CN106214158A - 一种基于超宽带微波吸收谱分析的血糖浓度检测方法 - Google Patents

一种基于超宽带微波吸收谱分析的血糖浓度检测方法 Download PDF

Info

Publication number
CN106214158A
CN106214158A CN201610555926.6A CN201610555926A CN106214158A CN 106214158 A CN106214158 A CN 106214158A CN 201610555926 A CN201610555926 A CN 201610555926A CN 106214158 A CN106214158 A CN 106214158A
Authority
CN
China
Prior art keywords
blood sugar
sugar concentration
absorption spectra
antenna
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610555926.6A
Other languages
English (en)
Inventor
肖夏
李钦伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610555926.6A priority Critical patent/CN106214158A/zh
Publication of CN106214158A publication Critical patent/CN106214158A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Emergency Medicine (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明涉及一种基于超宽带微波吸收谱分析的血糖浓度检测方法,包括:制作人体耳垂模型;配制不同血糖浓度的测试血液;利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂模型的信号;对接收的信号使用傅里叶变换进行处理,得到不同血糖浓度对应的频域波形;提取吸收谱在1.8GHz时的振幅,找出吸收谱振幅与血糖浓度对应的线性关系;在进行血糖浓度检测时,将第一天线和第二天线置于耳垂两侧;对接收的信号进行吸收谱分析,提取吸收谱在1.8GHz时的振幅,检测血糖浓度。本发明能够方便快捷测量血糖浓度。

