CN106251709B - aircraft trajectory prediction method - Google Patents
aircraft trajectory prediction method Download PDFInfo
- Publication number
- CN106251709B CN106251709B CN201610871468.7A CN201610871468A CN106251709B CN 106251709 B CN106251709 B CN 106251709B CN 201610871468 A CN201610871468 A CN 201610871468A CN 106251709 B CN106251709 B CN 106251709B
- Authority
- CN
- China
- Prior art keywords
- aircraft
- track
- data
- flight
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000012544 monitoring process Methods 0.000 claims abstract description 22
- 230000004927 fusion Effects 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 12
- 238000004891 communication Methods 0.000 claims abstract description 11
- 230000001419 dependent effect Effects 0.000 claims abstract description 8
- 230000008859 change Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000003064 k means clustering Methods 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 238000005070 sampling Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
- G08G5/70—Arrangements for monitoring traffic-related situations or conditions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
- G08G5/30—Flight plan management
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
- G08G5/50—Navigation or guidance aids
- G08G5/56—Navigation or guidance aids for two or more aircraft
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
- G08G5/80—Anti-collision systems
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及一种航空器轨迹预测方法由空中交通管制系统实施,所述空中交通管制系统包括数据通信模块、监视数据融合模块、机载终端模块、管制终端模块,其中监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;管制终端模块包括飞行前无冲突4D航迹生成、飞行中短期4D航迹生成这2个子模块;上述系统的航空器轨迹预测方法,依靠管制终端模块,处理飞行计划数据并利用隐马尔科夫模型生成4D航迹,实现空域交通状况潜在的交通冲突的分析。本发明可有效提高空中交通的安全性。
The invention relates to an aircraft trajectory prediction method implemented by an air traffic control system. The air traffic control system includes a data communication module, a monitoring data fusion module, an airborne terminal module, and a control terminal module. The monitoring data fusion module is used to realize air traffic control. The fusion of radar surveillance data and automatic dependent surveillance data provides real-time track information for the control terminal module; the control terminal module includes two sub-modules: generation of conflict-free 4D track before flight and short-term 4D track generation during flight; the above-mentioned system The aircraft trajectory prediction method relies on the control terminal module to process the flight plan data and use the hidden Markov model to generate 4D trajectory, so as to realize the analysis of potential traffic conflicts in airspace traffic conditions. The invention can effectively improve the safety of air traffic.
Description
本申请是申请号为:201510007935.7,发明创造名称为《空中交通管制系统的航空器轨迹预测方法》,申请日为:2015年1月7日的发明专利申请的分案申请。This application is a divisional application of the invention patent application with the application number: 201510007935.7, the invention name is "Aircraft Trajectory Prediction Method for Air Traffic Control System", and the application date is: January 7, 2015.
技术领域technical field
本发明涉及一种空中交通管制系统及方法,尤其涉及一种基于4D航迹运行的空中交通管制系统对航空器轨迹进行预测的方法。The invention relates to an air traffic control system and method, in particular to a method for predicting aircraft trajectories by an air traffic control system based on 4D track operation.
背景技术Background technique
随着全球航空运输业快速发展与空域资源有限矛盾的日益突出,在空中交通流密集的复杂空域,仍然采用飞行计划结合间隔调配的空中交通管理方式逐渐显示出其落后性,具体表现在:(1)飞行计划并未为航空器配置精确的空管间隔,容易造成交通流战术管理中的拥挤,降低空域安全性;(2)以飞行计划为中心的空管自动化系统对飞行剖面的推算和航迹预测精度差,造成冲突化解能力差;(3)空中交通管制工作仍然侧重于保持单个航空器之间的安全间隔,很难上升到对交通流进行战略性管理。对于航空器轨迹的预测显得尤为重要。With the rapid development of the global air transport industry and the increasingly prominent contradiction between the limited airspace resources, in the complex airspace with dense air traffic flow, the air traffic management method that still adopts flight planning combined with interval allocation gradually shows its backwardness, as shown in: ( 1) The flight plan does not configure accurate air traffic control intervals for aircraft, which may easily cause congestion in the tactical management of traffic flow and reduce airspace security; (3) Air traffic control still focuses on maintaining a safe separation between individual aircraft, and it is difficult to upgrade to strategic management of traffic flow. The prediction of aircraft trajectory is particularly important.
4D航迹是以空间和时间形式,对某一航空器航迹中的各点空间位置(经度、纬度和高度)和时间的精确描述,基于航迹的运行是指在4D航迹的航路点上使用“控制到达时间”,即控制航空器通过特定航路点的“时间窗”。在高密度空域把基于4D航迹的运行(Trajectory based Operation)作为基本运行机制之一,是未来对大流量、高密度、小间隔条件下空域实施管理的一种有效手段,可以显著地减少航空器航迹的不确定性,提高空域和机场资源的安全性与利用率。4D track is a precise description of the spatial position (longitude, latitude and altitude) and time of each point in an aircraft track in the form of space and time. Track-based operation refers to the waypoints on the 4D track. Use "Controlled Time of Arrival", which controls the "window of time" in which the aircraft passes through a particular waypoint. Taking 4D trajectory-based operation (Trajectory based Operation) as one of the basic operating mechanisms in high-density airspace is an effective means to manage airspace under the conditions of large flow, high density and small separation in the future, which can significantly reduce the number of aircraft Uncertainty of flight path improves the safety and utilization of airspace and airport resources.
