CN106215925B - Nd掺杂TiO2纳米线的制备方法 - Google Patents

Nd掺杂TiO2纳米线的制备方法 Download PDF

Info

Publication number
CN106215925B
CN106215925B CN201610585241.6A CN201610585241A CN106215925B CN 106215925 B CN106215925 B CN 106215925B CN 201610585241 A CN201610585241 A CN 201610585241A CN 106215925 B CN106215925 B CN 106215925B
Authority
CN
China
Prior art keywords
tio
nano wire
preparation
adulterates
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610585241.6A
Other languages
English (en)
Other versions
CN106215925A (zh
Inventor
宋伟明
张哲�
李颖
陈朝晖
邓启刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201610585241.6A priority Critical patent/CN106215925B/zh
Publication of CN106215925A publication Critical patent/CN106215925A/zh
Application granted granted Critical
Publication of CN106215925B publication Critical patent/CN106215925B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

Nd掺杂TiO2纳米线的制备方法,本发明涉及一种Nd掺杂TiO2纳米材料的制备方法,它为了解决现有方法制备的TiO2材料的光催化降解率低的问题。制备方法:一、将CTAB溶于环己烷和正丁醇的混合溶剂中,得到反胶束溶液;二、将Nd(NO3)3·6H2O溶于正丁醇中,然后加入钛酸丁酯,得到钛钕混合液;三、将钛钕混合液加入到反胶束溶液中,滴加NaOH溶液后进行晶化反应,经真空过滤、洗涤,干燥后得到Nd掺杂TiO2纳米线。发明利用阳离子表面活性剂十六烷基三甲基溴化铵在环己烷正丁醇中形成的反相胶束做微反应器,合成Nd掺杂TiO2纳米线,由于Nd3+进入TiO2晶格中,形成新的能级和自由电子,有效缩小了Eg,进而提高了光催化性能。