Description

一种基于超宽带微波吸收谱分析的血糖浓度检测方法
技术领域
本发明属于微波无损检测技术领域,涉及一种血糖浓度检测方法。
背景技术
人体血液中各种化学成分含量的变化能真实反映人体的健康状况,是临床诊断和日常监护所必需的重要信息。寻找一种能够便捷、连续、有效、准确、无创地血液成分的方法,是长期以来人类对抗疾病过程中梦寐以求的理想。由于血液中葡萄糖浓度的实时检测对预防和治疗糖尿病具有重要价值,目前的研究主要集中在对血糖的无创检测上。正在研究的可行的血糖无创检测的方法可分为两大类:一类是光学方法,主要包括近红外光谱法、中红外光谱法、光声光谱法、偏振光测量技术等多种方案。光学方法普遍存在的问题是对人体组织的光学特性认识还不够深入,无法消除血压、体温、皮肤状况、测量部位等因素对测量精度的影响。另一类是非光学方法,主要包括体液采集法、离子反渗透法、电磁阻抗谱法。
发明内容
本发明提供一种利用超宽带微波检测系统中对人体血糖浓度进行无损探测的方法。该方法简便快捷,能够通过接收信号的吸收谱信息对血糖浓度进行判断,避免使用穿刺等对人体有伤害的方法,能够获取足够的信息对血糖浓度进行检测。本发明的技术方案如下:
一种基于超宽带微波吸收谱分析的血糖浓度检测方法,包括下列步骤:
1)制作人体耳垂模型;
2)配制不同血糖浓度的测试血液;
3)利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂模型的信号;
4)对接收的信号使用傅里叶变换进行处理,得到不同血糖浓度对应的频域波形;
5)提取吸收谱在1.8GHz时的振幅,找出吸收谱振幅与血糖浓度对应的线性关系;
6)在进行血糖浓度检测时,将第一天线和第二天线置于耳垂两侧;
7)利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂的信号;
8)对接收的信号进行吸收谱分析,提取吸收谱在1.8GHz时的振幅,根据步骤5)找出的吸收谱振幅与血糖浓度对应的线性关系,检测血糖浓度。
附图说明
图1简化耳垂组织模型及天线结构示意图
图2真实耳垂组织模型及天线结构示意图
图3(a)和(b)分别为发射信号的时域波形与频域波形
图4简单模型中所有接收信号的时域波形
图5所有信号经过傅里叶变换后得到的频域波形,放大部分为信号吸收谱
图6吸收谱振幅与血糖浓度的关系
图7复杂模型中所有接收信号的时域波形
图8信号经傅里叶变换后的频域波形,放大部分为所有信号吸收谱
图9血糖浓度与吸收谱振幅的关系
具体实施方式
下面首先结合简单模型和复杂模型,对本发明的可行性进行说明。然后再结合实施例说明本发明的技术方案。
由于耳垂中组织结构简单,可以将毛细血管分布等效为一层血液层,不同血糖浓度时有不同的电磁特性参数。当一侧天线发射的超宽带微波穿过耳垂被另一侧的天线接收得到,再通过傅里叶变换对接收信号进行分析,即可得到信号的吸收谱,通过对吸收谱规律进行分析,即可得到血糖浓度的规律,通过该规律可以对血糖浓度进行判断。因此该方法简便快捷,避免了对人体的伤害,能够对人体的血糖浓度进行检测。非常适合于血糖浓度的检测。
图1为探测系统所采用的天线阵列结构和耳垂组织结构的简单模型,为简单起见,模型中只用了血液层,来验证该方法的可行性及有效性。其中天线在血液层的两侧。图2为模拟真实耳垂结构所构造的真实模型。其中,耳垂中的毛细血管被等效为一层血液层。血液层两边为脂肪组织,两个天线分别在模型两侧。血液层的浓度范围为0-4000mg/dl,对应不同浓度的血液层的电磁参数如表1所示,图2模型中的脂肪组织的电磁参数也包含在表1中。为满足探测分辨率的要求采用中心频率为5GHz、带宽为10GHz的一阶导高斯信号,信号波形如图3所示。
表1各个IMF与原始信号之间的相关系数
具体过程如下:
1.首先使用简单模型(图1)进行实验,天线A1发射超宽带微波信号,天线A2接收穿透耳垂的信号。
2.简单模型中接收到信号的时域波形如图4所示。从图4中可以看出,不同血糖浓度得到的五组信号是相同的,其中看不出差别。
3.对五组信号使用傅里叶变换进行处理,得到五组信号的频域波形,如图5所示。从图中可以看出,在1.8GHz时有明显的吸收谱。对该吸收谱进行放大,可以看出,血糖浓度越高,吸收谱越大。
4.为了更直观地反应吸收谱对应的血糖浓度的规律。提取信号在1.8GHz时的振幅,如图6所示。从图6可以看出,血糖浓度与吸收谱振幅呈线性关系。
5.从图6可以得到吸收谱与血糖浓度的关系,从而可以确定血糖浓度。
6.为了更好地突出该方法的优越性,使用更加复杂的模型来对该方法进行验证,即使用图2所示模型进行探测。
7.复杂模型中接收到的信号如图7所示,从图7中可以看出,不同血糖浓度得到的五组信号是相同的,其中看不出差别。
8.对五组信号使用傅里叶变换进行处理,得到五组信号的频域波形,如图8所示。从图中可以看出,依然在1.8GHz时有明显的吸收谱。对该吸收谱进行放大,可以看出,血糖浓度越高,吸收谱越大。
9.为了更直观地反应吸收谱对应的血糖浓度的规律。提取信号在1.8GHz时的振幅,如图9所示。从图9可以看出,血糖浓度与吸收谱振幅呈线性关系。
10.从图9可以得到吸收谱与血糖浓度的关系,从而可以确定血糖浓度。
11.以上结果得出,使用超宽带微波吸收谱对血糖浓度进行检测的方法具有很高的可行性及有效性。
下面总结一下本发明的检测方法:
1)制作人体耳垂模型;
2)配制不同血糖浓度的测试血液;
3)利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂模型的信号;
4)对接收的信号使用傅里叶变换进行处理,得到不同血糖浓度对应的频域波形;
5)提取吸收谱在1.8GHz时的振幅,找出吸收谱振幅与血糖浓度对应的线性关系;
6)在进行血糖浓度检测时,将第一天线和第二天线置于耳垂两侧;
7)利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂的信号;
8)对接收的信号进行吸收谱分析,提取吸收谱在1.8GHz时的振幅,根据步骤5)找出的吸收谱振幅与血糖浓度对应的线性关系,检测血糖浓度。
该方法可以简便地确定血糖浓度,同时对身体不产生损害。实验结果证实该方法十分可行有效。

Claims (1)

1.一种基于超宽带微波吸收谱分析的血糖浓度检测方法,包括下列步骤:
1)制作人体耳垂模型;
2)配制不同血糖浓度的测试血液;
3)利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂模型的信号;
4)对接收的信号使用傅里叶变换进行处理,得到不同血糖浓度对应的频域波形;
5)提取吸收谱在1.8GHz时的振幅,找出吸收谱振幅与血糖浓度对应的线性关系;
6)在进行血糖浓度检测时,将第一天线和第二天线置于耳垂两侧;
7)利用第一天线发射超宽带微波信号,第二天线接收穿透耳垂的信号;
8)对接收的信号进行吸收谱分析,提取吸收谱在1.8GHz时的振幅,根据步骤5找出的吸收谱振幅与血糖浓度对应的线性关系,检测血糖浓度。
CN201610555926.6A 2016-07-15 2016-07-15 一种基于超宽带微波吸收谱分析的血糖浓度检测方法 Pending CN106214158A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610555926.6A CN106214158A (zh) 2016-07-15 2016-07-15 一种基于超宽带微波吸收谱分析的血糖浓度检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610555926.6A CN106214158A (zh) 2016-07-15 2016-07-15 一种基于超宽带微波吸收谱分析的血糖浓度检测方法