基于航迹运行的空中交通运行方式需要在战略层面上对单航空器飞行航迹进行推算和优化,对多航空器构成的交通流实施协同和调整;在预战术层面上通过修正交通流中个别航空器的航迹以解决拥塞问题,并保证该交通流中所有航空器的运行效率;而在战术层面上预测冲突和优化解脱方案,则非常依赖于能否准确地对航空器的轨迹进行预测,目前均不能准确实时地对航空器的轨迹进行预测,实时性上做的尤为的差。The air traffic operation mode based on trajectory operation needs to calculate and optimize the flight path of a single aircraft at the strategic level, coordinate and adjust the traffic flow composed of multiple aircraft; trajectory to solve the congestion problem and ensure the operational efficiency of all aircraft in the traffic flow; while predicting conflicts and optimizing relief solutions at the tactical level are very dependent on the ability to accurately predict aircraft trajectories, which are currently not accurate Predicting the trajectory of the aircraft in real time is particularly poor in real time.
发明内容Contents of the invention
本发明要解决的技术问题是在于克服现有技术的不足,提供一种基于4D航迹运行的空中交通管制系统的航空器轨迹预测方法,可有效、准确、实时地预测航空器的轨迹。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide an aircraft track prediction method based on 4D track operation air traffic control system, which can effectively, accurately and real-time predict the track of the aircraft.
实现本发明目的的技术方案是提供一种航空器轨迹预测方法由空中交通管制系统实施,所述空中交通管制系统包括机载终端模块、数据通信模块、监视数据融合模块以及管制终端模块;监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;The technical solution for realizing the purpose of the present invention is to provide a kind of aircraft trajectory prediction method to be implemented by the air traffic control system, and the air traffic control system includes an airborne terminal module, a data communication module, a monitoring data fusion module and a control terminal module; the monitoring data fusion The module is used to realize the fusion of air traffic control radar surveillance data and automatic dependent surveillance data, and provide real-time track information for the control terminal module;
所述管制终端模块包括以下子模块:The control terminal module includes the following submodules:
飞行前无冲突4D航迹生成模块,根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,然后依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;Conflict-free 4D trajectory generation module before flight, based on the flight plan and the forecast data of the world area forecast system, establishes the aircraft dynamics model, and then establishes the theoretical model of trajectory conflict pre-allocation according to the flight conflict coupling point, and generates the aircraft conflict-free 4D trajectory ;
飞行中短期4D航迹生成模块,依据监视数据融合模块提供的实时航迹信息,利用隐马尔科夫模型,推测未来一定时间窗内的航空器4D轨迹;The mid- and short-term 4D trajectory generation module uses the hidden Markov model to predict the 4D trajectory of the aircraft within a certain time window in the future based on the real-time trajectory information provided by the monitoring data fusion module;
所述空中交通管制系统的航空器轨迹预测方法包括如下几个步骤:The aircraft trajectory prediction method of the air traffic control system comprises the following steps:
步骤A、飞行前无冲突4D航迹生成模块根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,并依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;Step A, pre-flight conflict-free 4D track generation module, based on the flight plan and the forecast data of the world area forecast system, establishes the aircraft dynamics model, and establishes the theoretical model of track conflict pre-allocation according to the flight conflict coupling point, and generates the aircraft conflict-free 4D track;
步骤B、监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息并提供给管制终端模块;管制终端模块中的飞行中短期4D航迹生成模块依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹;所述依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹的具体实施过程如下:Step B, the monitoring data fusion module fuses the air traffic control radar monitoring data and the automatic correlation monitoring data, generates the real-time track information of the aircraft and provides it to the control terminal module; Track information and historical track information infer the aircraft 4D trajectory in a certain time window in the future; the specific implementation process of predicting the aircraft 4D trajectory in a certain time window in the future according to the real-time track information and historical track information of the aircraft is as follows:
步骤B6、对航空器轨迹数据预处理,依据所获取的航空器原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的航空器离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,...,△yn-1],其中△xb=xb+1-xb,△yb=yb+1-yb(b=1,2,...,n-1);Step B6, preprocessing the aircraft trajectory data, based on the acquired original discrete two-dimensional position sequence x=[x 1 ,x 2 ,...,x n ] and y=[y 1 ,y 2 ,... ,y n ], using the first-order difference method to process it to obtain a new aircraft discrete position sequence △x=[△x 1 ,△x 2 ,...,△x n-1 ] and △y=[△y 1 ,△y 2 ,...,△y n-1 ], where △x b =x b+1 -x b ,△y b =y b+1 -y b (b=1,2,.. .,n-1);
步骤B7、对航空器轨迹数据聚类,对处理后新的航空器离散二维位置序列△x和△y,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类;Step B7, clustering the aircraft trajectory data, and clustering the new processed aircraft discrete two-dimensional position sequences △x and △y by setting the number of clusters M', using the K-means clustering algorithm to cluster them respectively ;
步骤B8、对聚类后的航空器轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的航空器运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段ζ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';Step B8. Use the hidden Markov model to perform parameter training on the clustered aircraft trajectory data. By treating the processed aircraft trajectory data △x and △y as the obvious observations of the hidden Markov process, by setting Hidden state number N' and parameter update period ζ', based on the latest T' location observations and using the B-W algorithm to scroll to obtain the latest hidden Markov model parameter λ';
步骤B9、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;Step B9, according to the Hidden Markov Model parameters, use the Viterbi algorithm to obtain the hidden state q corresponding to the observed value at the current moment;
步骤B10、通过设定预测时域h',基于航空器当前时刻的隐状态q,获取未来时段航空器的位置预测值O。Step B10, by setting the prediction time domain h', based on the hidden state q of the aircraft at the current moment, obtain the predicted position value O of the aircraft in the future period.