Description

Nd掺杂TiO2纳米线的制备方法
技术领域
本发明涉及一种Nd掺杂TiO2纳米材料的制备方法。
背景技术
TiO2作为半导体材料,当光子以不小于禁带宽度能量(Eg)照射到TiO2上时,TiO2会吸收光子能量,价带电子受到激发,跨过禁带到达导带,从而使价带中留有一个空穴(h+)、导带中获得一个激发电子(e-),形成一个空穴-电子对。电子受体接收电子使TiO2表面的水溶氧被还原,以过氧阴离子(O2 -)的形式存在,O2 -与H2O产生H2O2作为助催化剂加速反应的进行(式1-2)。光生空穴具有很强的氧化性,使得吸附在催化剂表面的H2O被氧化成·OH自由基(式1-3),使废水中的有机物降解为H2O、CO2等无机的小分子物质。
O2+e-→O2 - (式1-1)
O2 -+e-+2H+→H2O2 (式1-2)
H2O+h+→·OH (式1-3)
虽然TiO2具有较高的耐光性、无毒性、机械稳定性、经济可用性,在光催化、脱硝、光电传导等多方面应用极为广泛。但由于TiO2禁带宽度(3.2eV)较大,只能吸收日光光谱中的3%~5%;且光辐射下,TiO2中电子和空穴复合速度较快,容易至催化剂失效。因此,减小禁带宽度、降低电子和空穴的复合速度,是提高TiO2可见光催化性能的有效途径。
由于稀土元素的4f电子可以在f-f组态层内以及f-d组态之间跃迁,使得它们具有特殊的电、光和磁性质,从而具有许多潜在应用。为了优化二氧化钛应用性能,研究者将注意力转移到稀土掺杂TiO2材料的制备上,从中可发掘出多种新型的光催化材料。利用离子掺杂来提高TiO2的光催化性能,其原因主要有以下几点。(1)造成晶格缺陷和晶格畸变,增加氧空位;(2)形成捕获中心,抑制光生电子和空穴复合;杂质的引入能够形成活性捕获中心,起到捕获阱的作用,价态高于Ti4+的金属离子捕获电子,价态低于Ti4+的金属离子则捕获空穴,致使电子与空穴分离并抑制其电子-空穴对复合,延长了载流子的寿命,从而增强了光催化剂的活性。(3)形成掺杂能级,降低TiO2的带隙,掺杂可以在TiO2原有的禁带中引入施主和受主等杂质能级。研究发现,稀土掺杂的TiO2发光材料的发光性能与其粒子尺寸和形貌关系密切。因此,制备可控尺寸和新颖形貌的稀土掺杂的TiO2纳微米材料就成为了当前的研究重点。例如Eu3+掺杂的介孔TiO2薄膜具有良好的发光性能;Eu3+掺杂的TiO2纳米管,在紫外光激发下,这种纳米管状结构TiO2展示了强的红光发射能力。由以上这些研究成果可以看出,稀土掺杂TiO2的形貌结构直接决定了材料的应用性能。因为材料的微观结构、表面形态能赋予材料一些特殊的性质,如纳米管、纳米棒、纳米线和纳米球等。尤其是纳米线,因其具有较大的长径比和定向传导电子的能力,能有效降低光生电子的复合几率,提高光生电子和空穴的有效利用率,增强材料的光电化学性能而备受关注。
基于定向生长的理念而调控的纳米材料的尺寸、结构,为发展具有独特物理化学性能的纳米材料提供了导向作用。水热条件下,TiO2纳米晶体可以进行二次生长,晶体形状、结构也在二次生长过程中发生变化,晶粒的生长过程因微型颗粒表面能的降低而聚集成特定的微观结构。形成这种特异微观结构纳米材料的有效方法是微反应器自主装方法,可以充当微反应器的结构微元有胶束,反胶束,微乳,囊泡,液晶等。反胶束是表面活性剂分散于有机介质中自组装形成的纳米尺寸的分散体系,反胶束体系中,表面活性剂分子在界面上定向排列,碳氢链伸向有机相,极性头或电荷头部及抗衡离子则向内排列,形成极性核,从而将界面张力降到较低值(10-8N.m-1)。反胶束有着广泛的应用,可以提纯与分离生物活性物质,还可以作为酶催化的反应体系,目前应用比较广泛的是反胶束法制备纳米微粒。反胶束中纳米微粒的形成过程一般包括化学反应阶段、成核阶段和晶核生长阶段三部分。当含有特殊组分的溶液与反胶束溶液混合后,由于多种离子电荷间的相互作用以及胶束之间的碰撞、融合、分离、重组等过程,使反应物在胶束内核中互相交换、传递及生长,形成特殊形貌的纳米材料。
发明内容
本发明的目的是为了解决现有方法制备的TiO2材料的光催化降解率低的问题,而提供了以表面活性剂形成的反胶束为微反应器,制备Nd掺杂TiO2纳米线的方法。
本发明Nd掺杂TiO2纳米线的制备方法按下列步骤实现:
一、将CTAB(十六烷基三甲基溴化铵)溶于环己烷和正丁醇的混合溶剂中,超声震荡均匀,得到反胶束溶液;
二、将Nd(NO3)3·6H2O(六水合硝酸钕)溶于正丁醇中,得到硝酸钕溶液,然后加入钛酸丁酯,超声震荡均匀,得到钛钕混合液;
