CN106215975A - 一步合成碳点/聚1,4‑二苯基丁二炔杂化光催化材料的方法 - Google Patents

一步合成碳点/聚1,4‑二苯基丁二炔杂化光催化材料的方法 Download PDF

Info

Publication number
CN106215975A
CN106215975A CN201610534474.3A CN201610534474A CN106215975A CN 106215975 A CN106215975 A CN 106215975A CN 201610534474 A CN201610534474 A CN 201610534474A CN 106215975 A CN106215975 A CN 106215975A
Authority
CN
China
Prior art keywords
poly
carbon point
isosorbide
nitrae
diphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610534474.3A
Other languages
English (en)
Other versions
CN106215975B (zh
Inventor
胡胜亮
常青
孟勋
韩雪军
薛超瑞
董英鸽
杨金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201610534474.3A priority Critical patent/CN106215975B/zh
Publication of CN106215975A publication Critical patent/CN106215975A/zh
Application granted granted Critical
Publication of CN106215975B publication Critical patent/CN106215975B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明公开了一步合成碳点/聚1,4‑二苯基丁二炔杂化光催化材料的方法,该方法中1,4‑二苯基丁二炔分子既充当了形成聚1,4‑二苯基丁二炔的单体,又充当了碳点形成的碳源,通过混合、密封、保温冷却等3个步骤得到导电聚1,4‑二苯基丁二炔与碳点的杂化光催化材料。本发明公开的一步合成碳点/聚1,4‑二苯基丁二炔杂化光催化材料方法无需软模板和引发剂,合成的聚1,4‑二苯基丁二炔与碳点的杂化结构具有更优异的可见光吸收能力及更优异的光催化性能;且无复杂的提纯过程,合成方法更加简单易于控制,有利于工业大规模生产。

