO3晶体(10)和第六MgO:LiNbO3晶体(15)在X轴和Y轴方向的尺寸分别为8mm和3mm。
CN201610918770.3A 2016-10-21 2016-10-21 一种环形腔太赫兹波参量振荡器 Expired - Fee Related CN106253032B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610918770.3A CN106253032B (zh) 2016-10-21 2016-10-21 一种环形腔太赫兹波参量振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610918770.3A CN106253032B (zh) 2016-10-21 2016-10-21 一种环形腔太赫兹波参量振荡器

Publications (2)

Publication Number Publication Date
CN106253032A true CN106253032A (zh) 2016-12-21
CN106253032B CN106253032B (zh) 2019-05-24

Family

ID=57600708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610918770.3A Expired - Fee Related CN106253032B (zh) 2016-10-21 2016-10-21 一种环形腔太赫兹波参量振荡器

Country Status (1)

Country Link
CN (1) CN106253032B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116659A (zh) * 2018-10-11 2019-01-01 华北水利水电大学 一种嵌套耦合太赫兹波参量振荡器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090251767A1 (en) * 2004-12-08 2009-10-08 Riken Method and apparatus for generating terahertz wave
JP2010060751A (ja) * 2008-09-02 2010-03-18 Tohoku Univ テラヘルツ波の発生装置及び発生方法
WO2010104489A1 (en) * 2009-03-10 2010-09-16 Bae Systems Information And Electronic Systems Integration Inc. Pump recycling scheme for terahertz generation
JP2012203013A (ja) * 2011-03-23 2012-10-22 Sophia School Corp 電磁波発生装置
CN103500911A (zh) * 2013-10-19 2014-01-08 山东大学 一种多点的表面垂直发射的太赫兹参量振荡器及其应用
CN103944041A (zh) * 2014-04-09 2014-07-23 华北水利水电大学 一种基于光学参量效应和光学差频效应的太赫兹辐射源
CN203747233U (zh) * 2014-03-07 2014-07-30 山东大学 种子注入式表面垂直发射太赫兹参量产生器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090251767A1 (en) * 2004-12-08 2009-10-08 Riken Method and apparatus for generating terahertz wave
JP2010060751A (ja) * 2008-09-02 2010-03-18 Tohoku Univ テラヘルツ波の発生装置及び発生方法
WO2010104489A1 (en) * 2009-03-10 2010-09-16 Bae Systems Information And Electronic Systems Integration Inc. Pump recycling scheme for terahertz generation
JP2012203013A (ja) * 2011-03-23 2012-10-22 Sophia School Corp 電磁波発生装置
CN103500911A (zh) * 2013-10-19 2014-01-08 山东大学 一种多点的表面垂直发射的太赫兹参量振荡器及其应用
CN203747233U (zh) * 2014-03-07 2014-07-30 山东大学 种子注入式表面垂直发射太赫兹参量产生器
CN103944041A (zh) * 2014-04-09 2014-07-23 华北水利水电大学 一种基于光学参量效应和光学差频效应的太赫兹辐射源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHEN YANG等: "High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration", 《OPTICS LETTERS》 *
徐德刚等: "小型化外腔可调谐THz参量振荡器", 《强激光与粒子束》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116659A (zh) * 2018-10-11 2019-01-01 华北水利水电大学 一种嵌套耦合太赫兹波参量振荡器
CN109116659B (zh) * 2018-10-11 2021-03-30 华北水利水电大学 一种嵌套耦合太赫兹波参量振荡器

Also Published As

Publication number Publication date
CN106253032B (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN106451034B (zh) 一种太赫兹波增强的太赫兹波辐射源
CN106451032B (zh) 一种太赫兹波增强的内腔太赫兹波参量振荡器
CN103944041B (zh) 一种基于光学参量效应和光学差频效应的太赫兹辐射源
CN104269720B (zh) 一种基于内腔光学参量和差频效应的太赫兹辐射源
CN103840366A (zh) 通过脉冲激光展宽实现太赫兹波中心频率连续可调的方法
CN104503183B (zh) 自变频太赫兹参量振荡器
CN106159642A (zh) 一种双扇形晶体结构的光学差频太赫兹波辐射源
CN106159643B (zh) 一种基于级联参量效应的太赫兹波参量振荡器
CN106410572B (zh) 一种高能量太赫兹波参量振荡器
CN106253032A (zh) 一种环形腔太赫兹波参量振荡器
CN110137779A (zh) 一种双内腔太赫兹波参量振荡器
CN106451035A (zh) 一种斯托克斯光增强的太赫兹波辐射源
CN104037595B (zh) 一种基于光学参量效应的太赫兹波放大器
CN106229796A (zh) 一种基于光学混频效应的太赫兹波辐射源
CN102331650B (zh) 一种基于直角棱镜谐振腔的宽带太赫兹波辐射源
CN110137780A (zh) 一种级联太赫兹波参量振荡器
CN108767628A (zh) 基于多周期结构ppln级联差频产生太赫兹的方法和装置
CN110021869A (zh) 一种三维光学参量振荡太赫兹波辐射源
CN106207717B (zh) 一种基于光学差频效应的多束太赫兹波辐射源
CN208806465U (zh) 一种基于多周期结构的非线性晶体获得太赫兹源的装置
CN109119871A (zh) 一种环形腔太赫兹波参量振荡器
CN110034482B (zh) 一种多光束太赫兹波参量振荡器
Wang et al. A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration
Wang et al. Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration
CN109193316A (zh) 一种多极化周期太赫兹波参量振荡器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190524

Termination date: 20191021

CF01 Termination of patent right due to non-payment of annual fee