三、将钛钕混合液加入到步骤一得到的反胶束溶液中,超声震荡均匀,滴加NaOH溶液后转移至水热反应釜中,在120℃~160℃的温度下晶化32~72h,离心分离去除上层清液,用HCl进行酸化,然后真空过滤得到的滤饼用蒸馏水、无水乙醇交替洗涤至下层清液的pH=7,收集得到固相物,干燥后得到Nd掺杂TiO2纳米线;
其中步骤一反胶束溶液中的CTAB的摩尔浓度c=0.1~0.2mol/L;步骤二中钛钕混合液中n(Nd):n(Ti)=0.5~2:100。
本发明利用阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)在环己烷正丁醇中形成的反相胶束做微反应器,合成Nd掺杂TiO2纳米线。由于适量的Nd3+进入TiO2晶格中,形成新的能级和自由电子,有效缩小了Eg,进而提高了光催化性能。同时定向生长纳米线的形成,具有较强的定向传导电子能力,相对较大的比表面积,也为催化反应提供更多的活性位点,进而提升光催化性能。
本发明步骤一通过十六烷基三甲基溴化铵(CTAB)在环己烷中形成的反胶束作为微反应器,自组装合成Nd掺杂TiO2纳米线,纳米线直径大约20~30nm,长度大约500nm,属于锐钛矿和锆钛矿混合晶型,在可见光照射下,在150min时间内该Nd掺杂TiO2纳米线对罗丹明B降解率可达到95%以上。
附图说明
图1为实施例一得到的Nd掺杂TiO2纳米线的透射电镜图a;
图2为实施例一得到的Nd掺杂TiO2纳米线的透射电镜图b;
图3为实施例一得到的Nd掺杂TiO2纳米线的EDS能谱图,其中横坐标是能量energy/kev,纵坐标是计数counts/cps;
图4为实施例一得到的Nd掺杂TiO2纳米线的XRD表征图;
图5为紫外光照射下,实施例得到的Nd掺杂TiO2纳米线对罗丹明B的降解曲线图,其中e代表空白对照实验;
图6为可见光照射下,实施例得到的Nd掺杂TiO2纳米线对罗丹明B的降解曲线图,其中e代表空白对照实验。
具体实施方式
具体实施方式一:本实施方式Nd掺杂TiO2纳米线的制备方法按下列步骤实施:
一、将CTAB(十六烷基三甲基溴化铵)溶于环己烷和正丁醇的混合溶剂中,超声震荡均匀,得到反胶束溶液;
二、将Nd(NO3)3·6H2O(六水合硝酸钕)溶于正丁醇中,得到硝酸钕溶液,然后加入钛酸丁酯,超声震荡均匀,得到钛钕混合液;
三、将钛钕混合液加入到步骤一得到的反胶束溶液中,超声震荡均匀,滴加NaOH溶液后转移至水热反应釜中,在120℃~160℃的温度下晶化32~72h,离心分离去除上层清液,用HCl进行酸化,然后真空过滤得到的滤饼用蒸馏水、无水乙醇交替洗涤至下层清液的pH=7,收集得到固相物,干燥处理后得到Nd掺杂TiO2纳米线;
其中步骤一反胶束溶液中的CTAB的摩尔浓度c=0.1~0.2mol/L;步骤二中钛钕混合液中n(Nd):n(Ti)=0.5~2:100。
本实施方式步骤三滴加NaOH溶液使反应液处于强碱体系,反应液的pH=11~13。
本实施方式阳离子表面活性剂十六烷基三甲基溴化铵在环己烷和正丁醇混合溶剂中形成反胶束,可以作为微反应器组装纳米材料。步骤一得到的反胶束为透明溶液,步骤二得到的Nd掺杂TiO2纳米线为粉体,其颜色为白色。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中所述的混合溶剂中 v(环己烷):v(正丁醇)=7~8:1。其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤二所述的硝酸钕溶液的质量分数为0.3%~0.8%。其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤二在30℃~ 35℃的条件下超声震荡均匀,得到钛钕混合液。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤三按体积比为 (100~150):(100~105)将钛钕混合液加入到步骤一得到的反胶束溶液中。其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤三所述的NaOH溶液的摩尔浓度c(NaOH)=10~12mol/L。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤三在130℃的温度下晶化45~50h。其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤三所述的干燥处理是在150℃下进行的。其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是得到的Nd掺杂TiO2纳米线的直径为20~30nm,长度为400~700nm。其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是得到的Nd掺杂TiO2纳米线呈粉体,粉体的粒径为20~50nm。其它步骤及参数与具体实施方式一至九之一相同。