Description

一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法。
背景技术
碳点是一类新型零维碳纳米材料,除了碳元素外,它还常含有氢、氧、氮元素。它不仅具有类似传统半导体量子点的诸多优异特性,还能够作为电子给体和受体与其它纳米结构或材料杂化,从而提升材料的综合性能。一类制备碳点的有效方法是利用有机分子碳化过程来实现的,即在合适的温度下,有机分子中的氢与分子中或者外界提供的氧反应形成水,原分子结构被破坏发生重结晶的过程。
导电聚合物是指通过掺杂等手段,使得电导率在半导体和导体范围内的聚合物,这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系,π电子的流动产生了导电的可能性。聚合物聚1,4-二苯基丁二炔是导电聚合物的一种,通常由单体1,4-二苯基丁二炔在引发剂安息香甲醚存在的情况下,使用软模板法在紫外光照下发生聚合反应而形成。聚1,4-二苯基丁二炔在可见光照射下能够产生大量的光生电子和空穴,氧化还原有机物,其在光催化降解有机染料方面具有十分优异的效果。然而该方法制备条件苛刻,产物产量十分低,且仅能够在实验室操作,无法工业大规模生产,使其成为当今科学界一难以克服的问题。
发明内容
本发明的目的旨在解决现有聚1,4-二苯基丁二炔难以量产等难题,提供一种一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法。该方法合成的聚1,4-二苯基丁二炔与碳点的杂化结构表现出了更优异的可见光吸收能力及更优异的光催化性能;同时,与现有合成单一导电聚1,4-二苯基丁二炔的方法相比,本发明所提供的一步合成导电聚1,4-二苯基丁二炔与碳点杂化的方法更简单易于控制,且无复杂的提纯过程,更有利于工业大规模生产。
为解决上述技术问题,本发明采用的技术方案是:
一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法,采用以下步骤:
(1)将1,4-二苯基丁二炔固体粉均匀分散到水热反应釜内衬罐底部,使其厚度为2~7mm;
(2)把装好1,4-二苯基丁二炔固体粉的内衬罐放入钢罐后抽真空,使内部压力小于0.1个大气压,然后充入氧气与氮气的混合气体至1个大气压,最后密封,其中,氧气与氮气的体积比为2~3;
(3)把密封好的反应釜放入鼓风烘箱,在95~135℃下保温50~150min,然后冷却至室温,即可得到导电聚1,4-二苯基丁二炔与碳点的杂化光催化材料。
本发明提出了一种一步合成聚1,4-二苯基丁二炔与碳点的杂化光催化材料的方法,与现有技术相比,无需软模板和引发剂,合成的聚1,4-二苯基丁二炔与碳点的杂化结构具有更优异的可见光吸收能力及更优异的光催化性能;且无复杂的提纯过程,合成方法更加简单易于控制,有利于工业大规模生产。
附图说明
图1为聚1,4-二苯基丁二炔与碳点杂化光催化材料的扫描电镜照片。
图2为聚1,4-二苯基丁二炔与碳点杂化光催化材料的透射电镜照片。
图3为聚1,4-二苯基丁二炔及其与碳点杂化光催化材料的紫外-可见吸收光谱。
图4为在可见光照射下,聚1,4-二苯基丁二炔与碳点杂化光催化材料降解亚甲基蓝染料效率随光照时间的对应关系。
具体实施方式
以下结合附图和实施例对本发明作进一步的详细描述:
一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法,采用以下步骤:
(1)将1,4-二苯基丁二炔固体粉均匀分散到水热反应釜内衬罐底部,使其厚度为2~7mm;
(2)把装好1,4-二苯基丁二炔固体粉的内衬罐放入钢罐后抽真空,使内部压力小于0.1个大气压,然后充入氧气与氮气的混合气体至1个大气压,最后密封,其中,氧气与氮气的体积比为2~3;
(3)把密封好的反应釜放入鼓风烘箱,在95~135℃下保温50~150min,然后冷却至室温,即可得到导电聚1,4-二苯基丁二炔与碳点的杂化光催化材料。
本发明中1,4-二苯基丁二炔分子既充当了形成聚1,4-二苯基丁二炔的单体,又充当了碳点形成的碳源,单体1,4-二苯基丁二炔在热引发下,发生聚合反应形成聚1,4-二苯基丁二炔的同时,反应釜内的有机物作为碳源,碳化脱氢制备得到了碳点,使得碳点与聚1,4-二苯基丁二炔杂化在了一起。
实施例1
一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法,采用以下步骤:
(1)取1克1,4-二苯基丁二炔固体粉,将其均匀分散到具有250毫升的水热反应釜内衬罐底部,且厚度为3mm;
(2)把装好1,4-二苯基丁二炔固体粉的内衬罐放入钢罐后抽真空,使内部压力小于0.1个大气压,然后充入氧气与氮气的混合气体至1个大气压,最后密封,其中,氧气与氮气的体积比为2;
(3)把密封好的反应釜放入鼓风烘箱,在95℃下保温50min,然后冷却至室温,即可得到导电聚1,4-二苯基丁二炔与碳点的杂化光催化材料。
对合成的碳点/聚1,4-二苯基丁二炔杂化光催化材料进行了性能测试及表征。图1为聚1,4-二苯基丁二炔与碳点杂化光催化材料的扫描电镜照片;图2为聚1,4-二苯基丁二炔与碳点杂化光催化材料的透射电镜照片,表明碳点颗粒分散在了无定型聚1,4-二苯基丁二炔结构中,获得了杂化结构;图3为聚1,4-二苯基丁二炔及其与碳点杂化光催化材料的紫外-可见吸收光谱,表明聚1,4-二苯基丁二炔与碳点杂化光催化材料的可见光吸收能力优于单一的聚1,4-二苯基丁二炔光催化材料;图4为在可见光照射下,聚1,4-二苯基丁二炔与碳点杂化光催化材料降解亚甲基蓝染料效率随光照时间的对应关系,表明聚1,4-二苯基丁二炔与碳点杂化光催化材料光降解染料的效率高于S.Ghosh等人提出的现有方法制备的单一聚1,4-二苯基丁二炔光解效率。
实施例2
一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法,采用以下步骤:
(1)取1.5克1,4-二苯基丁二炔固体粉,将其均匀分散到具有250毫升的水热反应釜内衬罐底部,厚度为5mm;
(2)把装好1,4-二苯基丁二炔固体粉的内衬罐放入钢罐后抽真空,使内部压力小于0.1个大气压,然后充入氧气与氮气的混合气体至1个大气压,最后密封,其中,氧气与氮气的体积比为3;
(3)把密封好的反应釜放入鼓风烘箱,在135℃下保温150min,然后冷却至室温,即可得到导电聚1,4-二苯基丁二炔与碳点的杂化光催化材料。
实施例3
一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法,采用以下步骤:
(1)取2克1,4-二苯基丁二炔固体粉,将其均匀分散到具有250毫升的水热反应釜内衬罐底部,厚度为7mm;
(2)把装好1,4-二苯基丁二炔固体粉的内衬罐放入钢罐后抽真空,使内部压力小于0.1个大气压,然后充入氧气与氮气的混合气体至1个大气压,最后密封,其中,氧气与氮气的体积比为2;
(3)把密封好的反应釜放入鼓风烘箱,在120℃下保温100min,然后冷却至室温,即可得到导电聚1,4-二苯基丁二炔与碳点的杂化光催化材料。

Claims (1)