Publications (1)

Publication Number Publication Date
CN106214158A true CN106214158A (zh) 2016-12-14

Family

ID=57520023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610555926.6A Pending CN106214158A (zh) 2016-07-15 2016-07-15 一种基于超宽带微波吸收谱分析的血糖浓度检测方法

Country Status (1)

Country Link
CN (1) CN106214158A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107997769A (zh) * 2017-11-24 2018-05-08 天津大学 一种基于耳垂血液层的微波时延无创血糖浓度检测法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792668A (en) * 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US20080319285A1 (en) * 2005-07-06 2008-12-25 Ferlin Medical Ltd. Apparatus and Method for Measuring Constituent Concentrations within a Biological Tissue Structure
CN104856690A (zh) * 2015-05-14 2015-08-26 深圳市一体太赫兹科技有限公司 血糖检测方法和装置
CN204654946U (zh) * 2015-05-15 2015-09-23 深圳市一体太糖科技有限公司 一种基于耳垂检测的无创血糖仪
US20160051171A1 (en) * 2014-08-25 2016-02-25 California Institute Of Technology Methods and systems for non-invasive measurement of blood glucose concentration by transmission of millimeter waves through human skin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792668A (en) * 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US20080319285A1 (en) * 2005-07-06 2008-12-25 Ferlin Medical Ltd. Apparatus and Method for Measuring Constituent Concentrations within a Biological Tissue Structure
US20160051171A1 (en) * 2014-08-25 2016-02-25 California Institute Of Technology Methods and systems for non-invasive measurement of blood glucose concentration by transmission of millimeter waves through human skin
CN104856690A (zh) * 2015-05-14 2015-08-26 深圳市一体太赫兹科技有限公司 血糖检测方法和装置
CN204654946U (zh) * 2015-05-15 2015-09-23 深圳市一体太糖科技有限公司 一种基于耳垂检测的无创血糖仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. GUARIN 等: "Determination of sugar concentration in aqueous solutions using ultra-wideband microwave impedance spectroscopy", 《2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (MTT)》 *
YONG GUAN 等: "Study of Simulation for High Sensitivity Non-invasive Measurement of Blood Sugar Level in Millimeter Waves", 《IEICE TRANS. ELECTRON.》 *
王青: "基于微波谐振特性及DSP技术的葡萄糖浓度检测系统的研究与实现", 《云南大学硕士学位论文》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107997769A (zh) * 2017-11-24 2018-05-08 天津大学 一种基于耳垂血液层的微波时延无创血糖浓度检测法

Similar Documents

Publication Publication Date Title
CN106419932A (zh) 基于超宽带微波信号时频分析的血糖浓度检测方法
Bunaciu et al. Vibrational spectroscopy in body fluids analysis
Tfayli et al. Discriminating nevus and melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy
US20170143231A1 (en) Monitoring the body using microwaves
CN109350078A (zh) 基于超宽带微波逆傅里叶变换的血糖浓度检测方法
CN109350076A (zh) 基于超宽带微波s21参数的血糖浓度检测方法
JP2009538418A (ja) 光音響撮像方法
US20120310055A1 (en) Ultra-wide band non-invasive biological sensor and method
Borges et al. Early detection and monitoring of plant diseases by Bioelectric Impedance Spectroscopy
CN108020565A (zh) 基于神经网络算法的血糖浓度检测方法
Li et al. Time-domain terahertz optoacoustics: manipulable water sensing and dampening
CN109330592A (zh) 基于超宽带微波s11参数的血糖浓度检测方法
CN107228904A (zh) 一种光致超声的血糖无创检测装置及方法
WO2014081586A1 (en) Non-invasive reagentless glucose determination
Sun et al. Noncontact vital sign detection based on stepwise atomic norm minimization
Prasanna et al. Early detection of acute coronary syndrome through prothrombin time measurement using flexible UWB antenna for cardiac patient
CN106108916A (zh) 基于超宽带微波吸收谱分析的血糖浓度检测方法
CN106256319A (zh) 一种基于超宽带微波信号时频分析的血糖浓度检测方法
CN106214158A (zh) 一种基于超宽带微波吸收谱分析的血糖浓度检测方法
Omer et al. Non-invasive Glucose Monitoring at mm-Wave Frequencies
CN205126252U (zh) 一种无创血糖测定指环
US9693694B2 (en) Cancer cell detection using dielectrophoretic dynamic light scattering (DDLS) spectroscopy
CN107796780B (zh) 太赫兹光谱定量检测血液中血脂含量的分析方法
US20210333222A1 (en) Rf rapid diagnostics of infection and contamination
CN109350077A (zh) 基于超宽带微波s12参数的血糖浓度检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161214

RJ01 Rejection of invention patent application after publication