实施例一:本实施例Nd掺杂TiO2纳米线的制备方法按下列步骤实施:
一、将3.648g(0.01mol)CTAB(十六烷基三甲基溴化铵MR=364.4)溶于100mL 环己烷和正丁醇的混合溶剂(v(环己烷):v(正丁醇)=8:1)中,在温度为30℃~35℃的条件下超声震荡30min,得到透明反胶束溶液;
二、将0.438g(0.001mol)Nd(NO3)3·6H2O(六水合硝酸钕MR=438.35)溶于100mL(MR=74.12,密度=0.809g/cm3)正丁醇中,得到w=0.5%的硝酸钕溶液,然后在30±1℃下加入35mL(0.1mol)钛酸丁酯(MR=340.3,密度=0.966g/cm3),超声震荡均匀,得到钛钕混合液;
三、将钛钕混合液加入到步骤一得到的反胶束溶液中,在30℃下超声震荡均匀,滴加20mL的c(NaOH)=10mol/L的NaOH溶液(30min内滴完)后转移至水热反应釜中(此时反应液pH=12),在130℃的温度下晶化48h,离心分离去除上层清液,用0.1 mol/L的HCl进行酸化3次(每隔一小时酸化一次)至溶液pH=4,然后真空过滤得到的滤饼用蒸馏水、无水乙醇交替洗涤至下层清液的pH=7,收集得到固相物,150℃下干燥 12h得到Nd掺杂TiO2纳米线粉体(样品标记为a)。
实施例二:本实施例与实施例一不同的是步骤二中钛酸丁酯加入量为17.5mL(0.05mol),此时钛钕混合液中n(Nd):n(Ti)=2.0:100,其它与实施例一相同,得到 Nd掺杂TiO2纳米线粉体(样品标记为b)。
实施例三:本实施例与实施例一不同的是步骤二中100mL正丁醇,未加入 Nd(NO3)3·6H2O,直接加入35mL钛酸丁酯,其它实施方式与实施例一相同,得到未掺杂TiO2粉体作为对比样(样品标记为c)。
实施例得到的Nd掺杂TiO2纳米线粉体的晶型及其表面性质由X射线衍射仪(RigakuD/max-Ⅱ,日本理光)进行表征;微观形貌及EDS元素分析采用扫描电子显微镜(SEM)(S-4300HITACHI)进行表征。
本实施例步骤三得到的Nd掺杂TiO2纳米线不同放大倍数的透射电镜图如图1-2所示,从图1-2可以看出,Nd掺杂TiO2纳米线的直径大约20~30nm,长度大约500nm。
本实施得到的Nd掺杂TiO2纳米线的XRD表征图如图4所示,与TiO2标准图谱对照,在2θ=25.31°,37.79°,38.87°,48.11°,53.93°,62.66°,68.84°,70.34°,75.05°处出现锐钛矿相TiO2的衍射峰,分别对应于锐钛矿相TiO2的(101),(004),(112),(200),(105), (204),(116),(220),(215)晶面,在2θ=25.31°,31.52°,45.14°,53.953°,55.096°,56.079°,62.716°,65.732°处出现锆钛矿相TiO2的衍射峰,分别对应于锆钛矿相TiO2的(110),(111),(112),(122),(202),(221),(113),(222)晶面,由此可见,Nd掺杂TiO2纳米线包含锐钛矿和锆钛矿两种晶型。Nd元素很可能是以部分非晶态氧化物形式均匀分布在TiO2中。
本实施得到的Nd掺杂TiO2纳米线的EDS元素含量分析结果如图3所示,显示样品中Nd元素原子百分比为0.21%,Ti元素原子百分比为21.14%,n(Nd):n(Ti)=1.0:100;而氧元素含量为69.90%,O与Ti的原子百分含量大于2:1,说明氧原子不只以晶格氧的形式存在,仍有部分氧原子以吸附氧的形式存在。各元素含量见表1所示。
表1
移取60mL浓度为6mg/L的罗丹明B溶液置于石英管中,将Nd掺杂TiO2纳米线(样品a,b),相同条件下合成的未掺杂TiO2纳米线(样品c)及市售p25(二氧化钛粉体,记为样品d)各10mg分别置于100mL石英管中,在光化学反应仪器中避光磁力搅拌至吸附脱附平衡(约90min)后,在1000W氙灯照射下进行光催化实验,150min内间隔15min 取样,经离心分离后取其上层清液,用紫外可见分光光度计在罗丹明B最大的吸收波长 554nm处测定吸光度。通过计算确定,紫外光照射下,在150min时间内样品a对罗丹明B降解率为94.8%(见图5)。可见光照射下,在150min时间内样品a对罗丹明B降解率为96.2%(见图6)。有Nd掺杂TiO2纳米线作为光催化材料,掺杂量为1%的样品降解率,紫外光下是未掺杂样品的1.2倍,可见光下是未掺杂样品的1.5倍。

