CN106231553A - 基于无线声传感器网络的多节点信息融合声源定位方法 - Google Patents

基于无线声传感器网络的多节点信息融合声源定位方法 Download PDF

Info

Publication number
CN106231553A
CN106231553A CN201610627299.2A CN201610627299A CN106231553A CN 106231553 A CN106231553 A CN 106231553A CN 201610627299 A CN201610627299 A CN 201610627299A CN 106231553 A CN106231553 A CN 106231553A
Authority
CN
China
Prior art keywords
node
sound source
result
sound
near field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610627299.2A
Other languages
English (en)
Other versions
CN106231553B (zh
Inventor
宁方立
赵满
韦娟
王文静
牛俊儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610627299.2A priority Critical patent/CN106231553B/zh
Publication of CN106231553A publication Critical patent/CN106231553A/zh
Application granted granted Critical
Publication of CN106231553B publication Critical patent/CN106231553B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/20Position of source determined by a plurality of spaced direction-finders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于无线声传感器网络的多节点信息融合声源定位方法,用于解决现有声源定位方法精确度低的技术问题。技术方案是通过卡尔曼滤波器对声源的近场定位结果和远场DOA估计值进行融合,迭代过程中,依据误差协方差矩阵不断校正预测结果,至获取最终声源定位结果,迭代优化过程可以提高定位精度;每次迭代融合远场节点DOA估计值时,是从节点集合中动态选取定位节点,因此可降低单节点估计误差对定位的影响,提高抗噪性。由于采用卡尔曼滤波器方法,加入声源的近场定位结果并与声源的远场DOA估计值进行融合,迭代优化过程有利于提高声源定位精度,使定位精度提高1%~3%。

Description

基于无线声传感器网络的多节点信息融合声源定位方法
技术领域
本发明涉及一种声源定位方法,特别涉及一种基于无线声传感器网络的多节点信息融合声源定位方法。
背景技术
基于无线声传感器网络(Wireless Acoustic Sensor Network,WASN)的声源定位方法,在通信带宽、能量等资源受限条件下,具有资源占用少,简单易实现等显著优势。
文献“Localizing multiple audio sources in a wireless acoustic sensornetwork[J].Signal Processing,2015,107:54-67”公开了一种基于波达方向角(Direction-of-Arrival,DOA)估计值融合的迭代格网声源定位方法。此方法将网络覆盖范围划分成以麦克风阵列节点为顶点的正方形区域,针对声源所在区域迭代地进行网格划分,通过在网格内搜索,从中寻找到各节点DOA估计值误差最小的网格点位置坐标,该坐标作为声源定位结果。文献所述方法是基于声源所在正方形区域的四个节点DOA估计值融合进行声源定位,未考虑当节点距离声源较近时,只能获得声源的近场定位结果而非DOA估计值的实际情况,参与定位信息不全面,定位结果精确度低;此外,若某一节点DOA估计值存在较大偏差,会使定位结果严重偏离真实位置,甚至导致定位失败,因此单节点DOA估计值对定位结果影响大,抗噪性能差。
发明内容
为了克服现有声源定位方法精确度低的不足,本发明提供一种基于无线声传感器网络的多节点信息融合声源定位方法。该方法通过卡尔曼滤波器(Kalman Filter,KF)对声源的近场定位结果和远场DOA估计值进行融合,迭代过程中,依据误差协方差矩阵不断校正预测结果,至获取最终声源定位结果,迭代优化过程可以提高定位精度;每次迭代融合远场节点DOA估计值时,是从节点集合中动态选取定位节点,因此可降低单节点估计误差对定位的影响,提高抗噪性。由于采用卡尔曼滤波器方法,加入声源的近场定位结果并与声源的远场DOA估计值进行融合,迭代优化过程有利于提高声源定位精度,使定位精度提高1%~3%;利用动态选择节点代替固定节点参与DOA估计值融合的远场初步定位结果计算,可降低单节点估计误差影响,抗噪性能增强。
本发明解决其技术问题所采用的技术方案:一种基于无线声传感器网络的多节点信息融合声源定位方法,其特点是包括以下步骤:
步骤一、由m个麦克风阵列节点组成观测区域,融合中心接收目标声源的各节点传送数据,来自第k个节点的数据包括:声源的远场DOA估计值θk或近场初步定位结果SN(k)=(θk,rk)、节点位置信息Pk=(xk,yk)及声源频谱的特征信息,其中k=1,2,…m。
步骤二、根据接收数据中距离信息rk将其分为两类:远场节点数据集合P和近场节点数据集合Q。P,Q集合大小分别为p,q,则有p个节点获得声源的远场DOA估计值(θ1,θ2,…θp),q个节点获得声源的近场定位结果((θ1,r1),(θ2,r2),…(θq,rq)),满足p<m,q<m且p+q=m。
步骤三、在近场节点数据集合Q中,第i个节点获得声源的近场定位结果为SN(i)=(θi,ri),对其进行坐标变换得SN(i)=(xi,yi)(i=1,2…q),计算声源的近场初步定位结果SN=(xN,yN),并将其作为KF的初始状态输入值。SN的计算公式为:
S N = ( 1 q &Sigma; i = 1 q r i cos&theta; i , 1 q &Sigma; i = 1 q r i sin&theta; i ) - - - ( 1 )
步骤四、针对远场节点数据集合P,计算声源的远场初步定位结果SF=(xF,yF)。具体步骤为:
(a)从P中选取四个节点组成远场定位节点集合Pselect={mj}(j=1,2,3,4),节点位置坐标为Pj=(xj,yj),节点DOA估计值θj,并且有其中集合Pselect的选取需满足两个条件:
条件1:四个节点围成凸四边形,保证声源的近场初步定位结果在该四边形凸包内。
条件2:四个节点中任意两个节点两两组合,每组节点的最小角度距离函数A(X,Y)满足γ阈值条件。函数A(X,Y)∈(0,π)为X和Y之间的最小角度距离:
A ( X , Y ) = m i n ( A X , Y , A Y , X ) A X , Y ( X , Y ) = ( X - Y ) ( mod 2 &pi; ) A Y , X ( X , Y ) = ( Y - X ) ( mod 2 &pi; ) - - - ( 2 )
其中,X,Y∈(0,2π)分别为每组节点的DOA估计值θj1,θj2(j1≠j2)。设定平行阈值γ(0<γ<π),则A(θj1,θj2)需满足:
γ<A(θj1,θj2)<π-γ (3)
若上式不成立则任意剔除其中一个节点,重新选择一个新节点加入到集合Pselect中,重复上述验证过程,直至满足要求获得Pselect
(b)利用线性最小二乘法融合Pselect中节点的DOA估计值,计算公式为:
xFsinθ-yFcosθ=xjsinθ-yjcosθ(j=1,2,3,4) (4)
上式的矩阵表示形式记作ASF T=b,其中 A,b分别为系数矩阵和常量矩阵,SF T为SF的转置,计算求得声源的远场初步定位结果:
SF T=(ATA)-1ATb (5)
(c)输出声源的远场初步定位结果SF=(xF,yF),并将其作为KF的第k次观测值赋值给Z(k)=(xk,yk),则Z(k)=SF
步骤五、利用KF融合声源的远、近场初步定位结果SF和SN。在不考虑控制作用的情况下,线性离散系统的状态方程和观测方程为:
X ( k ) = &Phi; ( k - 1 ) X ( k - 1 ) + W ( k - 1 ) Z ( k ) = H ( k ) X ( k ) + V ( k ) - - - ( 6 )
其中,X是状态变量,Φ是状态转移矩阵,Z是观测变量,H是观测矩阵;W,V为系统过程噪声和观测噪声,其协方差矩阵分别为Q(k)和R(k); uk(x),uk(y)分别为x,y方向的观测噪声,两分量相互独立,服从零均值,方差为的高斯白噪声分布;Q(k),W(k)的定义与观测噪声一致。
状态预测方程:
X(k|k-1)=ΦX(k-1|k-1) (7)
P(k|k-1)=ΦP(k-1|k-1)ΦT+Q(k-1) (8)
其中,ΦT是Φ的转置矩阵,P是X的协方差矩阵。
观测更新方程:
Kg(k)=P(k|k-1)HT/(HP(k|k-1)HT+R) (9)
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1)) (10)
P(k|k)=(I-KgH)P(k|k-1) (11)
其中,Kg为卡尔曼增益,I为单位矩阵。
此外,将近场初步定位结果作为参考声源位置SR=(xR,yR),以此计算对应的协方差矩阵P,步骤三中声源的近场初步定位结果SN的协方差矩阵为PN,步骤四中声源的远场初步定位结果SF的协方差矩阵为PF,P的计算公式为:
P = d i a g ( &delta; x 2 , &delta; y 2 ) - - - ( 12 )
其中,噪声方差分别为
KF融合过程中参数对应关系:初始状态输入值X0=SN,P0=PN;迭代过程中,第k次的观测值Z(k)=SF,第k次的预测值X(k|k-1),对应的估计值X(k|k);迭代终止,最终声源定位结果记为S*=(x*,y*)。
具体实现流程:
①输入初始状态值X0=SN,P0=PN
②利用公式(7)、公式(8)预测第k次迭代的声源位置,预测结果为X(k|k-1)=(xk,yk),对应的协方差矩阵为P(k|k-1);
③利用步骤四获得声源的远场初步定位结果SF=(xF,yF),由公式(12)计算对应的协方差矩阵PF
④输入第k次的观测值Z(k)=SF,R(k)=PF,利用公式(9)、公式(10)校正预测结果,获得第k次的最优估计结果X(k|k)=(xk,yk),更新公式(11)获得协方差矩阵P(k|k);
⑤对第k次的估计结果,判断是否满足终止条件。若满足则终止迭代,输出估计结果S*=X(k|k);否则令k=k+1继续迭代,返回步骤②。
本发明的有益效果是:该方法通过卡尔曼滤波器(Kalman Filter,KF)对声源的近场定位结果和远场DOA估计值进行融合,迭代过程中,依据误差协方差矩阵不断校正预测结果,至获取最终声源定位结果,迭代优化过程可以提高定位精度;每次迭代融合远场节点DOA估计值时,是从节点集合中动态选取定位节点,因此可降低单节点估计误差对定位的影响,提高抗噪性。由于采用卡尔曼滤波器方法,加入声源的近场定位结果并与声源的远场DOA估计值进行融合,迭代优化过程有利于提高声源定位精度,使定位精度提高1%~3%;利用动态选择节点代替固定节点参与DOA估计值融合的远场初步定位结果计算,可降低单节点估计误差影响,抗噪性能增强。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明基于无线声传感器网络的多节点信息融合声源定位方法的流程图。
图2是图1中选择远场定位节点集合的子流程图。
图3是本发明方法实施例8m×8m监测区域内节点和声源位置分布示意图。
图4是背景技术方法与本发明方法进行声源定位的定位均方根误差与参考信噪比变化关系的仿真图。
具体实施方式
参照图1-4。本发明基于无线声传感器网络的多节点信息融合声源定位方法具体步骤如下:
三角形表示目标声源真实位置S=(x,y),本实施例设为S=(2.6,3.0)。黑色圆点表示各麦克风阵列节点,对应编号为mk(k=1,2,…9)并组成观测节点集合M={mk}(k=1,2…9)。声源的观测区域由四个小正方形区域组成,边长V=4。节点mk的位置坐标Pk=(xk,yk)对应正方形各顶点的坐标,如节点m1和m5的位置坐标分别为P1=(x1,y1)=(0,0),P5=(x5,y5)=(4,4)。本实施例中,以观测区域中心位置m5节点处的信噪比作为参考信噪比计算其他各节点信噪比,参考信噪比变化范围为0~20dB。节点处DOA观测噪声ηθ服从零均值,协方差为的高斯分布根据节点信噪比SNR与DOA估计误差关系式:δθ(SNR)=1.979e-0.2875(SNR)+1.884,可产生各节点mk(k=1,2,…9)的观测数据。
利用卡尔曼滤波器进行声源定位,具体过程为:
1、接收各节点数据并进行分类。
融合中心接收各节点mk(k=1,2,…9)传送数据:声源的远场DOA估计值θk或近场定位结果SN(k)=(θk,rk)以及节点位置坐标Pk=(xk,yk);并依据距离信息rk将接收数据分为两类:远场节点数据集合P={mj}(j=1,2…p)和近场节点数据集合Q={mi}(i=1,2…q),p,q分别为远、近场节点数据集合P,Q大小,本实施例中q=2,p=7,则有两个近场节点m4和m5,其他节点mj(j=1,2,3,6,7,8,9)为远场节点。
2、计算声源的近场初步定位结果SN=(xN,yN)。
对Q中节点的近场定位结果SN(i)=(θi,ri)进行坐标变换得SN(i)=(xi,yi)(i=1,2…q),利用公式(1)计算SN=(xN,yN),并赋值给KF的初始状态值X0,有X0=SN
S N = ( 1 q &Sigma; i = 1 q r i cos&theta; i , 1 q &Sigma; i = 1 q r i sin&theta; i ) - - - ( 1 )
以近场初步定位结果SN作为参考声源位置SR=(xR,yR)。根据SR分别计算x,y方向的方差并由公式(2)计算SN对应的协方差矩阵PN,将其赋值给KF的初始协方差矩阵P0,有P0=PN
P N = d i a g ( &delta; x 2 , &delta; y 2 ) - - - ( 2 )
3、计算声源的远场初步定位结果SF=(xF,yF)。
从远场节点数据集合P中动态选取远场定位节点集合Pselect,具体步骤为:
①从P中随机选取4个节点作为Pselect={mj}(j=1,2,3,4),节点mj的DOA估计值为θj,位置信息为Pj=(xj,yj),并记录对应的剩余节点集合其中mj∈Pselect且满足转至步骤④;
②判断是否为空,若则从当前组合中任意剔除一个节点mj1或mj2,转至步骤③;否则返回步骤①;
③从中随机选取一个新节点,添加到Pselect并更新转至步骤④,
④对Pselect使其能够围成凸四边形,并验证声源的近场初步定位结果SN是否在该四边形的凸包内,若满足条件,则转至步骤⑤,否则返回步骤①;
⑤Pselect中任意2个节点mj1,mj2两两组合,对每组节点根据其DOA估计值θj1j2,计算最小角度距离函数A(θj1j2)(j1≠j2);
⑥根据平行阈值γ判断A(θj1j2)是否满足阈值条件:γ<A(θj1j2)<π-γ,本实施例中γ设为20°。若满足条件,则转至步骤⑦,否则转至步骤②;
⑦节点选择成功,输出选择结果Pselect
之后利用输出的Pselect,通过公式(3)计算声源的远场初步定位结果SF=(xF,yF)。
sin&theta; 1 - cos&theta; 1 . . . sin&theta; 4 - cos&theta; 4 x F y F = x 1 sin&theta; 1 - y 1 cos&theta; 1 . . . x 4 sin&theta; 4 - y 4 cos&theta; 4 - - - ( 3 )
表示为矩阵形式:ASF T=b
其中,A,b分别为系数矩阵和常量矩阵,SF T为SF的转置。公式(4)的计算结果为:
SF T=(ATA)-1ATb (4)
根据SR分别计算x,y方向的观测噪声方差由公式(5)计算SF对应的协方差矩阵PF,将其赋值给KF的观测协方差矩阵R,有R=PF
P F = d i a g ( &delta; x 2 , &delta; y 2 ) - - - ( 5 )
4、利用卡尔曼滤波器进行信息融合,获取声源定位结果,具体过程为:
①利用公式(1)(2)初始化系统状态方程(6),开始迭代。
X(k)=Φ(k-1)X(k-1)+W(k-1) (6)
②利用公式(7)(8),预测第k次的状态变量X(k)和协方差矩阵P(k)。
X(k|k-1)=ΦX(k-1|k-1) (7)
P(k|k-1)=ΦP(k-1|k-1)ΦT+Q(k-1) (8)
其中,将声源位置S作为系统状态变量X(k)=(xk,yk),P(k)为X(k)的协方差矩阵,初始化输入值为:X(0)=SN,P(0)=PN。状态转移矩阵ΦT是Φ的转置矩阵。W为系统过程噪声,其协方差矩阵设为恒定值,本实施例中取Q=diag(10-4,10-4)。
③利用公式(4)(5)将声源的远场初步定位结果作为观测值,输入观测方程(9)中。
Z(k)=H(k)X(k)+V(k) (9)
其中,观测变量Z(k)=SF,观测矩阵V为观测噪声,对应的观测误差R由公式(5)计算协方差矩阵PF获得,有R=PF
④利用公式(10)~(12),校正预测结果。
Kg(k)=P(k|k-1)HT/(HP(k|k-1)HT+R) (10)
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1)) (11)
P(k|k)=(I-KgH)P(k|k-1) (12)
其中,Kg为卡尔曼增益,I为单位矩阵。
⑤设置KF的最大迭代次数N,每次迭代时进行验证,本实施例中设N=10。若k<N,则重复公式(6)~(12)对应过程;否则终止迭代,输出当前估计结果X(k|k)=(xk,yk),赋值给S*=X(k|k),即获得最终声源定位结果S*=(x*,y*)。此外,设置T为蒙特卡洛仿真次数,重复进行多次实验,本实施例中取T=20。
分别对背景技术的格网定位法GB及本发明的KF方法进行仿真,计算各自仿真定位结果与真实声源位置的定位均方根误差,并求其相对于正方形边长的百分比实现标准化,以此作为定位精度的衡量标准。由图4仿真结果可以看出,通过融合声源的近场定位结果和远场DOA估计值,本发明方法能够降低声源定位误差,在较高信噪比时,定位精度可提高1%,较低信噪比时,提高1.5%~3%;迭代优化的定位结果抗噪性能增强,特别是在较低信噪比的条件下,对于改善定位结果,降低声源定位误差具有显著效果。

Claims (1)

1.一种基于无线声传感器网络的多节点信息融合声源定位方法,其特征在于包括以下步骤:
步骤一、由m个麦克风阵列节点组成观测区域,融合中心接收目标声源的各节点传送数据,来自第k个节点的数据包括:声源的远场DOA估计值θk或近场初步定位结果SN(k)=(θk,rk)、节点位置信息Pk=(xk,yk)及声源频谱的特征信息,其中k=1,2,…m;
步骤二、根据接收数据中距离信息rk将其分为两类:远场节点数据集合P和近场节点数据集合Q;P,Q集合大小分别为p,q,则有p个节点获得声源的远场DOA估计值(θ1,θ2,...θp),q个节点获得声源的近场定位结果((θ1,r1),(θ2,r2),…(θq,rq)),满足p<m,q<m且p+q=m;
步骤三、在近场节点数据集合Q中,第i个节点获得声源的近场定位结果为SN(i)=(θi,ri),对其进行坐标变换得SN(i)=(xi,yi)(i=1,2…q),计算声源的近场初步定位结果SN=(xN,yN),并将其作为KF的初始状态输入值;SN的计算公式为:
S N = ( 1 q &Sigma; i = 1 q r i cos&theta; i , 1 q &Sigma; i = 1 q r i sin&theta; i ) - - - ( 1 )
步骤四、针对远场节点数据集合P,计算声源的远场初步定位结果SF=(xF,yF);具体步骤为:
(a)从P中选取四个节点组成远场定位节点集合Pselect={mj}(j=1,2,3,4),节点位置坐标为Pj=(xj,yj),节点DOA估计值θj,并且有其中集合Pselect的选取需满足两个条件:
条件1:四个节点围成凸四边形,保证声源的近场初步定位结果在该四边形凸包内;
条件2:四个节点中任意两个节点两两组合,每组节点的最小角度距离函数A(X,Y)满足γ阈值条件;函数A(X,Y)∈(0,π)为X和Y之间的最小角度距离:
A ( X , Y ) = m i n ( A X , Y , A Y , X ) A X , Y ( X , Y ) = ( X - Y ) ( mod 2 &pi; ) A Y , X ( X , Y ) = ( Y - X ) ( mod 2 &pi; ) - - - ( 2 )
其中,X,Y∈(0,2π)分别为每组节点的DOA估计值θj1,θj2(j1≠j2);设定平行阈值γ(0<γ<π),则A(θj1,θj2)需满足:
γ<A(θj1,θj2)<π-γ (3)
若上式不成立则任意剔除其中一个节点,重新选择一个新节点加入到集合Pselect中,重复上述验证过程,直至满足要求获得Pselect
(b)利用线性最小二乘法融合Pselect中节点的DOA估计值,计算公式为:
xFsinθ-yFcosθ=xjsinθ-yjcosθ(j=1,2,3,4) (4)
上式的矩阵表示形式记作ASF T=b,其中 A,b分别为系数矩阵和常量矩阵,SF T为SF的转置,计算求得声源的远场初步定位结果:
SF T=(ATA)-1ATb (5)
(c)输出声源的远场初步定位结果SF=(xF,yF),并将其作为KF的第k次观测值赋值给Z(k)=(xk,yk),则Z(k)=SF
步骤五、利用KF融合声源的远、近场初步定位结果SF和SN;在不考虑控制作用的情况下,线性离散系统的状态方程和观测方程为:
X ( k ) = &Phi; ( k - 1 ) X ( k - 1 ) + W ( k - 1 ) Z ( k ) = H ( k ) X ( k ) + V ( k ) - - - ( 6 )
其中,X是状态变量,Φ是状态转移矩阵,Z是观测变量,H是观测矩阵;W,V为系统过程噪声和观测噪声,其协方差矩阵分别为Q(k)和R(k); uk(x),uk(y)分别为x,y方向的观测噪声,两分量相互独立,服从零均值,方差为的高斯白噪声分布;Q(k),W(k)的定义与观测噪声一致;
状态预测方程:
X(k|k-1)=ΦX(k-1|k-1) (7)
P(k|k-1)=ΦP(k-1|k-1)ΦT+Q(k-1) (8)
其中,ΦT是Φ的转置矩阵,P是X的协方差矩阵;
观测更新方程:
Kg(k)=P(k|k-1)HT/(HP(k|k-1)HT+R) (9)
X(k|k)=X(k|k-1)+Kg(k)(Z(k)-HX(k|k-1)) (10)
P(k|k)=(I-KgH)P(k|k-1) (11)
其中,Kg为卡尔曼增益,I为单位矩阵;
此外,将近场初步定位结果作为参考声源位置SR=(xR,yR),以此计算对应的协方差矩阵P,步骤三中声源的近场初步定位结果SN的协方差矩阵为PN,步骤四中声源的远场初步定位结果SF的协方差矩阵为PF,P的计算公式为:
P = d i a g ( &delta; x 2 , &delta; y 2 ) - - - ( 12 )
其中,噪声方差分别为
KF融合过程中参数对应关系:初始状态输入值X0=SN,P0=PN;迭代过程中,第k次的观测值Z(k)=SF,第k次的预测值X(k|k-1),对应的估计值X(k|k);迭代终止,最终声源定位结果记为S*=(x*,y*);
具体实现流程:
①输入初始状态值X0=SN,P0=PN
②利用公式(7)、公式(8)预测第k次迭代的声源位置,预测结果为X(k|k-1)=(xk,yk),对应的协方差矩阵为P(k|k-1);
③利用步骤四获得声源的远场初步定位结果SF=(xF,yF),由公式(12)计算对应的协方差矩阵PF
④输入第k次的观测值Z(k)=SF,R(k)=PF,利用公式(9)、公式(10)校正预测结果,获得第k次的最优估计结果X(k|k)=(xk,yk),更新公式(11)获得协方差矩阵P(k|k);
⑤对第k次的估计结果,判断是否满足终止条件;若满足则终止迭代,输出估计结果S*=X(k|k);否则令k=k+1继续迭代,返回步骤②。
CN201610627299.2A 2016-08-03 2016-08-03 基于无线声传感器网络的多节点信息融合声源定位方法 Expired - Fee Related CN106231553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610627299.2A CN106231553B (zh) 2016-08-03 2016-08-03 基于无线声传感器网络的多节点信息融合声源定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610627299.2A CN106231553B (zh) 2016-08-03 2016-08-03 基于无线声传感器网络的多节点信息融合声源定位方法

Publications (2)

Publication Number Publication Date
CN106231553A true CN106231553A (zh) 2016-12-14
CN106231553B CN106231553B (zh) 2019-03-29

Family

ID=57535934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610627299.2A Expired - Fee Related CN106231553B (zh) 2016-08-03 2016-08-03 基于无线声传感器网络的多节点信息融合声源定位方法

Country Status (1)

Country Link
CN (1) CN106231553B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940439A (zh) * 2017-03-01 2017-07-11 西安电子科技大学 基于无线声传感器网络的k均值聚类加权声源定位方法
CN107367201A (zh) * 2017-07-04 2017-11-21 西安瑞联工业智能技术有限公司 一种大范围多目标炮弹炸落点声源定位方法
CN109870694A (zh) * 2019-02-21 2019-06-11 哈尔滨工程大学 基于多无人艇平台的高精度长基线定位系统
CN110058281A (zh) * 2019-04-29 2019-07-26 湖南国科微电子股份有限公司 动态定位方法及装置
CN111352073A (zh) * 2018-12-24 2020-06-30 珠海格力电器股份有限公司 一种声源定位方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YANGJIE WEI等: "Real-time acoustic source separation based on Kalman filter", 《2015 IEEE 10TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS》 *
刘兰石,司锡才: "《三角交叉无源定位位置偏差估计滤波算法研究》", 《系统工程与电子技术》 *
司锡才,崔冬槐: "基于两站三角交叉无源定位位置", 《哈尔滨工程大学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940439A (zh) * 2017-03-01 2017-07-11 西安电子科技大学 基于无线声传感器网络的k均值聚类加权声源定位方法
CN106940439B (zh) * 2017-03-01 2019-05-21 西安电子科技大学 基于无线声传感器网络的k均值聚类加权声源定位方法
CN107367201A (zh) * 2017-07-04 2017-11-21 西安瑞联工业智能技术有限公司 一种大范围多目标炮弹炸落点声源定位方法
CN107367201B (zh) * 2017-07-04 2019-05-28 西安瑞联工业智能技术有限公司 一种大范围多目标炮弹炸落点声源定位方法
CN111352073A (zh) * 2018-12-24 2020-06-30 珠海格力电器股份有限公司 一种声源定位方法及系统
CN109870694A (zh) * 2019-02-21 2019-06-11 哈尔滨工程大学 基于多无人艇平台的高精度长基线定位系统
CN110058281A (zh) * 2019-04-29 2019-07-26 湖南国科微电子股份有限公司 动态定位方法及装置

Also Published As

Publication number Publication date
CN106231553B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN106231553A (zh) 基于无线声传感器网络的多节点信息融合声源定位方法
CN107113764B (zh) 提高人工神经网络定位性能的方法和装置
CN105911518A (zh) 机器人定位方法
Pearre et al. Model-free trajectory optimization for wireless data ferries among multiple sources
CN104539340B (zh) 一种基于稀疏表示和协方差拟合的稳健波达角估计方法
CN105607039A (zh) 非视距环境下基于到达时间差的稳健最小二乘定位方法
CN106872970B (zh) 一种基于差分进化的多目标变数据率跟踪装置及其方法
RU2013110010A (ru) Адаптивный способ для оценки электронного содержания ионосферы
CN104656070B (zh) 雷达组网下的虚假目标消除方法
CN104363653A (zh) 一种消除环境噪声的被动式定位方法
Leng et al. Distributed local linear parameter estimation using Gaussian SPAWN
WO2022203761A2 (en) Estimating direction of arrival of electromagnetic energy using machine learning
CN111929640A (zh) 一种发送功率未知条件下的传感器网络定位方法
Chen et al. Joint initial access and localization in millimeter wave vehicular networks: a hybrid model/data driven approach
EP3361277B1 (en) Method and device for node location
CN104360306B (zh) 一种基于差分进化机理的目标船舶方位估计方法
Deshmukh et al. Distributed state estimation for a stochastic linear hybrid system over a sensor network
CN114204971A (zh) 一种迭代的聚合波束成形设计和用户设备选择方法
CN117295090A (zh) 一种面向无人机通感一体化系统的资源分配方法
Jian et al. Communication-aware DNN pruning
CN110568406A (zh) 一种能量衰减因子未知条件下基于声能的定位方法
Seo et al. Pilot beam sequence design for channel estimation in millimeter-wave MIMO systems: A POMDP framework
CN106714192B (zh) 网络调整方法及装置
CN103259584A (zh) 一种空间分布散射源稳健自适应波束形成方法
Bansal et al. Adaptive beamforming method based optimal smart antenna selection with RSC algorithm in 5G system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190329