1.一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法,其特征在于:采用以下步骤:
(1)取1~2克1,4-二苯基丁二炔固体粉,将其均匀分散到具有250毫升的水热反应釜内衬罐底部,且厚度为2~7mm;
(2)把装好1,4-二苯基丁二炔固体粉的内衬罐放入钢罐后抽真空,使内部压力小于0.1个大气压,然后充入氧气与氮气的混合气体至1个大气压,最后密封,其中,氧气与氮气的体积比为2~3;
(3)把密封好的反应釜放入鼓风烘箱,在95~135℃下保温50~150min,然后冷却至室温,即可得到导电聚1,4-二苯基丁二炔与碳点的杂化光催化材料。
CN201610534474.3A 2016-07-07 2016-07-07 一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法 Expired - Fee Related CN106215975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610534474.3A CN106215975B (zh) 2016-07-07 2016-07-07 一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610534474.3A CN106215975B (zh) 2016-07-07 2016-07-07 一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法

Publications (2)

Publication Number Publication Date
CN106215975A true CN106215975A (zh) 2016-12-14
CN106215975B CN106215975B (zh) 2018-12-04

Family

ID=57519251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610534474.3A Expired - Fee Related CN106215975B (zh) 2016-07-07 2016-07-07 一步合成碳点/聚1,4-二苯基丁二炔杂化光催化材料的方法

Country Status (1)

Country Link
CN (1) CN106215975B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100466A1 (en) * 2004-04-13 2005-10-27 Zyvex Corporation Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
CN102532391A (zh) * 2011-12-16 2012-07-04 陕西科技大学 采用混合模板制备17β-雌二醇分子印迹聚合物的方法
CN103359707A (zh) * 2013-07-26 2013-10-23 西南大学 一种低温一步法合成高量子产率且具有上转换荧光的碳点的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100466A1 (en) * 2004-04-13 2005-10-27 Zyvex Corporation Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials
CN102532391A (zh) * 2011-12-16 2012-07-04 陕西科技大学 采用混合模板制备17β-雌二醇分子印迹聚合物的方法
CN103359707A (zh) * 2013-07-26 2013-10-23 西南大学 一种低温一步法合成高量子产率且具有上转换荧光的碳点的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SARBANTI GHOSH ET.AL: "Conducting polymer nanostructures foe photocatalysis ubder visible light", 《NATURE MATERIAL》 *
SRABANTI GHOSH ET.AL: "Conducting polymer nnanofibers with controlled diameters synthesiszed in hexagonal mesophases", 《NEW JOURNAL CHEMISTRY》 *

Also Published As

Publication number Publication date
CN106215975B (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
Li et al. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution
Di et al. Defect‐rich Bi12O17Cl2 nanotubes self‐accelerating charge separation for boosting photocatalytic CO2 reduction
Lu et al. Construction 0D/2D heterojunction by highly dispersed Ni2P QDs loaded on the ultrathin g-C3N4 surface towards superhigh photocatalytic and photoelectric performance
Hu et al. Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation
Yu et al. Unique nitrogen-deficient carbon nitride homojunction prepared by a facile inserting-removing strategy as an efficient photocatalyst for visible light-driven hydrogen evolution
Wulan et al. Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting
Song et al. Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride
Zhang et al. Synthesis of ultrathin WSe 2 nanosheets and their high-performance catalysis for conversion of amines to imines
CN107081165B (zh) 一种类石墨烯氮化碳材料及其制备方法和用途
Hao et al. Accelerating the hole mobility of graphitic carbon nitride for photocatalytic hydrogen evolution via 2D/2D heterojunction structural advantages and Ni (OH) 2 characteristic
Xue et al. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation
Gao et al. Fast charge separation and transfer strategy in polymeric carbon nitride for efficient photocatalytic H2 evolution: coupling surface Schottky junctions and interlayer charge transfer channels
Wu et al. Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization
Sun et al. Generated gas molecules-modified carbon nitride nanosheets with nitrogen vacancies and high efficient photocatalytic hydrogen evolution
Chen et al. Direct synthesis of multicolor fluorescent hollow carbon spheres encapsulating enriched carbon dots
Zhang et al. A Metal–Organic Frameworks Derived 1T‐MoS2 with Expanded Layer Spacing for Enhanced Electrocatalytic Hydrogen Evolution
CN109455701A (zh) 一种高效产氢的高掺杂氮磷碳纳米片的制备方法
Zhang et al. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution
Ye et al. Improved charge transfer in polymeric carbon nitride synergistically induced by the aromatic rings modification and Schottky junctions for efficient photocatalytic CO2 reduction
CN108126728B (zh) 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用
Yang et al. Biochar modified Co–Al LDH for enhancing photocatalytic reduction CO2 performance and mechanism insight
Chen et al. Facile and rapid preparation of hexagonal boron nitride via microwave heating method and its application in photocatalytic H2 evolution
CN103569966B (zh) 带环形阵列的微凸台结构的重整制氢反应器
CN106215975A (zh) 一步合成碳点/聚1,4‑二苯基丁二炔杂化光催化材料的方法
Ye et al. Bridging engineering of polymeric carbon nitride for boosting photocatalytic CO2 reduction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181204

Termination date: 20190707

CF01 Termination of patent right due to non-payment of annual fee