Claims (10)

1.Nd掺杂TiO2纳米线的制备方法,其特征在于是按下列步骤实现:
一、将CTAB溶于环己烷和正丁醇的混合溶剂中,超声震荡均匀,得到反胶束溶液;
二、将Nd(NO3)3·6H2O溶于正丁醇中,得到硝酸钕溶液,然后加入钛酸丁酯,超声震荡均匀,得到钛钕混合液;
三、将钛钕混合液加入到步骤一得到的反胶束溶液中,超声震荡均匀,滴加NaOH溶液使反应液的pH=11~13,再转移至水热反应釜中,在120℃~160℃的温度下晶化32~72h,离心分离去除上层清液,用HCl进行酸化,然后真空过滤得到的滤饼用蒸馏水、无水乙醇交替洗涤至下层清液的pH=7,收集得到固相物,干燥后得到Nd掺杂TiO2纳米线;
其中步骤一反胶束溶液中的CTAB的摩尔浓度c=0.1~0.2mol/L;步骤二中钛钕混合液中n(Nd):n(Ti)=0.5~2:100。
2.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤一中所述的混合溶剂中v(环己烷):v(正丁醇)=7~8:1。
3.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤二所述的硝酸钕溶液的质量分数为0.3%~0.8%。
4.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤二在30℃~35℃的条件下超声震荡均匀,得到钛钕混合液。
5.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤三按体积比为(100~150):(100~105)将钛钕混合液加入到步骤一得到的反胶束溶液中。
6.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤三所述的NaOH溶液的摩尔浓度c(NaOH)=10~12mol/L。
7.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤三在130℃的温度下晶化45~50h。
8.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于步骤三所述的干燥处理是在150℃下进行的。
9.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于得到的Nd掺杂TiO2纳米线的直径为20~30nm,长度为400~700nm。
10.根据权利要求1所述的Nd掺杂TiO2纳米线的制备方法,其特征在于得到的Nd掺杂TiO2纳米线呈粉体,粉体的粒径为20~50nm。
CN201610585241.6A 2016-07-22 2016-07-22 Nd掺杂TiO2纳米线的制备方法 Expired - Fee Related CN106215925B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610585241.6A CN106215925B (zh) 2016-07-22 2016-07-22 Nd掺杂TiO2纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610585241.6A CN106215925B (zh) 2016-07-22 2016-07-22 Nd掺杂TiO2纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN106215925A CN106215925A (zh) 2016-12-14
CN106215925B true CN106215925B (zh) 2018-09-21

Family

ID=57531461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610585241.6A Expired - Fee Related CN106215925B (zh) 2016-07-22 2016-07-22 Nd掺杂TiO2纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN106215925B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108485646B (zh) * 2018-03-21 2020-11-03 青岛大学 一种纳米粒子自组装成晶体链的制备方法
CN108993477A (zh) * 2018-06-27 2018-12-14 江苏大学 一种新型钕改性scr脱硝催化剂的制备方法及应用
CN115672299B (zh) * 2021-07-30 2024-04-30 国家能源投资集团有限责任公司 二氧化钛纳米线及其制备方法、脱硝催化剂及其制备方法、烟气脱硝的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664682A (zh) * 2008-09-05 2010-03-10 中国石油化工股份有限公司 一种非贵金属负载型选择加氢催化剂及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664682A (zh) * 2008-09-05 2010-03-10 中国石油化工股份有限公司 一种非贵金属负载型选择加氢催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
微乳液反应法制备纳米二氧化钛及其反应条件对粒径和形貌影响的研究;益帼;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20061015;第45-46、53页 *
金属离子改性TiO2纳米颗粒的可见光光催化性能研究;李建通;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20110615;第8、53页 *

Also Published As

Publication number Publication date
CN106215925A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
Guo et al. Novel BiVO4/InVO4 heterojunctions: facile synthesis and efficient visible-light photocatalytic performance for the degradation of rhodamine B
Kallawar et al. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges
Xie et al. Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation
Zhang et al. Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation
Tang et al. Surface engineering induced superstructure Ta2O5− x mesocrystals for enhanced visible light photocatalytic antibiotic degradation
Alzamly et al. Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts
Huang et al. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2− xNy coupled photocatalysts
Li et al. A controlled anion exchange strategy to synthesize Bi2S3 nanoparticles/plate-like Bi2WO6 heterostructures with enhanced visible light photocatalytic activities for Rhodamine B
Liu et al. Ag-SrTiO3/TiO2 composite nanostructures with enhanced photocatalytic activity
WO2008014690A1 (fr) Nano-fil de dioxyde de titane, procédé d'élaboration correspondant, son utilisation, et procédé de dégradation de contaminants organiques
Umar et al. Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures
Kaur et al. Comprehensive review and future perspectives of efficient N-doped, Fe-doped and (N, Fe)-co-doped titania as visible light active photocatalysts
Shin et al. Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance
Yang et al. Rapid microwave-assisted hydrothermal synthesis of Bi12TiO20 hierarchical architecture with enhanced visible-light photocatalytic activities
CN106215925B (zh) Nd掺杂TiO2纳米线的制备方法
Yang et al. Photocatalytic degradation of Rhodamine B with H3PW12O40/SiO2 sensitized by H2O2
Fu et al. Hybrid nanocomposite with visible–light photocatalytic activity: CdS–pillared titanate
WO2011005440A2 (en) Aggregate particles of titanium dioxide for solar cells
Azam et al. In-situ synthesis of TiO2/La2O2CO3/rGO composite under acidic/basic treatment with La3+/Ti3+ as mediators for boosting photocatalytic H2 evolution
Zhou et al. Enhanced visible light photocatalytic degradation of rhodamine B by Z-scheme CuWO 4/gC 3 N 4 heterojunction
Jin et al. Visible photocatalysis of Cr (VI) at g/L level in Si/N-TiO2 nanocrystals synthesized by one-step co-hydrolysis method
Nawaz et al. Structural elucidation of core–shell TiO2 nanomaterials for environmental pollutants removal: A focused mini review
Abutalib et al. Preparation of rGO/FeMoO4 as high-performance photocatalyst for degradation of malachite green, phenol and H2 evolution under natural sunlight
Kumari et al. TiO2-CeO2 assisted heterostructures for photocatalytic mitigation of environmental pollutants: a comprehensive study on band gap engineering and mechanistic aspects
KR101706846B1 (ko) 나노복합체 광촉매 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180921

Termination date: 20190722

CF01 Termination of patent right due to non-payment of annual fee