进一步的,步骤B中,所述聚类个数M'的值为4,隐状态数目N'的值为3,参数更新时段ζ'为30秒,T'为10,预测时域h'为300秒。Further, in step B, the value of the number of clusters M' is 4, the value of the number of hidden states N' is 3, the parameter update period ζ' is 30 seconds, T' is 10, and the prediction time domain h' is 300 seconds.
进一步的,步骤B的B8具体是指:由于所获得的航迹序列数据长度是动态变化的,为了实时跟踪航空器航迹的状态变化,有必要在初始航迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测航空器在未来某时刻的位置;每隔时段ζ',依据最新获得的T'个观测值(o1,o2,...,oT')对航迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;Further, B8 of Step B specifically refers to: Since the length of the obtained track sequence data is dynamically changing, in order to track the state change of the aircraft track in real time, it is necessary to set the initial track hidden Markov model parameter λ'= Based on (π,A,B), it is readjusted in order to more accurately predict the position of the aircraft at a certain time in the future; every period ζ', based on the latest T' observations (o 1 ,o 2 , ..., o T' ) re-estimate the track hidden Markov model parameter λ'=(π, A, B);
步骤B的B10具体是指:每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于航空器当前时刻的隐状态q,通过设定预测时域h',在时刻t获取航空器在未来时段h'的位置预测值O。B10 of step B specifically refers to: every time period According to the latest hidden Markov model parameters λ'=(π,A,B) and the latest H historical observations (o 1 ,o 2 ,...,o H ), based on the hidden state q of the aircraft at the current moment , by setting the prediction time domain h', the predicted position value O of the aircraft in the future period h' is obtained at time t.
更进一步的,时段为4秒。Furthermore, the time period for 4 seconds.
进一步的,所述步骤A的航空器无冲突4D航迹按照以下方法生成:Further, the conflict-free 4D track of the aircraft in step A is generated according to the following method:
步骤A1、进行航空器状态转移建模,根据飞行计划中航空器的飞行高度剖面,建立单个航空器在不同航段转移的Petri网模型:E=(g,G,Pre,Post,m)为航空器阶段转移模型,其中g表示飞行航段,G表示垂直剖面中飞行状态参数的转换点,Pre和Post分别表示航段和航路点的前后向连接关系,表示航空器所处的飞行阶段;Step A1, carry out aircraft state transfer modeling, according to the flight altitude profile of the aircraft in the flight plan, establish the Petri net model that single aircraft transfers in different flight segments: E=(g, G, Pre, Post, m) is the aircraft stage transfer Model, where g represents the flight segment, G represents the transition point of the flight state parameters in the vertical section, Pre and Post represent the forward and backward connection relationship between the flight segment and the waypoint, respectively, Indicates the phase of flight the aircraft is in;
步骤A2、建立航空器全飞行剖面混杂系统模型如下,Step A2, establishing the hybrid system model of the full flight profile of the aircraft is as follows,
vH=κ(vCAS,Mach,hp,tLOC),v H = κ(v CAS , Mach, h p , t LOC ),
vGS=μ(vCAS,Mach,hp,tLOC,vWS,α),v GS = μ(v CAS ,Mach,h p ,t LOC ,v WS ,α),
其中vCAS为校正空速,Mach为马赫数,hp为气压高度,α为风向预报与航路的夹角,vWS为风速预报值,tLOC为温度预报值,vH为高度变化率,vGS为地速;Where v CAS is the calibrated airspeed, Mach is the Mach number, h p is the pressure altitude, α is the angle between the wind direction forecast and the route, v WS is the wind speed forecast value, t LOC is the temperature forecast value, v H is the altitude change rate, v GS is ground speed;
步骤A3、采用混杂系统仿真的方式推测求解航迹:采用将时间细分的方法,利用状态连续变化的特性递推求解任意时刻航空器在某一飞行阶段距参考点的航程和高度其中J0为初始时刻航空器距参考点的航程,△τ为时间窗的数值,J(τ)为τ时刻航空器距参考点的航程,h0为初始时刻航空器距参考点的高度,h(τ)为τ时刻航空器距参考点的高度,由此可以推测得到单航空器的4D航迹;Step A3. Use the hybrid system simulation method to estimate and solve the flight path: use the method of subdividing time, and use the characteristics of continuous state changes to recursively solve the flight distance of the aircraft at a certain flight stage from the reference point at any time and height where J 0 is the flight distance from the aircraft to the reference point at the initial moment, △τ is the value of the time window, J(τ) is the flight distance from the aircraft to the reference point at the time τ, h 0 is the height of the aircraft from the reference point at the initial moment, h(τ ) is the altitude of the aircraft from the reference point at time τ, from which the 4D track of a single aircraft can be inferred;
步骤A4、对多航空器耦合模型实施无冲突调配:根据两航空器预达交叉点的时间,按照空中交通管制原则,对交叉点附近不满足间隔要求的航空器4D航迹进行二次规划,得到无冲突4D航迹。Step A4, implement conflict-free deployment on the multi-aircraft coupling model: according to the time when the two aircraft arrive at the intersection, according to the air traffic control principle, carry out secondary planning on the 4D track of the aircraft that does not meet the separation requirements near the intersection, and obtain a conflict-free 4D track.
进一步的,所述步骤B中监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息,具体按照以下方法:Further, in the step B, the monitoring data fusion module fuses the air traffic control radar monitoring data and the automatic correlation monitoring data to generate real-time track information of the aircraft, specifically according to the following methods:
步骤B1、将坐标单位和时间统一;Step B1, unify the coordinate unit and time;
步骤B2、采用最邻近数据关联算法将属于同一个目标的点相关联,提取目标航迹;步骤B3、将分别从自动相关监视系统和空管雷达提取的航迹数据从不同的时空参Step B2, using the nearest neighbor data association algorithm to correlate the points belonging to the same target to extract the target track; Step B3, extracting the track data from the automatic dependent surveillance system and the air traffic control radar respectively
考坐标系统变换、对准到管制终端统一的时空参考坐标系统;Coordinate system transformation and alignment to the unified space-time reference coordinate system of the control terminal;
步骤B4、计算两条航迹的相关系数,若相关系数小于某一预设阈值,则认为两条航迹不相关;否则该两条航迹相关,可以进行融合;Step B4, calculating the correlation coefficient of the two tracks, if the correlation coefficient is less than a certain preset threshold, the two tracks are considered irrelevant; otherwise, the two tracks are related and can be fused;
步骤B5、对相关的航迹进行融合。Step B5, fusing related tracks.
更进一步的,所述步骤B5中对相关的航迹进行融合,采用基于采样周期的加权平均算法,其加权系数根据采样周期和信息精度确定,再利用加权平均算法将与之相关的自动相关监视航迹和空管雷达航迹融合为系统航迹。Furthermore, in the step B5, the relevant tracks are fused, and a weighted average algorithm based on the sampling period is adopted, and its weighting coefficient is determined according to the sampling period and information accuracy, and then the weighted average algorithm is used to correlate the relevant automatic correlation monitoring The track and the ATC radar track are fused into the system track.
本发明具有积极的效果:(1)本发明的空中交通管制系统的航空器轨迹预测方法在航空器实时轨迹推测过程中,融入了随机因素的影响,所采用的滚动轨迹推测方案能够及时提取外界随机因素的变化状况,提高了航空器轨迹推测的准确性。The present invention has positive effects: (1) the aircraft trajectory prediction method of the air traffic control system of the present invention incorporates the influence of random factors in the aircraft real-time trajectory estimation process, and the rolling trajectory estimation scheme adopted can extract external random factors in time The change status of the aircraft improves the accuracy of the aircraft trajectory estimation.
(2)本发明的空中交通管制系统的航空器轨迹预测方法对飞行剖面的推算和航迹预测精度高,进而使得冲突化解能力和自动化水平提高,降低了管制员的工作负荷。(2) The aircraft trajectory prediction method of the air traffic control system of the present invention has high precision in calculating the flight profile and trajectory prediction, thereby improving the conflict resolution capability and automation level, and reducing the controller's workload.
附图说明Description of drawings
图1为飞行前无冲突4D航迹生成方法流程示意图;Fig. 1 is a schematic flow chart of a conflict-free 4D track generation method before flight;
图2为飞行中短期4D航迹推测方法流程示意图。Fig. 2 is a schematic diagram of the flow chart of the short-term 4D flight path estimation method in flight.
具体实施方式Detailed ways
(实施例1)(Example 1)
本实施例的基于4D航迹运行的空中交通管制系统,包括机载终端模块、数据通信模块、监视数据融合模块以及管制终端模块。以下对各部分的具体实施方式分别进行详细描述。The air traffic control system based on 4D track operation in this embodiment includes an airborne terminal module, a data communication module, a monitoring data fusion module and a control terminal module. The specific implementation of each part will be described in detail below.
1.机载终端模块1. Airborne terminal module
机载终端模块是飞行员获取地面管制指令、参考4D航迹,以及输入飞行意图的界面,同时还是采集当前航空器位置数据的接口。The airborne terminal module is an interface for pilots to obtain ground control instructions, refer to 4D track, and input flight intentions, and is also an interface for collecting current aircraft position data.
其具体实施方案如下:Its concrete implementation scheme is as follows:
机载终端模块接收如下的信息输入:(1)ADS-B信息采集单元201通过机载GPS采集的航空器位置向量、速度向量,以及本航空器的呼号,编码后通过信息及数据传递给机载数据通信模块;(2)航空器驾驶员需要将与地面管制指令不一致的飞行意图,通过人机输入界面,以及约定的地面管制员可以识别的形式通过信息及数据传递给机载数据通信模块。另外机载终端模块实现如下的信息输出:(1)通过终端显示屏幕,接收和显示飞行员可以识别的飞行管制指令;(2)接收和显示地面管制终端飞行前生成的无冲突4D航迹,以及当地面管制终端探测到冲突后计算的最优解脱4D航迹。The airborne terminal module receives the following information input: (1) The aircraft position vector, velocity vector, and the call sign of the aircraft collected by the ADS-B information collection unit 201 through the airborne GPS, after encoding, pass information and data to the airborne data Communication module; (2) The pilot of the aircraft needs to transmit the flight intention inconsistent with the ground control instructions to the airborne data communication module through the man-machine input interface and the agreed form that the ground controller can recognize. In addition, the airborne terminal module realizes the following information output: (1) through the terminal display screen, receive and display the flight control instructions that the pilot can recognize; (2) receive and display the non-conflict 4D track generated by the ground control terminal before the flight, and The optimal release 4D track calculated when the ground control terminal detects the conflict.
2.数据通信模块2. Data communication module
数据通信模块可实现空地双向数据通信,实现机载实时位置数据和飞行意图数据单元的下行传输和地面管制指令单元,以及参考4D航迹单元的上行传输。The data communication module can realize air-ground two-way data communication, realize the downlink transmission of the airborne real-time position data and flight intention data unit and the ground control command unit, and the uplink transmission of the reference 4D track unit.
其具体实施方案如下:Its concrete implementation scheme is as follows:
下行数据通信:机载终端通过机载二次雷达应答机将航空器识别标志和4D位置信息,以及其他附加数据,如飞行意图、飞行速度、气象等信息传输给地面二次雷达(SSR),二次雷达接收后对数据报文进行解析,并传输给中央数据处理组件301解码,通过指令航迹数据接口传输到管制终端;上行数据通信:地面管制终端通过指令航迹数据接口,经中央数据处理组件301编码后,地面二次雷达的询问机将将地面管制指令或参考4D航迹信息传递并显示在机载终端。Downlink data communication: The airborne terminal transmits the aircraft identification mark and 4D position information, as well as other additional data, such as flight intention, flight speed, weather and other information to the ground secondary radar (SSR) through the airborne secondary radar transponder. After the secondary radar receives the data message, it analyzes the data message and transmits it to the central data processing component 301 for decoding, and transmits it to the control terminal through the command track data interface; uplink data communication: the ground control terminal passes the command track data interface, and the central data processing After component 301 is coded, the interrogator of the ground secondary radar will transmit and display the ground control command or reference 4D track information on the airborne terminal.
3.监视数据融合模块3. Monitoring data fusion module
监视数据融合模块实现空管雷达监视与自动相关监视ADS-B数据的融合,为管制终端模块中的飞行中短期4D航迹生成子模块和实时飞行冲突监控与告警子模块提供实时航迹信息。The monitoring data fusion module realizes the fusion of air traffic control radar monitoring and automatic dependent surveillance ADS-B data, and provides real-time track information for the short-term flight 4D track generation sub-module and the real-time flight conflict monitoring and warning sub-module in the control terminal module.
其具体实施方案如下:Its concrete implementation scheme is as follows:
(1)在预处理阶段将坐标单位和时间统一,假设分别从ADS-B和空管雷达中提取的数据是一系列离散点的坐标(如经度、纬度、海拔高度)、各点对应采集时间;(2)采用最邻近数据关联算法将属于同一个目标的点相关联,提取目标航迹;(3)将分别从ADS-B和空管雷达中提取的航迹数据从不同的时空参考坐标系统变换、对准到管制终端统一的时空参考坐标系统;(4)计算两条航迹的相关系数,若相关系数小于某一预设阈值,则认为两条航迹不相关,否则该两条航迹相关,可以进行融合;(5)对相关的航迹进行融合。由于ADS-B和空管雷达的精度和采样周期不同,本系统采用基于采样周期的加权平均算法,其加权系数根据采样周期和信息精度确定,再利用加权平均算法将与之相关的ADS-B航迹和空管雷达航迹融合为系统航迹。(1) Unify the coordinate unit and time in the preprocessing stage, assuming that the data extracted from ADS-B and air traffic control radar are the coordinates of a series of discrete points (such as longitude, latitude, altitude), and the corresponding collection time of each point ; (2) Use the nearest neighbor data association algorithm to correlate the points belonging to the same target to extract the target track; (3) extract the track data from ADS-B and air traffic control radar from different space-time reference coordinates The system transforms and aligns to the unified space-time reference coordinate system of the control terminal; (4) calculates the correlation coefficient of the two tracks, if the correlation coefficient is less than a preset threshold, the two tracks are considered irrelevant, otherwise the two tracks Tracks are related and can be fused; (5) Fusion of related tracks. Since the accuracy and sampling period of ADS-B and air traffic control radar are different, this system adopts a weighted average algorithm based on the sampling period, and its weighting coefficient is determined according to the sampling period and information accuracy, and then the ADS-B The track and the ATC radar track are fused into the system track.
4.管制终端模块4. Control terminal module
管制终端模块包括飞行前无冲突4D航迹生成、飞行中短期4D航迹生成这2个子模块。The control terminal module includes two sub-modules: pre-flight non-conflict 4D trajectory generation and short-term and mid-flight 4D trajectory generation.
(1)飞行前无冲突4D航迹生成(1) Conflict-free 4D track generation before flight
根据飞行数据处理系统(FDP)得到的飞行计划和世界区域预报系统(WAFS)发布的风、温度的GRIB格点预报数据,对空中交通系统建立层次化的混杂系统模型,通过系统在安全状态的演化,描述状态演化的时间轨迹,生成航空器航迹。According to the flight plan obtained by the flight data processing system (FDP) and the GRIB grid point forecast data of wind and temperature released by the world area forecast system (WAFS), a hierarchical hybrid system model is established for the air traffic system, and the system is in a safe state. Evolution, which describes the time trajectory of state evolution and generates aircraft tracks.
