CN106252017B - 一种室温铁磁半导体材料MnSiP2及其制备方法和应用 - Google Patents

一种室温铁磁半导体材料MnSiP2及其制备方法和应用 Download PDF

Info

Publication number
CN106252017B
CN106252017B CN201610590747.6A CN201610590747A CN106252017B CN 106252017 B CN106252017 B CN 106252017B CN 201610590747 A CN201610590747 A CN 201610590747A CN 106252017 B CN106252017 B CN 106252017B
Authority
CN
China
Prior art keywords
room temperature
semiconductor material
quartz ampoule
mnsip
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610590747.6A
Other languages
English (en)
Other versions
CN106252017A (zh
Inventor
王善朋
陶绪堂
张翔
于童童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201610590747.6A priority Critical patent/CN106252017B/zh
Publication of CN106252017A publication Critical patent/CN106252017A/zh
Application granted granted Critical
Publication of CN106252017B publication Critical patent/CN106252017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种室温铁磁半导体材料MnSiP2及其制备方法和应用,该MnSiP2磁性半导体材料属于四方晶系,I‑42d空间群,晶胞参数为:a=5.5823(3),Z=4。制备方法包括以下步骤:(1)将Mn、Si和P一起研磨均匀,装入石英管内,抽真空后封烧石英管;(2)将石英管采用阶段性升温,再缓慢降温至室温;(3)取出结晶较好的料块,清洗干净,干燥处理,得到室温铁磁半导体材料MnSiP2。本发明首次合成了黄铜矿结构的MnSiP2磁性半导体材料,其居里温度为290K,可应用于制作自旋场效应晶体管、自旋发光二极管、自旋共振磁隧道结、光隔离器、磁传感器或非挥发存储器。

Description

一种室温铁磁半导体材料MnSiP2及其制备方法和应用
技术领域
本发明涉及一种室温铁磁半导体材料MnSiP2及其制备方法和应用,属于磁性半导体材料技术领域
背景技术
磁性半导体材料具有磁性和半导体性质,可以通过操作半导体中的电子电荷和电子自旋两个自由度进行信息的加工处理与存储,实现电子学、光子学和磁学的有机融合,可用于开发新一代的电子器件,如自旋场效应管和自旋发光二极管等,在光电子领域具有非常广泛的应用前景,从而满足信息技术的超高速、超带宽和超大容量的发展趋势。目前通过磁性元素掺杂或离子注入等手段可以获得磁性半导体材料,但是绝大多数磁性材料的居里温度(TC)远低于室温,如GaMnAs和ZnMnSe磁性材料的居里温度分别为~110和50K,无法满足实际应用的要求。因此,探索具有更高居里温度的新型磁性半导体材料具有非常重要的意义。
AIIBIVC2 V型黄铜矿结构半导体化合物,如ZnGeP2、CdSiP2等,是优秀的红外非线性光晶体材料,具有非常重要的应用价值。理论研究表明基于宽禁带的半磁半导体,可能具有高于室温的居里温度,根据AIIBIVC2 V型化合物性质的一般规律,含Si,P的化合物要比含Ge,Sn,As 的同构物有更大的带隙。但是,目前尚未出现黄铜矿结构的铁磁半导体材料。
发明内容
本发明针对现有磁性半导体材料存在的居里温度较低、限制室温环境实际应用的问题,提供一种新型的黄铜矿结构的室温铁磁半导体材料MnSiP2,以及该材料制备方法和应用。
本发明的室温铁磁半导体材料MnSiP2,属于四方晶系,I-42d空间群,晶胞参数为:a= 5.5823(3),Z=4。
上述室温铁磁半导体材料MnSiP2的制备方法,包括以下步骤:
(1)按摩尔比Mn:Si:P=1:1:2.0-2.5的比例分别称取Mn、Si和P三种单质原料,将原料一起研磨均匀,装入石英管内,抽真空3X10-4Pa-5X10-4Pa后,封烧石英管。
(2)将石英管采用阶段性升温,先以30℃/小时-50℃/小时的升温速率升至450℃-500℃,恒温15小时-20小时,继续升温至反应温度950-1100℃,恒温反应20小时-30小时,最后以50小时-100小时缓慢降温至室温。
(3)打开石英管,取出结晶较好的料块,用去离子水清洗干净,放置于烘箱中干燥处理,得到室温铁磁半导体材料MnSiP2
上述室温铁磁半导体材料MnSiP2应用于制作自旋场效应晶体管、自旋发光二极管、自旋共振磁隧道结、光隔离器、磁传感器或非挥发存储器。
本发明在Mn-Si-P体系中探索合成了新型黄铜矿化合物MnSiP2,存在铁磁-顺磁相变,低温时其为铁磁相,高温时为顺磁相,其居里温度高达290K,是一种近室温磁性半导体材料,可以应用于制作自旋场效应晶体管、自旋发光二极管、自旋共振磁隧道结、光隔离器、磁传感器和非挥发存储器等,在通信、信息存储等领域具有重要的应用价值,在光电子学和磁学领域具有潜在的应用价值。
附图说明
图1是本发明制备的MnSiP2粉末的X射线衍射图谱。
图2是MnSiP2变温磁化率曲线图。
具体实施方式
实施例1
按摩尔比Mn:Si:P=1:1:2.0分别称取Mn、Si和P三种单质原料,原料在玛瑙研钵内研磨均匀,装入石英管内,抽真空3×10-4Pa后,封烧石英管。将石英管放入高温管式炉中,采用阶段性升温,先以30℃/小时的升温速率升至450℃,恒温15小时,继续升温至反应温度950℃,恒温反应20小时,然后经过50小时缓慢降温至室温。打开石英管,取出结晶较好的料块,用去离子水清洗干净,放置于烘箱中干燥处理,得到纯相MnSiP2磁性半导体材料。
本实施例中经过高温合成得到的MnSiP2的粉末X射线衍射图谱和变温磁化率曲线分别如图1和图2所示。
实施例2
按摩尔比Mn:Si:P=1:1:2.3分别称取Mn、Si和P三种单质原料,原料在玛瑙研钵内研磨均匀,装入石英管内,抽真空4×10-4Pa后,封烧石英管。将石英管放入高温管式炉中,采用阶段性升温,先以40℃/小时的升温速率升至500℃,恒温20小时,继续升温至反应温度1000℃,恒温反应25小时,然后经过80小时缓慢降温至室温。打开石英管,取出结晶较好的料块,用去离子水清洗干净,放置于烘箱中干燥处理,得到纯相MnSiP2磁性半导体材料。
实施例3
按摩尔比Mn:Si:P=1:1:2.5分别称取Mn、Si和P三种单质原料,原料在玛瑙研钵内研磨均匀,装入石英管内,抽真空5×10-4Pa后,封烧石英管。将石英管放入高温管式炉中,采用阶段性升温,先以50℃/小时的升温速率升至480℃,恒温18小时,继续升温至反应温度1050℃,恒温反应30小时,然后经过100小时缓慢降温至室温。打开石英管,取出结晶较好的料块,用去离子水清洗干净,放置于烘箱中干燥处理,得到纯相MnSiP2磁性半导体材料。
实施例4
按摩尔比Mn:Si:P=1:1:2.5分别称取Mn、Si和P三种单质原料,原料在玛瑙研钵内研磨均匀,装入石英管内,抽真空5×10-4Pa后,封烧石英管。将石英管放入高温管式炉中,采用阶段性升温,先以50℃/小时的升温速率升至480℃,恒温18小时,继续升温至反应温度1100℃,恒温反应30小时,然后经过100小时缓慢降温至室温。打开石英管,取出结晶较好的料块,用去离子水清洗干净,放置于烘箱中干燥处理,得到纯相MnSiP2磁性半导体材料。
上述各实施例制备的黄铜矿结构MnSiP2磁性半导体化合物,居里温度290K接近于室温,可应用于制作新一代的电子器件,如自旋场效应管、自旋发光二极管、磁传感器和非挥发存储器等。

Claims (1)

1.一种室温铁磁半导体材料MnSiP2的制备方法,其特征是,包括以下步骤:
(1)按摩尔比Mn:Si:P=1:1:2.0~2.5的比例分别称取Mn、Si和P三种单质原料,将原料一起研磨均匀,装入石英管内,抽真空3×10-4Pa~5×10-4Pa后,封烧石英管;
(2)将石英管采用阶段性升温,先以30℃/小时-50℃/小时的升温速率升至450℃~500℃,恒温15小时~20小时,继续升温至反应温度950~1100℃,恒温反应20小时~30小时,最后以50小时~100小时缓慢降温至室温;
(3)打开石英管,取出结晶较好的料块,用去离子水清洗干净,放置于烘箱中干燥处理,得到室温铁磁半导体材料MnSiP2
CN201610590747.6A 2016-07-25 2016-07-25 一种室温铁磁半导体材料MnSiP2及其制备方法和应用 Active CN106252017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610590747.6A CN106252017B (zh) 2016-07-25 2016-07-25 一种室温铁磁半导体材料MnSiP2及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610590747.6A CN106252017B (zh) 2016-07-25 2016-07-25 一种室温铁磁半导体材料MnSiP2及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106252017A CN106252017A (zh) 2016-12-21
CN106252017B true CN106252017B (zh) 2018-05-04

Family

ID=57604100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610590747.6A Active CN106252017B (zh) 2016-07-25 2016-07-25 一种室温铁磁半导体材料MnSiP2及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106252017B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106835047A (zh) * 2017-02-15 2017-06-13 苏州思创源博电子科技有限公司 一种铁磁半导体薄膜材料的制备方法
CN106835046A (zh) * 2017-02-15 2017-06-13 苏州思创源博电子科技有限公司 一种ZnGeP2半导体材薄膜的制备方法
CN112940825B (zh) * 2021-02-06 2022-05-13 中国科学院兰州化学物理研究所 磷化硅量子点作为润滑油添加剂的应用、一种润滑油及其制备方法和应用
CN113292335A (zh) * 2021-07-02 2021-08-24 燕山大学 一种纯相钛酸亚铁的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837511B1 (en) * 1996-10-15 2005-09-14 Matsushita Electric Industrial Co., Ltd Solar cell and method for manufacturing the same
JP2013110279A (ja) * 2011-11-21 2013-06-06 Toshiba Corp 不揮発性記憶装置

Also Published As

Publication number Publication date
CN106252017A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN106252017B (zh) 一种室温铁磁半导体材料MnSiP2及其制备方法和应用
Isarov et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements
Chen et al. Zinc gallium oxide—a review from synthesis to applications
Quattropani et al. Band-gap tuning in ferroelectric Bi2FeCrO6 double perovskite thin films
CN109633933B (zh) Mn-MoS2单层膜光磁材料制备方法
Malliakas et al. Superconductivity in the narrow-gap semiconductor CsBi4Te6
Ranmohotti et al. Chemical Manipulation of Magnetic Ordering in Mn1–x Sn x Bi2Se4 Solid–Solutions
Pillai et al. Synthesis of single phase bismuth ferrite compound by reliable one-step method
Song et al. Improved thermoelectric performance in nonstoichiometric Cu2+ δMn1− δSnSe4 quaternary diamondlike compounds
Kim et al. A (II) GeTeO6 (A= Mn, Cd, Pb): Non-centrosymmetric layered tellurates with PbSb2O6-related structure
Yao et al. Site preference of manganese on the copper site in Mn-substituted CuInSe2 chalcopyrites revealed by a combined neutron and X-ray powder diffraction study
Delacotte et al. Magnetodielectric effect in crystals of the noncentrosymmetric CaOFeS at low temperature
Li et al. First-principles study on electronic and magnetic properties of Cu-doped CdS
Sivasankar et al. Structural, optical and magnetic properties of Cu doped CdSe powders prepared by solid state reaction method
CN109166963A (zh) 二维多铁半导体材料及其制备方法
Wang et al. Novel electrical conductivity properties in Ca-doped BiFeO 3 nanoparticles
Kubota et al. Structure and Magnetic Properties of BiFe1–x Co x O3 and Bi0. 9Sm0. 1Fe1–x Co x O3
CN102649548A (zh) 微波加热一步法直接制备石墨烯/硫化镉纳米复合材料的方法
CN103160911B (zh) 一种生长BiFe1‐xCoxO3系列晶体的方法
Ishfaq et al. First principles insight into physical properties of CaX2O4 (X= In, Gd) spinels for optical and spintronic applications
Abdullah et al. Structural, electronic and optical properties of titanium based fluoro-perovskites MTiF3 (M= Rb and Cs) via density functional theory computation
Zhao et al. Reversible structural transformation between polar polymorphs of Li2GeTeO6
Rouf et al. Half-metallic ferromagnetism and thermoelectric effect in spinel chalcogenides SrX2S4 (X= Mn, Fe, Co) for spintronics and energy harvesting
Al-Hammadi et al. Influence of Zn Doping on Dielectric Properties of Ba-Based Nanoferrites
Haq et al. GGA+ U investigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant