CN106251360A - 基于算术‑几何散度的灰度图像阈值分割方法 - Google Patents

基于算术‑几何散度的灰度图像阈值分割方法 Download PDF

Info

Publication number
CN106251360A
CN106251360A CN201610706931.2A CN201610706931A CN106251360A CN 106251360 A CN106251360 A CN 106251360A CN 201610706931 A CN201610706931 A CN 201610706931A CN 106251360 A CN106251360 A CN 106251360A
Authority
CN
China
Prior art keywords
image
formula
segmentation
divergence
geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610706931.2A
Other languages
English (en)
Inventor
聂方彦
张平凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Arts and Science
Original Assignee
Hunan University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Arts and Science filed Critical Hunan University of Arts and Science
Priority to CN201610706931.2A priority Critical patent/CN106251360A/zh
Publication of CN106251360A publication Critical patent/CN106251360A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种基于算术‑几何散度的灰度图像直方图阈值分割方法,采用信息论中算术‑几何散度做为图像阈值分割的准则函数,使本发明与其它方法相比提升了图像分割质量,分割图像边缘轮廓精确,纹理细节清晰;采用在灰度直方图空间求取最佳阈值,使本发明具有高的计算效率,适用于实时性要求高的图像处理任务,适用于实时性要求高的工业应用图像处理任务需求。

Description

基于算术-几何散度的灰度图像阈值分割方法
技术领域
本发明涉及机器视觉中的图像分割领域,具体是指一种基于灰度图像直方图信息的算术-几何散度实现对基于机器视觉的无损检测等工业图像快速、准确分割的阈值分割方法。
背景技术
图像分割是图像处理中最为基本,但又是最为困难和最具挑战性的问题之一。图像分割的目的是把图像分成互不重叠的多个区域,各区域内部目标同质,从而为实现图像的后续处理奠定基础。因图像成像过程中受多种因素影响,其复杂性也致使用于分割的方法不能普适于不同的分割任务,因此研究新的方法用于实践中的特定分割任务也成为研究人员在图像处理工作中必须努力的方向之一。
在很多图像处理应用场景中,如基于机器视觉的产品质量检测、基于机器视觉的安全监测,对图像处理任务的完成一般需要较高的实时性,因此在多种图像分割技术中,有着很高实时性能、而且也具有较高分割精确性的直方图阈值分割技术成为图像分割领域中相当流行的技术之一。在苛刻的工作环境下,如工业流水线上的工件质量无损检测、产品表面缺陷检测等,这些场景得到的成像图像往往会受到噪声、不均匀光照等很多因素的干扰,因此成像质量一般较差,因此如何选取最佳分割阈值成为分割的关键。针对这一问题,国内外学者进行了广泛的研究,提出了很多种分割方法。
基于信息论中熵概念(如Shannon熵、交叉熵、Tsallis交叉熵等)的方法是图像阈值化技术中得到最为广泛应用的阈值化方法之一。熵方法有着坚实的物理学背景,且在图像分割中也有着很高的效能故其得到了研究人员和工业实践的极度青睐,因此基于熵概念的方法或改进方案在研究或应用中纷呈叠出。其中基于交叉熵概念的方法是在生产实践中得到最为广泛应用的著名熵阈值分割方法之一,该方法最初由Li和Lee提出。交叉熵,在信息论中又被称为信息散度、相对熵,它是用于度量信息系统间信息距离差异的测度。在图像阈值化中,交叉熵用作度量图像分割前后像素信息丢失率的工具,图像阈值化前后信息丢失越少,则它们间的交叉熵也就越小,则分割后得到的分割图像的质量越高。Li和Lee提出的最小交叉熵阈值化方法是最为著名的基于交叉熵(也即信息散度、相对熵)概念的图像阈值分割方法,除了该方法外,与交叉熵概念相关的其它著名阈值化方法还有Kittler和Illingworth提出的最小误差阈值化方法,该方法本质上是一种基于欧氏距离的均方误差概念的相对熵方法,均方误差并不能完全有效把图像像素间关系区分开,因此在对图像实施分割时也存在不足。另外我国学者唐英干等人基于Tsallis交叉熵,在采用均匀分布的基础上提出一种最小Tsallis交叉熵方法,然而在真实环境中图像的像素分布并不总是服从均匀分布,因此该方法的分割性能也有待提高;基于卡方散度(χ2-divergence)的方法是相关学者提出的另外一种基于散度概念的图像阈值化方法,该方法对直方图的分布非常敏感,当直方图分布不均时得不到好的阈值。
信息论中的算术-几何散度(Arithmetic-Geometric divergence)是学者Taneja在分析传统信息散度(交叉熵)测度的基础上提出的用于度量信息系统间相似性(或非相似性)的一种高效信息距离测度,该测度克服了传统散度(交叉熵、卡方散度等)测度存在的不足,能更好的把系统间的相似或不相似性反映出来。图像是一复杂的物理系统,其内部像素信息的分布根据成像方式、过程的不同而千差万别,因此在分割过程中,图像像素间的信息差异度量方式也严重影响着分割性能。基于算术-几何散度,本发明提出一种区别于传统交叉熵(或信息散度、相对熵)概念的灰度图像阈值化方法用以提高图像分割性能。
发明内容
本发明的目的在于为应对复杂的图像分割任务,针对现有方法中存在的分割精度不足、普适性不强等特点,提出基于算术-几何散度的图像灰度级直方图阈值分割技术,开发出一种分割性能优越、适用于实时性要求高的工业生产场景,如工业无损检测等场景的阈值分割方法。
为达到上述目的,本发明的构思是:
本发明的基于算术-几何散度的灰度图像直方图阈值分割方法包括:输入待分割图像并求取其归一化的灰度级直方图,构建分割前后图像算术-几何散度表达式,通过在图像灰度级范围内求取使该表达式获得最小值的灰度级值,然后用该灰度级值对图像实施阈值分割并输出分割图像。
用于构建图像阈值分割准则函数的算术-几何散度的表达式为:
其中P,Q表示离散有限概率分布向量,D(P|Q)用于度量P、Q之间信息差异值,D(P|Q)值越小,说明概率分布P、Q越相似。
本发明应用算术-几何散度,在图像灰度级直方图空间构建阈值化前后图像的算术-几何散度和,并通过在灰度级范围内最小化阈值化前后图像算术-几何散度和获取最佳分割阈值,从而实现图像分割。
基于上述发明构思,本发明采用以下技术方案:
一种基于算术-几何散度的灰度图像直方图阈值分割方法,其特征在于操作步骤如下:
(1)读取待分割的灰度图像,并将其存入一个大小为M×N的二维图像数组I中;
(2)遍历图像数组I,计算得到图像最大灰度级L-1及灰度级集合G={0,1,…,L-1},通过公式hi=ni/(M×N)计算得到归一化的灰度直方图H(H={h0,h1,…,hL-1}),这里ni表示待分割图像内灰度级为i的像素数,L-1表示图像内最大灰度级数;
(3)假定t为分割阈值,则阈值化时t将图像像素分为归属于两个不同类的灰度级集合C0与C1,其中C0={0,1,2,…,t},C1={t+1,t+2,…,L-1};
(4)用H做为图像灰度级的概率密度函数估计,基于公式一计算关于C0与C1的先验概率P0及P1
公式一:
(5)基于公式二计算关于C0与C1的灰度均值m0与m1
公式二:
(6)通过公式三和公式四计算关于图像灰度级类C0与C1的算术-几何散度D0和D1
公式三:
公式四:
(7)阈值化前后图像总的算术-几何散度用公式五定义,此式即为图像阈值化准则函数:
公式五:
(8)在G={0,1,…,L-1}范围内搜索使公式六获得最小值的灰度级t*,t*即最优分割阈值:
公式六:
(9)假设用f(x,y)表示原始图像I坐标(x,y)处的像素灰度值,s(x,y)表示分割后图像坐标(x,y)处的像素灰度值,则求得最佳分割阈值t*后,s(x,y)可用公式七计算得到;
公式七:
(10)输出分割后的图像。
本发明的有益效果:1、本发明采用信息论中弥补了传统散度在度量信息系统间信息差异不足的算术-几何散度做为图像阈值分割的准则函数,使本发明与其它方法相比提升了图像分割质量;2、本发明采用的算术-几何散度在度量阈值化前后图像间的信息损失率时,能使阈值分割图像尽量多的保留原始图像的细节信息,因此分割图像边缘轮廓精确,纹理细节清晰;3、采用在灰度直方图空间求取最佳阈值,使本发明具有高的计算效率,适用于实时性要求高的图像处理任务。实验表明,对于具有8位256级灰度的多幅测试图像,在一台CPU为Intel(R) Core(TM)2 Duo CPU T8100 @ 2.10GHz,操作系统为Window XP,编程环境为MATLAB R2007b的条件下执行相应的图像分割任务,应用本发明得到的分割图像区域内部均匀,轮廓边界准确,计算耗时小于0.03秒,适用于实时性要求高的工业应用图像处理任务需求。
附图说明
图1是本发明的流程框图;
图2是用于测试的3幅NDT图像原图,即img1、img2和img3原图;
图3是本发明对于img1图像分割结果与现有三种方法分割结果比较图;
图4是本发明对于img2图像分割结果与现有三种方法分割结果比较图;
图5是本发明对于img3图像分割结果与现有三种方法分割结果比较图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合具体实例,并参照附图,对本发明的具体实施方式作详细说明,本发明包含但不限于所举实例。
如图1所示,为本发明的整体流程图,具体步骤如下:
步骤1:设置算法运行时用于临时存放图像算术-几何散度值的变量MAGD为一无穷大初值,读取待分割的灰度图像,并将其存入一个大小为M×N的二维图像数组I中;
步骤2:遍历图像数组I,计算得到图像最大灰度级L-1及灰度级集合G={0,1,…,L-1},通过公式hi=ni/(M×N)计算得到归一化的灰度直方图H(H={h0,h1,…,hL-1}),这里ni表示待分割图像内灰度级为i的像素数,L-1表示图像内最大灰度级数,对于8位数字图像而言L=256;
步骤3: 假定t为分割阈值,则阈值化时t将图像像素分为归属于两个不同类的灰度级集合C0与C1,其中C0={0,1,2,…,t},C1={t+1,t+2,…,L-1};
步骤4:用H做为图像灰度级的概率密度函数估计,基于公式一计算关于C0与C1的先验概率P0及P1
公式一:
步骤5:基于公式二计算关于C0与C1的灰度均值m0与m1
公式二:
步骤6:通过公式三和公式四计算关于图像灰度级类C0与C1的算术-几何散度D0和D1
公式三:
公式四:
步骤7:用公式五定义阈值化前后图像总的算术-几何散度,此式即为图像阈值化准则函数:
公式五:
步骤8:在G={0,1,…,L-1}范围内搜索使公式六获得最小值的灰度级t*,t*即最优分割阈值:
公式六:
步骤9:假设用f(x,y)表示原始图像I坐标(x,y)处的像素灰度值,s(x,y)表示分割后图像坐标(x,y)处的像素灰度值,则求得最佳分割阈值t*后,s(x,y)可用公式七计算得到:
公式七:
步骤10:输出分割后的图像。
本发明的效果可以通过以下实验进一步说明:
1)实验条件
实验仿真环境为:一台CPU为Intel(R) Core(TM)2 Duo CPU T8100 @ 2.10GHz,操作系统为Window XP,编程环境为MATLAB R2007b的PC机;现代工业生产中,图像分割是实现基于机器视觉的无损检测(NDT)的关键基础,在无损检测中因常涉及到工业流水线的高实时性处理需求,因此阈值分割技术在无损检测中应用非常广泛。为考察本发明方法性能,应用本发明方法与相比较的其它方法在三幅NDT图像上进行对比实验;为叙述方便,在实验中把这三幅图像简称为img1,img2和img3,这三幅图像的大小分别为107×92,100×70和171×58;这三幅图像如图2所示,其中图(2a)是img1,图(2b)是img2,图(2c)是img3。
2)实验内容
用本发明和一些基于交叉熵、相对熵等与散度概念相关的,并在工业实践中得到广泛应用的著名图像阈值化方法,即最小误差阈值化方法(MET),最小交叉熵法(MCE),最小Tsallis交叉熵法(MTCE)对img1,img2,img3进行了实验比较。每幅实验图像的4种方法分割结果如图3,图4及图5所示;其中图(3a)、图(4a)及图(5a)是MET方法对测试图像进行分割得到的结果;图(3b)、图(4b)及图(5b)是MCE方法对测试图像进行分割得到的结果;图(3c)、图(4c)及图(5c)是MTCE方法的分割结果;图(3d)、图(4d)及图(5d)是应用本发明方法对测试图像实施分割获得的结果。
3)实验结果分析
从图3、图4及图5展示的分割结果可以看出,本发明方法获得的结果(图(3d),(4d),(5d))与MCE方法获得的结果(图(3b),(4b),(5b))类似,但明显优于MTE方法(图(3a),(4a),(5a))及MTCE方法(图(3c),(4c),(5c))获得的结果;本发明方获得的分割结果图像中分离出的要关注的NDT图像目标更完整、准确,而且分割结果图像残留的噪声像素点也少于相比较的MET和MTCE方法。
表1结出了相比较的4种方法对img1、img2、img3实施分割时的计算耗时。
表1. 对测试图像实施分割的计算耗时比较(单位:秒)
从表1可以看出,本发明方法的计算耗时小于相比较的其它三种方法,对三幅测试图像的分割所耗时间均小于0.03秒,从这点可以看出,本发明方法可以很好地适应实时性要求高的图像处理任务。

Claims (1)

1.一种基于算术-几何散度的灰度图像直方图阈值分割方法,其特征在于操作步骤如下:
(1)读取待分割的灰度图像,并将其存入一个大小为M×N的二维图像数组I中;
(2)遍历图像数组I,计算得到图像最大灰度级L-1及灰度级集合G={0,1,…,L-1},通过公式hi=ni/(M×N)计算得到归一化的灰度直方图H(H={h0,h1,…,hL-1}),这里ni表示待分割图像内灰度级为i的像素数,L-1表示图像内最大灰度级数;
(3)假定t为分割阈值,则阈值化时t将图像像素分为归属于两个不同类的灰度级集合C0与C1,其中C0={0,1,2,…,t},C1={t+1,t+2,…,L-1};
(4)用H做为图像灰度级的概率密度函数估计,基于公式一计算关于C0与C1的先验概率P0及P1
公式一:
(5)基于公式二计算关于C0与C1的灰度均值m0与m1
公式二:
(6)通过公式三和公式四计算关于图像灰度级类C0与C1的算术-几何散度D0和D1
公式三:
公式四:
(7)阈值化前后图像总的算术-几何散度用公式五定义,此式即为图像阈值化准则函数:
公式五:
(8)在G={0,1,…,L-1}范围内搜索使公式六获得最小值的灰度级t*,t*即最优分割阈值:
公式六:
(9)假设用f(x,y)表示原始图像I坐标(x,y)处的像素灰度值,s(x,y)表示分割后图像坐标(x,y)处的像素灰度值,则求得最佳分割阈值t*后,s(x,y)可用公式七计算得到;
公式七:
(10)输出分割后的图像。
CN201610706931.2A 2016-08-23 2016-08-23 基于算术‑几何散度的灰度图像阈值分割方法 Pending CN106251360A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610706931.2A CN106251360A (zh) 2016-08-23 2016-08-23 基于算术‑几何散度的灰度图像阈值分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610706931.2A CN106251360A (zh) 2016-08-23 2016-08-23 基于算术‑几何散度的灰度图像阈值分割方法

Publications (1)

Publication Number Publication Date
CN106251360A true CN106251360A (zh) 2016-12-21

Family

ID=57596288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610706931.2A Pending CN106251360A (zh) 2016-08-23 2016-08-23 基于算术‑几何散度的灰度图像阈值分割方法

Country Status (1)

Country Link
CN (1) CN106251360A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059870A (zh) * 2007-05-23 2007-10-24 华中科技大学 一种基于属性直方图的图像分割方法
WO2013189840A1 (en) * 2012-06-18 2013-12-27 Thomson Licensing A device and a method for color harmonization of an image
CN103810716A (zh) * 2014-03-13 2014-05-21 北京工商大学 基于灰度搬移和Renyi熵的图像分割方法
CN104574326A (zh) * 2013-10-15 2015-04-29 无锡华润矽科微电子有限公司 对图像进行直方图均衡处理的方法和装置
US9092691B1 (en) * 2014-07-18 2015-07-28 Median Technologies System for computing quantitative biomarkers of texture features in tomographic images
CN105139366A (zh) * 2015-09-23 2015-12-09 成都融创智谷科技有限公司 一种基于空间域的图像增强方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059870A (zh) * 2007-05-23 2007-10-24 华中科技大学 一种基于属性直方图的图像分割方法
WO2013189840A1 (en) * 2012-06-18 2013-12-27 Thomson Licensing A device and a method for color harmonization of an image
CN104574326A (zh) * 2013-10-15 2015-04-29 无锡华润矽科微电子有限公司 对图像进行直方图均衡处理的方法和装置
CN103810716A (zh) * 2014-03-13 2014-05-21 北京工商大学 基于灰度搬移和Renyi熵的图像分割方法
US9092691B1 (en) * 2014-07-18 2015-07-28 Median Technologies System for computing quantitative biomarkers of texture features in tomographic images
CN105139366A (zh) * 2015-09-23 2015-12-09 成都融创智谷科技有限公司 一种基于空间域的图像增强方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INDER JEET TANEJA: "Bounds on Non-Symmetric Divergence Measures in Terms of Symmetric Divergence Measures", 《ARXIV》 *
林佳颖: "基于Renyi熵的图像分割算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Similar Documents

Publication Publication Date Title
CN110906875B (zh) 一种孔径测量的视觉处理方法
JP6431404B2 (ja) 姿勢推定モデル生成装置及び姿勢推定装置
CN102324099A (zh) 一种面向仿人机器人的台阶边缘检测方法
Fekri-Ershad et al. A robust approach for surface defect detection based on one dimensional local binary patterns
Sidhu Improved canny edge detector in various color spaces
CN111738931B (zh) 光伏阵列无人机航拍图像的阴影去除算法
CN107194896A (zh) 一种基于邻域结构的背景抑制方法和系统
CN106802149B (zh) 基于高维组合特征的快速序列图像匹配导航方法
Wang et al. A new computer vision based multi-indentation inspection system for ceramics
Georgieva et al. Identification of surface leather defects.
Fahrurozi et al. Wood classification based on edge detections and texture features selection
CN106251360A (zh) 基于算术‑几何散度的灰度图像阈值分割方法
CN106296713A (zh) 基于对称Gamma散度的灰度图像阈值分割方法
CN113112471B (zh) 基于ri-hog特征及快速金字塔的目标检测方法
CN106296715A (zh) 基于对称Beta散度的灰度图像阈值分割方法
CN106327497A (zh) 基于超广延熵的灰度图像阈值分割方法
CN106327489A (zh) 基于Alpha‑Gamma散度的灰度图像阈值分割方法
CN106340029A (zh) 基于Beta‑Gamma散度的灰度图像阈值分割方法
Tran et al. Determination of Injury Rate on Fish Surface Based on Fuzzy C-means Clustering Algorithm and L* a* b* Color Space Using ZED Stereo Camera
CN106228555A (zh) 基于Masi熵测度的灰度图像阈值分割方法
Otte et al. Antsac: A generic ransac variant using principles of ant colony algorithms
CN106340030A (zh) 基于对称Alpha散度的灰度图像阈值分割方法
Tessamma et al. A new gridding technique for high density microarray images using intensity projection profile of best sub image
Zhang et al. Insights into local stereo matching: Evaluation of disparity refinement approaches
Shuliang et al. Design of text position detection method for electrical equipment nameplate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161221

RJ01 Rejection of invention patent application after publication