如图1所示,其具体实施过程如下:As shown in Figure 1, the specific implementation process is as follows:
首先,进行航空器状态转移建模。航空器沿航迹飞行的过程表现为在航段之间动态切换过程,根据飞行计划中航空器的飞行高度剖面,建立单个航空器在不同航段转移的Petri网模型:E=(g,G,Pre,Post,m)为航空器阶段转移模型,其中g表示飞行航段,G表示垂直剖面中飞行状态参数(包括空速、高度、构型)的转换点,Pre和Post分别表示航段和航路点的前后向连接关系,表示航空器所处的飞行阶段。Firstly, model the aircraft state transition. The process of aircraft flying along the track is a dynamic switching process between flight segments. According to the flight altitude profile of the aircraft in the flight plan, a Petri net model for the transfer of a single aircraft in different flight segments is established: E=(g,G,Pre, Post, m) is the aircraft stage transfer model, where g represents the flight segment, G represents the transition point of the flight state parameters (including airspeed, altitude, configuration) in the vertical profile, Pre and Post represent the flight segment and waypoint respectively forward and backward connections, Indicates the phase of flight the aircraft is in.
其次,建立航空器全飞行剖面混杂系统模型。航空器在单个航段内的飞行视为连续过程,依据质点能量模型,推导航空器在不同的运行阶段同气象条件下的航空器动力学方程,vH=κ(vCAS,Mach,hp,tLOC),vGS=μ(vCAS,Mach,hp,tLOC,vWS,α),其中vCAS为校正空速,Mach为马赫数,hp为气压高度,α为风向预报与航路的夹角,vWS为风速预报值,tLOC为温度预报值,vH为高度变化率,vGS为地速。Secondly, a hybrid system model of the aircraft's full flight profile is established. The flight of an aircraft in a single flight segment is regarded as a continuous process. According to the particle energy model, the aircraft dynamics equation of the aircraft in different operating stages and under the same meteorological conditions is deduced, v H = κ(v CAS ,Mach,h p ,t LOC ), v GS =μ(v CAS ,Mach,h p ,t LOC ,v WS ,α), where v CAS is the calibrated airspeed, Mach is the Mach number, h p is the pressure altitude, α is the wind direction forecast and the route The included angle, v WS is the wind speed forecast value, t LOC is the temperature forecast value, v H is the altitude change rate, and v GS is the ground speed.
然后,采用混杂系统仿真的方式推测求解航迹。采用将时间细分的方法,利用状态连续变化的特性递推求解任意时刻航空器在某一飞行阶段距参考点的航程和高度其中J0为初始时刻航空器距参考点的航程,△τ为时间窗的数值,J(τ)为τ时刻航空器距参考点的航程,h0为初始时刻航空器距参考点的高度,h(τ)为τ时刻航空器距参考点的高度,由此可以推测得到单航空器的4D航迹。Then, the hybrid system simulation method is used to infer and solve the track. Using the method of subdividing time, using the characteristics of continuous state changes to recursively solve the flight distance of the aircraft at a certain flight stage from the reference point at any time and height where J 0 is the flight distance from the aircraft to the reference point at the initial moment, △τ is the value of the time window, J(τ) is the flight distance from the aircraft to the reference point at the time τ, h 0 is the height of the aircraft from the reference point at the initial moment, h(τ ) is the height of the aircraft from the reference point at time τ, from which the 4D track of a single aircraft can be inferred.
最后,对多航空器耦合模型实施无冲突调配。根据两航空器预达交叉点的时间,按照空中交通管制原则,对交叉点附近不满足间隔要求的航空器4D航迹进行二次规划,得到无冲突4D航迹。Finally, a conflict-free deployment is implemented for the multi-aircraft coupling model. According to the time when the two aircrafts arrive at the intersection and according to the air traffic control principle, the 4D trajectory of the aircraft that does not meet the separation requirement near the intersection is re-planned to obtain a non-conflicting 4D trajectory.
(2)飞行中短期4D航迹生成(2) Short-term 4D track generation during flight
依据管制雷达和自动相关监视系统ADS-B实施融合后获得航空器实时航迹数据,利用隐马尔科夫模型,推测未来5分钟时间窗内的航空器4D轨迹。According to the real-time trajectory data of the aircraft obtained after the fusion of the control radar and the automatic dependent surveillance system ADS-B, the hidden Markov model is used to predict the 4D trajectory of the aircraft in the next 5-minute time window.
如图2所示,其具体实施过程如下:As shown in Figure 2, the specific implementation process is as follows:
首先,对航空器轨迹数据预处理,依据所获取的航空器原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的航空器离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,...,△yn-1],其中△xb=xb+1-xb,△yb=yb+1-yb(b=1,2,...,n-1)。First, the aircraft trajectory data is preprocessed, based on the acquired original discrete two-dimensional position sequence x=[x 1 ,x 2 ,...,x n ] and y=[y 1 ,y 2 ,..., y n ], using the first-order difference method to process it to obtain a new aircraft discrete position sequence △x=[△x 1 ,△x 2 ,...,△x n-1 ] and △y=[△y 1 ,△y 2 ,...,△y n-1 ], where △x b =x b+1 -x b , △y b =y b+1 -y b (b=1,2,... ,n-1).
其次,对航空器轨迹数据聚类。对处理后新的航空器离散二维位置序列△x和△y,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类。Second, cluster the aircraft trajectory data. For the new aircraft discrete two-dimensional position sequence △x and △y after processing, by setting the number of clusters M', K-means clustering algorithm is used to cluster them respectively.
然后,对聚类后的航空器轨迹数据利用隐马尔科夫模型进行参数训练。通过将处理后的航空器运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段ζ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ':由于所获得的航迹序列数据长度是动态变化的,为了实时跟踪航空器航迹的状态变化,有必要在初始航迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测航空器在未来某时刻的位置。每隔时段ζ',依据最新获得的T'个观测值(o1,o2,...,oT')对航迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计。Then, the hidden Markov model is used for parameter training on the clustered aircraft trajectory data. By treating the processed aircraft trajectory data △x and △y as the obvious observations of the hidden Markov process, by setting the number of hidden states N' and the parameter update period ζ', according to the latest T' position observations And use the BW algorithm to scroll to obtain the latest hidden Markov model parameter λ': Since the length of the obtained track sequence data is dynamically changing, in order to track the state changes of the aircraft track in real time, it is necessary to Based on the model parameter λ'=(π,A,B), it is readjusted in order to more accurately predict the position of the aircraft at a certain moment in the future. At intervals ζ', according to the latest T' observations (o 1 ,o 2 ,...,o T' ), the parameters of the track hidden Markov model λ'=(π,A,B) are calculated Re-estimate.
再而,依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q。Furthermore, according to the hidden Markov model parameters, the Viterbi algorithm is used to obtain the hidden state q corresponding to the observed value at the current moment.
最后,每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于航空器当前时刻的隐状态q,通过设定预测时域h',在时刻t获取航空器在未来时段h'的位置预测值O。Finally, every time period According to the latest hidden Markov model parameters λ'=(π,A,B) and the latest H historical observations (o 1 ,o 2 ,...,o H ), based on the hidden state q of the aircraft at the current moment , by setting the prediction time domain h', the predicted position value O of the aircraft in the future period h' is obtained at time t.
所述聚类个数M'的值为4,隐状态数目N'的值为3,参数更新时段ζ'为30秒,T'为10,预测时域h'为300秒,时段为4秒。The value of the number of clusters M' is 4, the value of the number of hidden states N' is 3, the parameter update period ζ' is 30 seconds, T' is 10, the prediction time domain h' is 300 seconds, and the period for 4 seconds.
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in different forms can also be made. It is not necessary and impossible to exhaustively list all the implementation manners here. And these obvious changes or modifications derived from the spirit of the present invention are still within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610871468.7A CN106251709B (en) | 2015-01-07 | 2015-01-07 | aircraft trajectory prediction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510007935.7A CN104504937B (en) | 2015-01-07 | 2015-01-07 | Aircraft trajectory prediction method of air traffic control system |
CN201610871468.7A CN106251709B (en) | 2015-01-07 | 2015-01-07 | aircraft trajectory prediction method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510007935.7A Division CN104504937B (en) | 2015-01-07 | 2015-01-07 | Aircraft trajectory prediction method of air traffic control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106251709A CN106251709A (en) | 2016-12-21 |
CN106251709B true CN106251709B (en) | 2018-11-23 |
Family
ID=52946553
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610871468.7A Active CN106251709B (en) | 2015-01-07 | 2015-01-07 | aircraft trajectory prediction method |
CN201610871406.6A Pending CN106205221A (en) | 2015-01-07 | 2015-01-07 | Aircraft Trajectory Prediction Method Based on 4D Track Operation |
CN201610871349.1A Pending CN106409013A (en) | 2015-01-07 | 2015-01-07 | Aircraft trajectory prediction method |
CN201510007935.7A Active CN104504937B (en) | 2015-01-07 | 2015-01-07 | Aircraft trajectory prediction method of air traffic control system |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610871406.6A Pending CN106205221A (en) | 2015-01-07 | 2015-01-07 | Aircraft Trajectory Prediction Method Based on 4D Track Operation |
CN201610871349.1A Pending CN106409013A (en) | 2015-01-07 | 2015-01-07 | Aircraft trajectory prediction method |
CN201510007935.7A Active CN104504937B (en) | 2015-01-07 | 2015-01-07 | Aircraft trajectory prediction method of air traffic control system |
Country Status (1)
Country | Link |
---|---|
CN (4) | CN106251709B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021173072A1 (en) * | 2020-02-25 | 2021-09-02 | Thales Solutions Asia Pte Ltd | Computer-implemented method and non-transitory computer-readable memory for air traffic control performance monitoring |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108257421A (en) * | 2017-12-22 | 2018-07-06 | 广州市中南民航空管通信网络科技有限公司 | A kind of flight Trajectory Prediction method, electronic equipment and storage medium |
CN109143850A (en) * | 2018-07-05 | 2019-01-04 | 江苏理工学院 | Rail vehicle suspension system method for parameter estimation based on strong tracking filter |
CN110648561A (en) * | 2019-11-04 | 2020-01-03 | 中国民航大学 | Air traffic situation risk measurement method based on double-layer multi-level network model |
CN111627258A (en) * | 2020-04-16 | 2020-09-04 | 中国航空无线电电子研究所 | Method for generating air traffic operation simulation data |
EP4200677A1 (en) * | 2020-08-18 | 2023-06-28 | Siemens Industry Software Ltd. | A method and a data processing system for multi-state simulation for validating the safety of an industrial scenario |
CN112017480B (en) * | 2020-08-20 | 2021-07-13 | 南京航空航天大学 | A dynamic memory planning method for aircraft green cruise trajectory |
CN113284369B (en) * | 2021-05-14 | 2022-07-01 | 中国民航大学 | Prediction method for actually measured airway data based on ADS-B |
CN113611158A (en) * | 2021-06-30 | 2021-11-05 | 四川大学 | Aircraft trajectory prediction and altitude deployment method based on airspace situation |
CN114842678B (en) * | 2022-03-28 | 2024-04-26 | 中国民用航空中南地区空中交通管理局广西分局 | Civil aviation control operation site similarity daily measurement system |
CN115035747A (en) * | 2022-06-07 | 2022-09-09 | 成都民航空管科技发展有限公司 | Flow overrun warning method and system |
CN116824925B (en) * | 2023-08-31 | 2023-11-03 | 四川九洲空管科技有限责任公司 | A method to improve TCAS target track quality based on hybrid surveillance |
CN117423257B (en) * | 2023-11-16 | 2024-06-28 | 中国民用航空总局第二研究所 | ADS-B airborne equipment performance abnormality aircraft monitoring method and system |
CN117685981A (en) * | 2023-12-14 | 2024-03-12 | 中国人民解放军战略支援部队信息工程大学 | Aircraft 4D trajectory prediction method and system based on equivalent guidance law |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2854978B1 (en) * | 2003-05-14 | 2007-04-20 | Jacques Villiers | DEVICE AND METHOD FOR AUTOMATED ASSISTANCE TO AIR TRAFFIC CONTROLLERS. |
US7877197B2 (en) * | 2007-05-15 | 2011-01-25 | The Boeing Company | Systems and methods for real-time conflict-checked, operationally preferred flight trajectory revision recommendations |
US8560148B2 (en) * | 2010-11-09 | 2013-10-15 | Lockheed Martin Corporation | Method and apparatus for air traffic trajectory synchronization |
CN102013175B (en) * | 2010-12-16 | 2012-07-04 | 四川川大智胜软件股份有限公司 | Mid-term air traffic conflict detection method based on 4D flight path and radar data |
US9014880B2 (en) * | 2010-12-21 | 2015-04-21 | General Electric Company | Trajectory based sense and avoid |
US8433506B2 (en) * | 2011-06-30 | 2013-04-30 | General Electric Company | Weather data selection relative to an aircraft trajectory |
CN102509475B (en) * | 2011-10-26 | 2013-11-06 | 南京航空航天大学 | Air traffic control system and method for four-dimensional (4D)-trajectory-based operation |
US8798898B2 (en) * | 2011-10-31 | 2014-08-05 | General Electric Company | Methods and systems for inferring aircraft parameters |
CN102436764A (en) * | 2011-11-21 | 2012-05-02 | 南京莱斯信息技术股份有限公司 | Method for mining flight control factors through historical data |
CN102496313B (en) * | 2011-12-31 | 2013-10-23 | 南京莱斯信息技术股份有限公司 | Correction method of aircraft plan prediction locus by using supervision data |
CN103336863B (en) * | 2013-06-24 | 2016-06-01 | 北京航空航天大学 | The flight intent recognition methods of flight path observed data of flying based on radar |
CN104240541B (en) * | 2014-09-09 | 2016-01-27 | 中国电子科技集团公司第二十八研究所 | A kind of 4D flight path generation method |
-
2015
- 2015-01-07 CN CN201610871468.7A patent/CN106251709B/en active Active
- 2015-01-07 CN CN201610871406.6A patent/CN106205221A/en active Pending
- 2015-01-07 CN CN201610871349.1A patent/CN106409013A/en active Pending
- 2015-01-07 CN CN201510007935.7A patent/CN104504937B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021173072A1 (en) * | 2020-02-25 | 2021-09-02 | Thales Solutions Asia Pte Ltd | Computer-implemented method and non-transitory computer-readable memory for air traffic control performance monitoring |
Also Published As
Publication number | Publication date |
---|---|
CN104504937B (en) | 2017-01-04 |
CN106409013A (en) | 2017-02-15 |
CN106251709A (en) | 2016-12-21 |
CN106205221A (en) | 2016-12-07 |
CN104504937A (en) | 2015-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106251709B (en) | aircraft trajectory prediction method | |
CN104485025B (en) | Flight conflict early warning method of air traffic control system | |
CN106340208B (en) | Working method of air traffic control system based on 4D track operation | |
CN106157700B (en) | Air Traffic Control Method Based on 4D Track Operation | |
CN104504939B (en) | Aircraft trajectory prediction method of air traffic control system | |
CN102509475B (en) | Air traffic control system and method for four-dimensional (4D)-trajectory-based operation | |
CN104504941B (en) | Flight conflict resolution method of air traffic control system | |
CN100541556C (en) | A Correlative Processing System of ADS-B Track and Flight Plan | |
CN103093649B (en) | Method and system for inferring aircraft parameters | |
CN104504942B (en) | Flight conflict early warning method of air traffic control system | |
JP6234141B2 (en) | Movement plan management system, movement plan management method, and movement plan management program | |
Porretta et al. | Strategic conflict detection and resolution using aircraft intent information | |
JP6456442B2 (en) | Movement plan management system, profile management system, profile management program, and movement plan management program | |
Patchev et al. | A new approach to an automated air traffic control | |
Zhang | Optimal Control of Air Traffic Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |