CN106226818A - 地震数据处理方法和装置 - Google Patents

地震数据处理方法和装置 Download PDF

Info

Publication number
CN106226818A
CN106226818A CN201610204476.6A CN201610204476A CN106226818A CN 106226818 A CN106226818 A CN 106226818A CN 201610204476 A CN201610204476 A CN 201610204476A CN 106226818 A CN106226818 A CN 106226818A
Authority
CN
China
Prior art keywords
channel set
seismic channel
seismic
amplitude
correlation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610204476.6A
Other languages
English (en)
Other versions
CN106226818B (zh
Inventor
张光荣
杨跃明
肖富森
张世荣
喻颐
冉崎
廖奇
周肖
马波
谢冰
梁翰
赖强
陈康
张旋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201610204476.6A priority Critical patent/CN106226818B/zh
Publication of CN106226818A publication Critical patent/CN106226818A/zh
Priority to EP17773221.1A priority patent/EP3324216B1/en
Priority to RU2018105481A priority patent/RU2694621C1/ru
Priority to PCT/CN2017/078498 priority patent/WO2017167191A1/zh
Priority to US15/882,779 priority patent/US10705238B2/en
Application granted granted Critical
Publication of CN106226818B publication Critical patent/CN106226818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/362Effecting static or dynamic corrections; Stacking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • G01V1/366Seismic filtering by correlation of seismic signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/52Move-out correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/53Statics correction, e.g. weathering layer or transformation to a datum
    • G01V2210/532Dynamic changes in statics, e.g. sea waves or tidal influences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/57Trace interpolation or extrapolation, e.g. for virtual receiver; Anti-aliasing for missing receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • G01V2210/6222Velocity; travel time

Abstract

本发明公开了一种地震数据处理方法和装置,属于地质勘测领域。所述方法包括:对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;计算各个地震道集与模型道的相关系数,并选出相关系数最大的第K地震道集;在预设时间范围内滑动时窗,计算第K‑1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K‑1地震道集的剩余动校正量;在预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K‑2≥M≥1;采用同样方式计算第K+1至第S地震道集的剩余动校正量。

Description

地震数据处理方法和装置
技术领域
本发明涉及地质勘测领域,特别涉及一种地震数据处理方法和装置。
背景技术
地震勘探技术是利用人工激发的地震波在地层内传播来勘探地下的地质情况。在地面某处激发的地震波向地下传播时,遇到不同弹性的地层分界面就会产生反射波或折射波返回地面,用专门的仪器可记录这些波,分析所记录的波的特点(如波的传播时间、振动形状等),能较准确地测定这些界面的深度和形态,判断地层的岩性。
由于地震记录是有噪音的,因此通常会通过不同位置进行激发、接收地下同一点的地震反射波,将这些来自同一点的地震反射波的集合称为地震道集。通过多次地震信号叠加,可以达到消除噪音,提高信噪比的目的。
由于野外采集的地震资料统一反射点的地震反射时间是不一样的,其反射时间与偏移距、地震传播速度有关,因此,需要将不同偏移距地震记录时间校正到自激自收地震反射时间位置,这个过程叫动校正,其目的是为了便于对地震信号叠加。
但是,因为地震波的传播速度是未知的,因此动校正的实现过程通常都设计一系列地震传播速度对地震道集进行动校正处理。
由于野外地震采集数据量非常庞大,人们不可能对每一个地震反射点都进行速度分析。往往都是间隔几十道才对一个地震反射点进行速度分析,而中间未进行速度分析的道集采用已作速度分析道集的速度进行插值而得,由于地震速度的非均质性,这些插值的速度或多或少都会存在一定的误差,动校正结果往往很难达到理想效果,很难将所有地震道集同相轴都校正到水平状态。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种地震数据处理方法和装置。所述技术方案如下:
一方面,本发明实施例提供了一种地震数据处理方法,所述方法包括:
对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;
计算各个地震道集与所述模型道的相关系数,并选出相关系数最大的第K地震道集;
在预设时间范围内滑动时窗,计算第K-1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在所述预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在所述预设时间范围内滑动时窗,计算第K+1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在所述预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,所述最优点对应的时移量为时窗内的一个地震道集的地震反射时间与偏移距为0的地震道集的地震反射时间的差值;
采用计算出的所述S个地震道集的剩余动校正量对所述S个地震道集进行剩余动校正。
在本发明实施例的一种实现方式中,所述对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,包括:
采用如下公式对多个地震道集进行叠加得到模型道:
A j = Σ i = m 1 m 2 a i j ;
其中,m1、m2为地震道集序号,aij为第i道的第j采样点的振幅值,m1、m2、i和j均为正整数,1≤m1<m2≤S,i∈[m1,m2]。
在本发明实施例的另一种实现方式中,所述计算各个地震道集与所述模型道的相关系数,包括:
采用以下公式计算模型道与地震道集的相关系数:
r x ‾ = Σ j = 1 n ( a j - A a ) ( b j - B a ) Σ j = 1 n ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第x道与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集振幅平均值,x和j均为正整数,且1≤x≤S。
在本发明实施例的另一种实现方式中,所述方法还包括:
在对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道之前,对所述各个地震道集进行振幅能量均衡化处理。
在本发明实施例的另一种实现方式中,所述对所述各个地震道集进行振幅能量均衡化处理,包括:
在设定时窗范围内统计振幅能量:
Q为统计道数,P为采样点数,aj为振幅值;
计算每一地震道集的振幅能量E1:
E 1 = 1 P Σ j = 1 P a j 2 ;
计算每一地震道集的振幅均衡系数:
k=E0/E1;
采用所述振幅均衡系数对每一地震道集进行振幅均衡处理:
其中为每一地震道集振幅值a组成的序列,为振幅均衡处理后的振幅值。
另一方面,本发明实施例还提供了一种地震数据处理装置,所述装置包括:
叠加模块,用于对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;
选取模块,用于计算各个地震道集与所述模型道的相关系数,并选出相关系数最大的第K地震道集;
计算模块,用于在预设时间范围内滑动时窗,计算第K-1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在所述预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在所述预设时间范围内滑动时窗,计算第K+1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在所述预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,所述最优点对应的时移量为时窗内的一个地震道集的地震反射时间与偏移距为0的地震道集的地震反射时间的差值;
动校正模块,用于采用计算出的所述S个地震道集的剩余动校正量对所述S个地震道集进行剩余动校正。
在本发明实施例的一种实现方式中,所述叠加模块,用于:
采用如下公式对多个地震道集进行叠加得到模型道:
A j = Σ i = m 1 m 2 a i j ;
其中,m1、m2为地震道集序号,aij为第i道的第j采样点的振幅值,m1、m2、i和j均为正整数,1≤m1<m2≤S,i∈[m1,m2]。
在本发明实施例的另一种实现方式中,所述选取模块,用于:
采用以下公式计算模型道与地震道集的相关系数:
r x ‾ = Σ j = 1 n ( a j - A a ) ( b j - B a ) Σ j = 1 n ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第x道与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集振幅平均值,x和j均为正整数,且1≤x≤S。
在本发明实施例的另一种实现方式中,所述装置还包括:
均衡化模块,用于在对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道之前,对所述各个地震道集进行振幅能量均衡化处理。
在本发明实施例的另一种实现方式中,所述均衡化模块,用于:
在设定时窗范围内统计振幅能量:
Q为统计道数,P为采样点数,aj为振幅值;
计算每一地震道集的振幅能量E1:
E 1 = 1 P Σ j = 1 P a j 2 ;
计算每一地震道集的振幅均衡系数:
k=E0/E1;
采用所述振幅均衡系数对每一地震道集进行振幅均衡处理:
其中为每一地震道集振幅值a组成的序列,为振幅均衡处理后的振幅值。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例通过对多个地震道集进行叠加,然后通过计算各个地震道集与模型道的相关系数计算选出第K道,然后从第K道向两侧依次计算出各个地震道集的最优点,然后根据最优点对地震道集进行剩余动校正,该方案与现有技术所采用通过分析地震传播速度实现动校正处理相结合,将所有模型道集同相轴都校正到水平状态,消除了现有技术由于插值而导致的误差,提高了叠前动校正的精度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种地震数据处理方法的流程图;
图2是本发明实施例提供的另一种地震数据处理方法的流程图;
图3a是本发明实施例提供的常规地震处理的地震道集示意图;
图3b是本发明实施例提供的振幅能量均衡化处理后的地震道集示意图;
图3c是本发明实施例提供的对图3b进行剩余动校正处理后的地震道集示意图;
图4是本发明实施例提供的一种地震数据处理装置的结构示意图;
图5是本发明实施例提供的另一种地震数据处理装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明实施例提供的一种地震数据处理方法的流程图,参见图1,该方法包括:
步骤101:对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数。
其中,S个地震道集均为共反射点道集(英文Common Reflection Point,简称CRP)道集,共中心点道集按照不同的偏移距进行记录,得到不同序号的道集。
如图3a为地震道集示意图,横坐标为偏移距(单位米),每一格表示同样的偏移距,图中纵坐标为时间(单位毫秒)。每一格为一个偏移距的地震道集,是该偏移距的地震道的集合。
其中,在步骤101之前,地震道集已经采用分析地震传播速度的动校正方式进行处理。具体地,可以先估算一系列地震波叠加速度计算地震反射时间,计算地震反射时间与偏移距为0的地震道集的地震反射时间的差值作为动校正量,对原始地震道集进行动校正,观察在哪个地震波叠加速度下可以使道集达到水平状态,则确定当前速度为合适的地震波叠加,观察过程通常依靠操作人员的肉眼完成。
可以采用如下方式计算地震反射时间:
t x 2 = t 0 2 + x 2 v a 2
tx地震反射时间,x为偏移距,t0为偏移距为0处地震反射时间,va为地震波叠加速度。
其中,预设范围可以是S个地震道集中全部地震道集,也可以是S个地震道集中的部分地震道集。
对地震道集进行叠加是指将不同序号的地震道集按照采样点进行振幅值相加。
步骤102:计算各个地震道集与模型道的相关系数,并选出相关系数最大的第K地震道集。
步骤103:依次计算S个地震道集的剩余动校正量。
其中剩余动校正量是指在采用分析地震传播速度的动校正方式进行处理后,对地震数据做进一步校正处理所采用的校正量。
步骤103具体采用如下步骤实现:
在预设时间范围内滑动时窗,计算第K-1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在预设时间范围内滑动时窗,计算第K+1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,最优点对应的时移量为时窗内的一个地震道集(如这里是第N+1地震道集)的地震反射时间与偏移距为0的地震道集的地震反射时间的差值。
其中,时窗内的一个地震道集的地震反射时间可以是该地震道集在最优点处各个地震道地震反射时间的平均值,或者其中任意一个地震道的地震反射时间。
步骤104:采用计算出的S个地震道集的剩余动校正量对S个地震道集进行剩余动校正。
其中剩余动校正是指在采用分析地震传播速度的动校正方式进行处理后,对地震数据做进一步校正处理。
本发明实施例通过对多个地震道集进行叠加,然后通过计算各个地震道集与模型道的相关系数计算选出第K道,然后从第K道向两侧依次计算出各个地震道集的最优点,然后根据最优点对地震道集进行剩余动校正,该方案与现有技术通过分析地震传播速度实现动校正处理相结合,将所有模型道集同相轴都校正到水平状态,消除了现有技术由于插值而导致的误差,提高了叠前动校正的精度。
图2是本发明实施例提供的另一种地震数据处理方法的流程图,参见图2,该方法包括:
步骤201:对动校正处理后的各个地震道集进行振幅能量均衡化处理。
其中,对于每个地震道集,分别按照以下步骤进行振幅能量均衡化处理:
第一步:在设定时窗(如1000-3000ms)范围内统计振幅能量:
Q为统计道数(总共道集数量),P为采样点数,aj为振幅值;
第二步:计算每一地震道集的振幅能量E1:
E 1 = 1 P Σ j = 1 P a j 2 ;
第三步:计算每一地震道集的振幅均衡系数:
k=E0/E1;
第四步:采用振幅均衡系数对每一地震道集进行振幅均衡处理:
其中为每一地震道集振幅值a(多个采样点的振幅值)组成的序列,为振幅均衡处理后的振幅值。
进一步地,在步骤201之前,该方法还包括:
1)使用可控震源激发并记录地震波数据;2)采用可控震源记录并在选定时窗内进行吸收分析,获得炮点或检波点在选定时窗内的地震道集的振幅谱;3)通过分析地震传播速度实现动校正处理。
步骤202:对S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数。
具体地,采用如下公式对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道:
A j = Σ i = m 1 m 2 a i j ;
其中,m1、m2为地震道集序号,aij为第i道的第j采样点的振幅值,m1、m2、i和j均为正整数,1≤m1<m2≤S,i∈[m1,m2]。
其中,不同地震道集序号表示地震道集对应的偏移距不同;采样点按照设定时间间隔在振幅谱上选取。
其中,预设范围[m1,m2]可以是S个地震道集中全部地震道集,也可以是S个地震道集中的部分地震道集。
其中,采样点的振幅值可以是该地震道集在采样点的时间位置的平均值,或者其中任意一个地震道的值。
步骤203:计算各个地震道集与模型道的相关系数,并选出相关系数最大的第K地震道集。
采用以下公式计算模型道与地震道集的相关系数:
r x ‾ = Σ j = 1 n ( a j - A a ) ( b j - B a ) Σ j = 1 n ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第x道与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集振幅平均值,x和j均为正整数,且1≤x≤S。
步骤204:依次计算S个地震道集的剩余动校正量。
步骤204具体采用如下步骤实现:
在预设时间范围内滑动时窗,计算第K-1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在预设时间范围内滑动时窗,计算第K+1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,最优点对应的时移量为时窗内的一个地震道集(如这里是第N+1地震道集)的地震反射时间与偏移距为0的地震道集的地震反射时间的差值。
从第K道出发,依次寻找各个地震道集的最优位置,在每个地震道集中逐点滑动计算地震道集与模型道的相关系数,选择相关系数最大时的位置作为地震道集中的最优点,最优点对应的时移量为Δt。在上述计算时,首先采用选出的第K道作为模型道,在后续计算中,依次采用上一道作为下一道的模型道,如采用第M+1道作为第M道的模型道,采用第N道作为第N+1道的模型道。
其中,一个时窗中的一个地震道集与模型道的相关系数:
r j ‾ = ( a j - A a ) Σ j = 1 n ( b j - B a ) ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第j采样点所在时窗内地震道集与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道在时窗内的振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集在时窗内的振幅平均值,j为正整数。
其中,预设时间范围可以为T0-dT~T1-dT,时窗长度为T(T0~T1),其具体数值可以根据实际需要选定。在上述计算中,两次时窗滑动存在交叠,从而使得选取的最优点的精度足够大。
步骤205:采用计算出的S个地震道集的剩余动校正量对S个地震道集进行剩余动校正。
具体地:首先,获取各个地震道集中最优点对应的时移量作为校正量Δt;然后,采用动校正量为Δt对各个地震道集进行校正。
下面通过图3a-3c对本发明实施例提供的方法的效果进行说明:
图3a为常规地震处理(动校正)提供的地震道集,很明显图3a中炮检距较小(左侧)的地震道集振幅(黑色部分)明显较炮检距较大(右侧)的地震道集振幅能量弱(黑色部分宽度小),这样的振幅能量分布显然不符合实际地震反射振幅能量的分布特征。因此需要对振幅进行振幅能量均衡化处理,图3b为振幅能量均衡化处理后的地震道集,由于道集同相轴不平,仅仅经过振幅能量均衡化处理后也不能正确表达振幅随偏移距的变化特征,因此还需要对模型道进行剩余动校正处理,将叠前道集同相轴校正到水平(图3c)。
本发明实施例通过对多个地震道集进行叠加,然后通过计算各个地震道集与模型道的相关系数计算选出第K道,然后从第K道向两侧依次计算出各个地震道集的最优点,然后根据最优点对地震道集进行剩余动校正,该方案与现有技术通过分析地震传播速度实现动校正处理相结合,将所有模型道集同相轴都校正到水平状态,消除了现有技术由于插值而导致的误差,提高了叠前动校正的精度,使得道集优化后地震资料叠加成果品质会具有明显的改善或提高,能够更加准确地描述地层构造、岩性及流体性质。
图4是本发明实施例提供的一种地震数据处理装置的结构示意图,参见图4,装置包括:
叠加模块301,用于对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;
选取模块302,用于计算各个地震道集与模型道的相关系数,并选出相关系数最大的第K地震道集;
计算模块303,用于在预设时间范围内滑动时窗,计算第K-1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在预设时间范围内滑动时窗,计算第K+1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,最优点对应的时移量为时窗内的一个地震道集(如这里是第N+1地震道集)的地震反射时间与偏移距为0的地震道集的地震反射时间的差值;
动校正模块304,用于采用计算出的S个地震道集的剩余动校正量对S个地震道集进行剩余动校正。
本发明实施例通过对多个地震道集进行叠加,然后通过计算各个地震道集与模型道的相关系数计算选出第K道,然后从第K道向两侧依次计算出各个地震道集的最优点,然后根据最优点对地震道集进行剩余动校正,该方案与现有技术通过分析地震传播速度实现动校正处理相结合,将所有模型道集同相轴都校正到水平状态,消除了现有技术由于插值而导致的误差,提高了叠前动校正的精度。
图5是本发明实施例提供的另一种地震数据处理装置的结构示意图,参见图5,装置包括:
叠加模块401,用于对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;
选取模块402,用于计算各个地震道集与模型道的相关系数,并选出相关系数最大的第K地震道集;
计算模块403,用于在预设时间范围内滑动时窗,计算第K-1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在预设时间范围内滑动时窗,计算第K+1地震道集与第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,最优点对应的时移量为时窗内的一个地震道集(如这里是第N+1地震道集)的地震反射时间与偏移距为0的地震道集的地震反射时间的差值;
动校正模块404,用于采用计算出的S个地震道集的剩余动校正量对S个地震道集进行剩余动校正。
在本发明实施例的一种实现方式中,叠加模块401,用于:
采用如下公式对多个地震道集进行叠加得到模型道:
A j = Σ i = m 1 m 2 a i j ;
其中,m1、m2为地震道集序号,aij为第i道的第j采样点的振幅值,m1、m2、i和j均为正整数,1≤m1<m2≤S,i∈[m1,m2]。
在本发明实施例的另一种实现方式中,选取模块402,用于:
采用以下公式计算模型道与地震道集的相关系数:
r x ‾ = Σ j = 1 n ( a j - A a ) ( b j - B a ) Σ j = 1 n ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第x道与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集振幅平均值,x和j均为正整数,且1≤x≤S。
在本发明实施例的另一种实现方式中,装置还包括:
均衡化模块,用于在对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道之前,对各个地震道集进行振幅能量均衡化处理。
在本发明实施例的另一种实现方式中,均衡化模块405,用于:
在设定时窗范围内统计振幅能量:
Q为统计道数,P为采样点数,aj为振幅值;
计算每一地震道集的振幅能量E1:
E 1 = 1 P Σ j = 1 P a j 2 ;
计算每一地震道集的振幅均衡系数:
k=E0/E1;
采用振幅均衡系数对每一地震道集进行振幅均衡处理:
其中为每一地震道集振幅值a组成的序列,为振幅均衡处理后的振幅值。
本发明实施例通过对多个地震道集进行叠加,然后通过计算各个地震道集与模型道的相关系数计算选出第K道,然后从第K道向两侧依次计算出各个地震道集的最优点,然后根据最优点对地震道集进行剩余动校正,该方案与现有技术通过分析地震传播速度实现动校正处理相结合,将所有模型道集同相轴都校正到水平状态,消除了现有技术由于插值而导致的误差,提高了叠前动校正的精度,使得道集优化后地震资料叠加成果品质会具有明显的改善或提高,能够更加准确地描述地层构造、岩性及流体性质。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种地震数据处理方法,其特征在于,所述方法包括:
对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;
计算各个地震道集与所述模型道的相关系数,并选出相关系数最大的第K地震道集;
在预设时间范围内滑动时窗,计算第K-1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在所述预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在所述预设时间范围内滑动时窗,计算第K+1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在所述预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,所述最优点对应的时移量为时窗内的一个地震道集的地震反射时间与偏移距为0的地震道集的地震反射时间的差值;
采用计算出的所述S个地震道集的剩余动校正量对所述S个地震道集进行剩余动校正。
2.根据权利要求1所述的方法,其特征在于,所述对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,包括:
采用如下公式对多个地震道集进行叠加得到模型道:
A j = Σ i = m 1 m 2 a i j ;
其中,m1、m2为地震道集序号,aij为第i道的第j采样点的振幅值,m1、m2、i和j均为正整数,1≤m1<m2≤S,i∈[m1,m2]。
3.根据权利要求1所述的方法,其特征在于,所述计算各个地震道集与所述模型道的相关系数,包括:
采用以下公式计算模型道与地震道集的相关系数:
r x ‾ = Σ j = 1 n ( a j - A a ) ( b j - B a ) Σ j = 1 n ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第x道与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集振幅平均值,x和j均为正整数,且1≤x≤S。
4.根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
在对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道之前,对所述各个地震道集进行振幅能量均衡化处理。
5.根据权利要求4所述的方法,其特征在于,所述对所述各个地震道集进行振幅能量均衡化处理,包括:
在设定时窗范围内统计振幅能量:
Q为统计道数,P为采样点数,aj为振幅值;
计算每一地震道集的振幅能量E1:
E 1 = 1 P Σ j = 1 P a j 2 ;
计算每一地震道集的振幅均衡系数:
k=E0/E1;
采用所述振幅均衡系数对每一地震道集进行振幅均衡处理:
其中为每一地震道集振幅值a组成的序列,为振幅均衡处理后的振幅值。
6.一种地震数据处理装置,其特征在于,所述装置包括:
叠加模块,用于对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道,S为整数;
选取模块,用于计算各个地震道集与所述模型道的相关系数,并选出相关系数最大的第K地震道集;
计算模块,用于在预设时间范围内滑动时窗,计算第K-1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K-1地震道集的剩余动校正量,K>1且K为整数;
在所述预设时间范围内滑动时窗,计算第M地震道集与第M+1地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第M地震道集的剩余动校正量,K-2≥M≥1且M为整数;
在所述预设时间范围内滑动时窗,计算第K+1地震道集与所述第K地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第K+1地震道集的剩余动校正量;
在所述预设时间范围内滑动时窗,计算第N+1地震道集与第N地震道集的相关系数,并选取相关系数最大时的时窗作为最优点,将最优点对应的时移量作为第N+1地震道集的剩余动校正量,S-1≥N≥K+1且N为整数,所述最优点对应的时移量为时窗内的一个地震道集的地震反射时间与偏移距为0的地震道集的地震反射时间的差值;
动校正模块,用于采用计算出的所述S个地震道集的剩余动校正量对所述S个地震道集进行剩余动校正。
7.根据权利要求6所述的装置,其特征在于,所述叠加模块,用于:
采用如下公式对多个地震道集进行叠加得到模型道:
A j = Σ i = m 1 m 2 a i j ;
其中,m1、m2为地震道集序号,aij为第i道的第j采样点的振幅值,m1、m2、i和j均为正整数,1≤m1<m2≤S,i∈[m1,m2]。
8.根据权利要求6所述的装置,其特征在于,所述选取模块,用于:
采用以下公式计算模型道与地震道集的相关系数:
r x ‾ = Σ j = 1 n ( a j - A a ) ( b j - B a ) Σ j = 1 n ( a j - A a ) 2 Σ j = 1 n ( b j - B a ) 2 ;
其中,为第x道与模型道的相关系数,aj为模型道第j个采样点的振幅值,Aa为模型道振幅平均值,bj为地震道集第j个采样点的振幅值,Ba为地震道集振幅平均值,x和j均为正整数,且1≤x≤S。
9.根据权利要求6至8任一项所述的装置,其特征在于,所述装置还包括:
均衡化模块,用于在对动校正处理后的S个地震道集中预设范围内的地震道集进行叠加得到模型道之前,对所述各个地震道集进行振幅能量均衡化处理。
10.根据权利要求9所述的装置,其特征在于,所述均衡化模块,用于:
在设定时窗范围内统计振幅能量:
Q为统计道数,P为采样点数,aj为振幅值;
计算每一地震道集的振幅能量E1:
E 1 = 1 P Σ j = 1 P a j 2 ;
计算每一地震道集的振幅均衡系数:
k=E0/E1;
采用所述振幅均衡系数对每一地震道集进行振幅均衡处理:
其中为每一地震道集振幅值a组成的序列,为振幅均衡处理后的振幅值。
CN201610204476.6A 2016-04-01 2016-04-01 地震数据处理方法和装置 Active CN106226818B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201610204476.6A CN106226818B (zh) 2016-04-01 2016-04-01 地震数据处理方法和装置
EP17773221.1A EP3324216B1 (en) 2016-04-01 2017-03-29 Method and device for processing seismic data
RU2018105481A RU2694621C1 (ru) 2016-04-01 2017-03-29 Способ и устройство для обработки сейсмических данных
PCT/CN2017/078498 WO2017167191A1 (zh) 2016-04-01 2017-03-29 地震数据处理方法和装置
US15/882,779 US10705238B2 (en) 2016-04-01 2018-01-29 Method and apparatus for processing seismic data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610204476.6A CN106226818B (zh) 2016-04-01 2016-04-01 地震数据处理方法和装置

Publications (2)

Publication Number Publication Date
CN106226818A true CN106226818A (zh) 2016-12-14
CN106226818B CN106226818B (zh) 2018-05-04

Family

ID=57519258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610204476.6A Active CN106226818B (zh) 2016-04-01 2016-04-01 地震数据处理方法和装置

Country Status (5)

Country Link
US (1) US10705238B2 (zh)
EP (1) EP3324216B1 (zh)
CN (1) CN106226818B (zh)
RU (1) RU2694621C1 (zh)
WO (1) WO2017167191A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167191A1 (zh) * 2016-04-01 2017-10-05 中国石油天然气股份有限公司 地震数据处理方法和装置
CN107607993A (zh) * 2017-09-07 2018-01-19 中国石油大学(北京) 一种确定叠加速度的方法、装置及系统
CN107843919A (zh) * 2017-10-27 2018-03-27 中国石油集团川庆钻探工程有限公司地球物理勘探公司 一种微地震监测数据振幅均衡方法
CN110609326A (zh) * 2018-06-15 2019-12-24 中国石油化工股份有限公司 地震道集自动校平方法及系统
CN110618457A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 一种可控震源地震数据的联合去噪方法及其装置
CN110824566A (zh) * 2018-08-10 2020-02-21 中国石油天然气股份有限公司 地震属性融合方法、装置及存储介质
CN112180446A (zh) * 2019-07-04 2021-01-05 中国石油天然气集团有限公司 三维地震数据叠前道集叠加方法及装置
CN112649873A (zh) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 地震数据分频动校正处理方法及系统
CN112882102A (zh) * 2019-11-29 2021-06-01 中国石油天然气集团有限公司 地震噪声衰减方法及装置
CN114002741A (zh) * 2020-07-28 2022-02-01 中国石油天然气股份有限公司 叠前深度偏移方法及装置、计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112230285B (zh) * 2019-07-15 2023-09-26 中国石油天然气集团有限公司 地震数据激发延迟时间的校正方法及校正装置
CN112305593B (zh) * 2019-07-23 2023-07-25 中国石油天然气集团有限公司 异常初至波识别方法及装置
CN112666601B (zh) * 2019-10-15 2024-03-22 中国石油化工股份有限公司 一种地震数据振幅拟合有效时窗的方法及其系统
CN114114418A (zh) * 2020-08-28 2022-03-01 中国石油化工股份有限公司 地震信号增益方法、装置、计算机设备和存储介质
CN114325833A (zh) * 2022-01-05 2022-04-12 中国海洋大学 一种地震记录分频带野值压制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663928A (en) * 1994-10-19 1997-09-02 Elf Aquitaine Production Method for analysing and processing seismic reflection data for the determination of a high resolution spatial velocity field for hyperbolicity correction
CN102565857A (zh) * 2011-12-16 2012-07-11 中国石油集团川庆钻探工程有限公司地球物理勘探公司 自动剩余动校正方法
CN102879821A (zh) * 2012-09-26 2013-01-16 中国石油天然气股份有限公司 一种针对地震叠前道集的同相轴精细拉平处理方法
CN104181588A (zh) * 2014-08-15 2014-12-03 中国石油集团川庆钻探工程有限公司地球物理勘探公司 一种构建高品质模型道的方法
CN104459794A (zh) * 2014-12-01 2015-03-25 郑鸿明 共反射点道集时变时间差值的校正方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203161A (en) * 1972-03-01 1980-05-13 Texaco Inc. Method of enhancing common depth point seismic data
GB9726928D0 (en) * 1997-12-19 1998-02-18 Geco Prakla Uk Ltd Method of stacking seismic signals
CN1129008C (zh) * 2001-06-29 2003-11-26 中国石油天然气股份有限公司 一种模型约束动静校正方法
US20030187583A1 (en) * 2002-04-01 2003-10-02 Martin Federico D. Method and apparatus for resolving shear wave seismic data
US7496452B2 (en) * 2007-04-13 2009-02-24 Westerngeco L.L.C. Correction for errors caused by variation in water conditions
US9075162B2 (en) * 2011-11-10 2015-07-07 Pgs Geophysical As Method and system for separating seismic sources in marine simultaneous shooting acquisition
CN102540252B (zh) * 2011-12-15 2014-08-06 中国石油集团川庆钻探工程有限公司地球物理勘探公司 基于互相关的高精度中值叠加方法
US9857490B2 (en) * 2013-12-30 2018-01-02 Pgs Geophysical As Methods and systems for optimizing generation of seismic images
WO2015106065A1 (en) * 2014-01-10 2015-07-16 Cgg Services (U.S.) Inc. Device and method for mitigating cycle-skipping in full waveform inversion
CN104459764B (zh) * 2014-11-20 2017-02-01 天津大学 一种适用于实验室研究多点地震动的连动式电磁击锤
CN106226818B (zh) * 2016-04-01 2018-05-04 中国石油天然气股份有限公司 地震数据处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663928A (en) * 1994-10-19 1997-09-02 Elf Aquitaine Production Method for analysing and processing seismic reflection data for the determination of a high resolution spatial velocity field for hyperbolicity correction
CN102565857A (zh) * 2011-12-16 2012-07-11 中国石油集团川庆钻探工程有限公司地球物理勘探公司 自动剩余动校正方法
CN102879821A (zh) * 2012-09-26 2013-01-16 中国石油天然气股份有限公司 一种针对地震叠前道集的同相轴精细拉平处理方法
CN104181588A (zh) * 2014-08-15 2014-12-03 中国石油集团川庆钻探工程有限公司地球物理勘探公司 一种构建高品质模型道的方法
CN104459794A (zh) * 2014-12-01 2015-03-25 郑鸿明 共反射点道集时变时间差值的校正方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周鹏 等: "动校剩余时差处理方法及应用", 《地球物理学进展》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017167191A1 (zh) * 2016-04-01 2017-10-05 中国石油天然气股份有限公司 地震数据处理方法和装置
US10705238B2 (en) 2016-04-01 2020-07-07 Petrochina Company Limited Method and apparatus for processing seismic data
CN107607993A (zh) * 2017-09-07 2018-01-19 中国石油大学(北京) 一种确定叠加速度的方法、装置及系统
CN107607993B (zh) * 2017-09-07 2019-05-31 中国石油大学(北京) 一种确定叠加速度的方法、装置及系统
CN107843919B (zh) * 2017-10-27 2020-02-07 中国石油天然气集团有限公司 一种微地震监测数据振幅均衡方法
CN107843919A (zh) * 2017-10-27 2018-03-27 中国石油集团川庆钻探工程有限公司地球物理勘探公司 一种微地震监测数据振幅均衡方法
CN110609326A (zh) * 2018-06-15 2019-12-24 中国石油化工股份有限公司 地震道集自动校平方法及系统
CN110618457A (zh) * 2018-06-20 2019-12-27 中国石油化工股份有限公司 一种可控震源地震数据的联合去噪方法及其装置
CN110618457B (zh) * 2018-06-20 2021-02-26 中国石油化工股份有限公司 一种可控震源地震数据的联合去噪方法及其装置
CN110824566A (zh) * 2018-08-10 2020-02-21 中国石油天然气股份有限公司 地震属性融合方法、装置及存储介质
CN110824566B (zh) * 2018-08-10 2021-09-28 中国石油天然气股份有限公司 地震属性融合方法、装置及存储介质
CN112180446A (zh) * 2019-07-04 2021-01-05 中国石油天然气集团有限公司 三维地震数据叠前道集叠加方法及装置
CN112649873A (zh) * 2019-10-10 2021-04-13 中国石油化工股份有限公司 地震数据分频动校正处理方法及系统
CN112649873B (zh) * 2019-10-10 2024-04-09 中国石油化工股份有限公司 地震数据分频动校正处理方法及系统
CN112882102A (zh) * 2019-11-29 2021-06-01 中国石油天然气集团有限公司 地震噪声衰减方法及装置
CN114002741A (zh) * 2020-07-28 2022-02-01 中国石油天然气股份有限公司 叠前深度偏移方法及装置、计算机可读存储介质
CN114002741B (zh) * 2020-07-28 2024-01-30 中国石油天然气股份有限公司 叠前深度偏移方法及装置、计算机可读存储介质

Also Published As

Publication number Publication date
EP3324216A1 (en) 2018-05-23
WO2017167191A1 (zh) 2017-10-05
RU2694621C1 (ru) 2019-07-16
US20180149764A1 (en) 2018-05-31
EP3324216B1 (en) 2020-08-05
EP3324216A4 (en) 2018-10-17
US10705238B2 (en) 2020-07-07
CN106226818B (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN106226818A (zh) 地震数据处理方法和装置
CN104656142B (zh) 一种利用垂直地震剖面与测井联合的地震层位标定方法
US8892410B2 (en) Estimation of soil properties using waveforms of seismic surface waves
CN104570125B (zh) 一种利用井数据提高成像速度模型精度的方法
CN102692645B (zh) 利用纵波、转换波数据联合反演储层纵横波速度比的方法
CN104730579B (zh) 一种基于表层横波速度反演的纵横波联合静校正方法
CN101598803B (zh) 一种直接得到转换波叠加剖面的方法
CN104570110B (zh) 一种基于纵横波匹配的多分量资料联合速度分析方法
CN104459794B (zh) 共反射点道集时变时间差值的校正方法及装置
CN103293552A (zh) 一种叠前地震资料的反演方法及系统
CN104375188A (zh) 一种地震波透射衰减补偿方法及装置
CN103592680B (zh) 一种基于正反演的测井数据和深度域地震剖面合成方法
CN104570066B (zh) 地震反演低频模型的构建方法
CN104316966B (zh) 一种流体识别方法及系统
US20050088914A1 (en) Method for stable estimation of anisotropic parameters for P-wave prestack imaging
CN106556861A (zh) 一种基于全方位地震资料的方位avo反演方法
CN104360388A (zh) 一种三维地震观测系统评价方法
US6430508B1 (en) Transfer function method of seismic signal processing and exploration
CN104122582B (zh) 利用叠加速度求取高精度地震波速度的方法
CN102073064A (zh) 一种利用相位信息提高速度谱分辨率的方法
CN104570116A (zh) 基于地质标志层的时差分析校正方法
CN104391324A (zh) 依赖频率的avo反演前的地震道集动校拉伸校正预处理技术
CN111208564A (zh) 一种深度域层位标定方法及装置
CN104422955A (zh) 一种利用旅行时变化量进行各向异性参数提取的方法
CN110007349B (zh) 一种弹性参数反演方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant