CN106204677A - 一种提高动态对比增强磁共振图像时间分辨率的装置 - Google Patents

一种提高动态对比增强磁共振图像时间分辨率的装置 Download PDF

Info

Publication number
CN106204677A
CN106204677A CN201610556726.2A CN201610556726A CN106204677A CN 106204677 A CN106204677 A CN 106204677A CN 201610556726 A CN201610556726 A CN 201610556726A CN 106204677 A CN106204677 A CN 106204677A
Authority
CN
China
Prior art keywords
module
coding network
temporal resolution
layer
experimenter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610556726.2A
Other languages
English (en)
Inventor
吕骏
张晓东
王霄英
张珏
方竞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610556726.2A priority Critical patent/CN106204677A/zh
Publication of CN106204677A publication Critical patent/CN106204677A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Abstract

基于呼吸频率调制和预测编码网络提高动态对比增强(dynamic contrast enhanced,DCE)磁共振(magnetic resonance imaging,MRI)图像时间分辨率的装置。首先,训练集数据采集模块完成训练集受试者的呼吸频率进行控制,并对受试者待成像部位进行训练集数据采集。然后,深度预测编码网络(Predictive Coding Network,PredNet)训练模块利用采集的数据,对预测编码网络进行训练。进而,测试及数据采集模块开始对测试集受试者进行呼吸频率调制,并对测试集受试者待成像部位进行数据采集。最后,图像输出模块利用PredNet和测试集数据得到提高时间分辨率的DCE序列。本装置在没有增加扫描时间的基础上,增加采样点图像数据,因此能更加真实的记录组织信号的变化规律。同时,能基本保证药代动力学定量参数计算值相对稳定并具有较好的诊断效能。

Description

一种提高动态对比增强磁共振图像时间分辨率的装置
技术领域
本发明涉及一种基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置,属于图像处理技术领域。
背景技术
动态增强(dynamic contrast enhanced,DCE)磁共振(magnetic resonanceimaging,MRI)成像通过连续的数据采集记录对比剂在组织中吸收、分布引起的信号变化,转换为对比剂浓度曲线并与药代动力学模型拟合后计算得到相应的定量参数。时间分辨率即数据采集频率,决定了采集数据与组织信号变化间的符合程度。理论上,固定时间内采样点越多,对组织信号变化的记录就越接近实际情况,所得参数也就越接近“真值”;反之,时间分辨率的降低会使部分组织信号变化数据丢失,导致定量参数值偏离“真值”。
DCE-MRI结合药代动力学模型计算得到的定量参数能够反映在体血流灌注、血管通透性等信息,有助于判断病变性质并在监测治疗反应中发挥作用。实验研究结果显示,动态扫描序列的时间分辨率对定量参数的准确性具有决定性作用。由于技术条件的限制,腹部(肝脏、肾脏)病变定量分析研究尚在起步阶段,还未形成标准扫描协议,各研究机构动态扫描的时间分辨率差异较大,影响了不同研究之问的可比性。
预测编码主要是减少数据在时间和空间上的相关性,因而对于时间序列数据有广泛的应用价值,预测编码结合神经网络能得到较传统的线性预测更好的预测性能。通过设计一个合适的神经网络结构和采用对实际数据的训练来完成非线性预测器的设计。如果训练过程能够实现一个能使预测剩余能量最小的下降梯度的话,那么一个最优预测器也就实现了,此方法目前在视频压缩领域有着广泛应用。
发明内容
磁共振成像对病人的运动特别敏感。这主要是因为由MR获取数据得到一幅图像的时间明显更长,这段时间远远超过了大多数生理运动的时程,例如呼吸运动。因此,在获取一幅腹部图像的同时,呼吸运动会导致重建图像内含有鬼影和模糊。伪影的存在严重影响医学诊断,易造成误诊甚至错诊。因此,为了减少或消除运动伪影,前人也做了很多工作。例如,让受试者在接收扫描时憋气,来抑制伪影的产生。然而,正常成年人憋气时间通常在20s~30s之间,这限制了图像质量、图像分辨率和覆盖范围。还有研究者提出采用呼吸门控,以呼吸末为触发点,开始进行射频脉冲的激发和采集,到下一次吸气前停止扫描。此方法虽然能明显消除伪影,但是会导致扫描时间变长,效率降低,采集图像时间分辨率降低。
本发明的目的在于针对现有技术之弊端,提出了一种基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置。本装置在没有增加扫描时间的基础上,增加采样点图像数据,因此能更加真实的记录组织信号的变化规律。同时,能基本保证药代动力学定量参数计算值相对稳定并具有较好的诊断效能。
本发明所述问题是以下技术方案解决的:
基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置。呼吸频率调制是通过让训练集受试者再进行MR扫描时唱同一首歌或念同一首诗达到使各个受试者的呼吸信号曲线达到一致的手段。通过呼吸频率调制手段对训练集受试者的呼吸频率进行控制,利用训练集数据采集模块对受试者待成像部位进行训练集数据采集。训练集受试者人数不少于20人,男女不限。进而,深度预测编码网络(Predictive CodingNetwork,PredNet)训练模块,对相同呼吸频率调制手段获得的训练集数据进行训练。至此,完成PredNet网络的训练。此后,测试及数据采集模块利用与训练集数据采集相同的呼吸频率调制手段对测试集受试者进行数据采集。得到的测试集数据结合深度预测编码网络输入图像输出模块。最后,图像输出模块输出提高时间分辨率后的DCE序列图像。
上述基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置,具体处理步骤如下:
1、训练集数据采集模块,该模块通过呼吸频率调制手段对训练集受试者的呼吸频率进行控制,进而对受试者待成像部位进行训练集数据采集;
2、深度预测编码网络模块由堆叠模块构成,堆叠模块由n个子模块构成,每个子模块有四部分组成:输入卷积层Al,递归表达层Rl,预测层以及误差表示El
DCE序列图像为xt,0层网络对象为真实序列本身递归表达层Rl是一个递归卷积网络(recurrent convolutional network,RNN)能够通过输入Al生成预测然后该预测值会从真实的输入值中减掉并传入到下一层网络中。从而,该网络可以得到Al的差,并输出误差El,同时将其分为纠正正和负误差两类。误差El被传入下一个卷积层成为下一层的输入Al+1由低一层的误差单元通过纠正线性单元(ReLU)激活和最大化池化(max-pooling)后再进行卷积得到。本发明特别采用了长短期记忆(Long-ShortTerm Memory,LSTM)单元作为表达神经元。状态通过更新。因为前馈路径上的池化作用,需要提前空间上采样(最近邻)。预测值是通过非线性ReLU卷积得到的。整个的更新规则由以下4个式子构成。
A l t = x t i f l = 1 M A X P O O L ( R E L U ( C O N V ( E l - 1 t ) ) ) l > 0 ... ( 1 )
A ^ l t = R E L U ( C O N V ( R l t ) ) ... ( 2 )
E l t = [ R E L U ( A l t - A ^ l t ) ; R E L U ( A ^ l t - A l t ) ] ... ( 3 )
R l t = C O N V L S T M ( E l t - 1 , R l t - 1 , U P S A M P L E ( R l + 1 t ) ) ... ( 4 )
至此,深度预测编码网络模块完成训练;
3、测试及数据采集模块利用与训练集数据采集相同的呼吸频率调制手段对测试集受试者进行数据采集;
4、图像输出模块结合测试集数据和深度预测编码网络输出提高时间分辨率后的DCE序列图像。
实施本发明,具有如下有益效果:
本装置在没有增加扫描时间的基础上,增加采样点图像数据,因此能更加真实的记录组织信号的变化规律。同时,能基本保证药代动力学定量参数计算值相对稳定并具有较好的诊断效能。同时,能使数据采集模块对受试者数据采集的时间大幅减少。
附图说明
图1是本发明基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置的流程图。
图2是深度预测编码网络模型。
图3是提高动态对比增强磁共振图像时间分辨率的装置得到的提高一倍时间分辨率的DCE序列图像。(a)采集得到14帧DCE图像(b)图(a)数据根据呼吸频率调制和预测编码网络。
图4是本发明选取一个ROI得到的时间曲线。、
具体实施方式
实施例1,具体处理步骤如下:
1、训练集数据采集模块,让20名训练集受试者(10男10女)在进行肾脏MR扫描时,根据辅助提示模块唱《欢乐颂》。
2、深度预测编码网络模块由1个堆叠模块构成,堆叠模块由100个子模块构成,每个子模块有四部分组成:输入卷积层Al,递归表达层Rl,预测层以及误差表示El。DCE序列图像为xt,0层网络对象为真实序列本身递归表达层Rl是一个递归卷积网络(recurrent convolutional network,RNN)能够通过输入Al生成预测然后该预测值会从真实的输入值中减掉并传入到下一层网络中。从而,该网络可以得到Al的差,并输出误差El,同时将其分为纠正正和负误差两类。误差El被传入下一个卷积层成为下一层的输入Al+1由低一层的误差单元通过纠正线性单元(ReLU)激活和最大化池化(max-pooling)后再进行卷积得到。采用了长短期记忆(Long-Short Term Memory,LSTM)单元作为表达神经元。状态通过更新。迭代100次,深度预测编码网络模块完成训练;
3、测试集数据采集模块利用与训练集数据采集相同的呼吸频率调制手段对测试集受试者进行数据采集;
4、图像输出模块结合测试集数据和深度预测编码网络输出提高一倍时间分辨率后的DCE序列图像。
仿真结果:
图2给出了由本发明获得的增加一倍时间分辨率的结果。图3是本发明选取一个ROI得到的时间曲线。
实施例2,具体处理步骤如下:
1、训练集数据采集模块,让20名训练集受试者(10男10女)在进行MR肝脏扫描时,根据辅助提示模块念唐诗《静夜思》;
2、深度预测编码网络模块由1个堆叠模块构成,堆叠模块由100个子模块构成,每个子模块有四部分组成:输入卷积层Al,递归表达层Rl,预测层以及误差表示El。DCE序列图像为xt,0层网络对象为真实序列本身递归表达层Rl是一个递归卷积网络(recurrent convolutional network,RNN)能够通过输入Al生成预测然后该预测值会从真实的输入值中减掉并传入到下一层网络中。从而,该网络可以得到Al的差,并输出误差El,同时将其分为纠正正和负误差两类。误差El被传入下一个卷积层成为下一层的输入Al+1由低一层的误差单元通过纠正线性单元(ReLU)激活和最大化池化(max-pooling)后再进行卷积得到。采用了长短期记忆(Long-Short Term Memory,LSTM)单元作为表达神经元。状态通过更新。迭代200次,深度预测编码网络模块完成训练;
3、测试集数据采集模块利用与训练集数据采集相同的呼吸频率调制手段对测试集受试者进行数据采集;
4、图像输出模块结合测试集数据和深度预测编码网络输出提高一倍时间分辨率后的DCE序列图像。
实施例3,具体处理步骤如下:
1、训练集数据采集模块,让20名训练集受试者(10男10女)在进行肾脏MR扫描时,根据辅助提示模块的指示切换呼吸气节奏;
2、深度预测编码网络模块由1个堆叠模块构成,堆叠模块由100个子模块构成,每个子模块有四部分组成:输入卷积层Al,递归表达层Rl,预测层以及误差表示El。DCE序列图像为xt,0层网络对象为真实序列本身递归表达层Rl是一个递归卷积网络(recurrent convolutional network,RNN)能够通过输入Al生成预测然后该预测值会从真实的输入值中减掉并传入到下一层网络中。从而,该网络可以得到Al的差,并输出误差El,同时将其分为纠正正和负误差两类。误差El被传入下一个卷积层成为下一层的输入Al+1由低一层的误差单元通过纠正线性单元(ReLU)激活和最大化池化(max-pooling)后再进行卷积得到。采用了长短期记忆(Long-Short Term Memory,LSTM)单元作为表达神经元。状态通过更新。迭代100次,深度预测编码网络模块完成训练;
3、测试集数据采集模块利用与训练集数据采集相同的呼吸频率调制手段对测试集受试者进行数据采集;
4、图像输出模块结合测试集数据和深度预测编码网络输出提高一倍时间分辨率后的DCE序列图像。

Claims (4)

1.一种基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置,其特征在于包括训练集数据采集模块、深度预测编码网络模块和图像输出模块。
2.如权利要求1所述的基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置,其特征在于,训练集数据采集模块在对受试者待成像部位进行训练集数据采集时,需对训练集受试者的呼吸频率进行控制,即通过让训练集受试者再进行MR扫描时,根据辅助提示模块中的指示(唱同一首歌、念同一首诗或切换呼吸气节奏)达到使各个受试者的呼吸信号曲线达到一致。
3.如权利要求1所述的基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置,其特征在于,深度预测编码网络模块由一个堆叠模块构成,堆叠模块由1~100个子模块构成,每个模块有四部分组成:输入卷积层Al,递归表达层Rl,预测层以及误差表示El;DCE序列图像为xt,0层网络对象为真实序列本身递归表达层Rl通过输入Al生成预测然后该预测值会从真实的输入值中减掉并传入到下一层网络中;输出误差El分为纠正正和负误差两类;误差El被传入下一个卷积层成为下一层的输入Al+1由低一层的误差单元通过纠正线性单元(ReLU)激活和最大化池化(max-pooling)后再进行卷积得到;状态通过更新;迭代10~200次,深度预测编码网络模块完成训练。
4.如权利要求1所述的基于呼吸频率调制和预测编码网络提高动态对比增强磁共振图像时间分辨率的装置,其特征在于,图像输出模块结合测试集数据和深度预测编码网络输出提高1~5倍时间分辨率后的DCE序列图像。
CN201610556726.2A 2016-07-14 2016-07-14 一种提高动态对比增强磁共振图像时间分辨率的装置 Pending CN106204677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610556726.2A CN106204677A (zh) 2016-07-14 2016-07-14 一种提高动态对比增强磁共振图像时间分辨率的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610556726.2A CN106204677A (zh) 2016-07-14 2016-07-14 一种提高动态对比增强磁共振图像时间分辨率的装置

Publications (1)

Publication Number Publication Date
CN106204677A true CN106204677A (zh) 2016-12-07

Family

ID=57475667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610556726.2A Pending CN106204677A (zh) 2016-07-14 2016-07-14 一种提高动态对比增强磁共振图像时间分辨率的装置

Country Status (1)

Country Link
CN (1) CN106204677A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473162A (zh) * 2018-05-11 2019-11-19 精工爱普生株式会社 机器学习装置、摄影时间估计装置及学习模型的生成方法
CN112053414A (zh) * 2020-09-04 2020-12-08 浙江大学 一种从动态对比增强磁共振成像数据中快速提取药代动力学参数的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972146A (zh) * 2010-09-03 2011-02-16 首都医科大学宣武医院 一种心血管磁共振成像中呼吸信号的自反馈辅助方法
CN103646410A (zh) * 2013-11-27 2014-03-19 中国科学院深圳先进技术研究院 磁共振快速参数成像方法和系统
CN105551036A (zh) * 2015-12-10 2016-05-04 中国科学院深圳先进技术研究院 一种深度学习网络的训练方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972146A (zh) * 2010-09-03 2011-02-16 首都医科大学宣武医院 一种心血管磁共振成像中呼吸信号的自反馈辅助方法
CN103646410A (zh) * 2013-11-27 2014-03-19 中国科学院深圳先进技术研究院 磁共振快速参数成像方法和系统
CN105551036A (zh) * 2015-12-10 2016-05-04 中国科学院深圳先进技术研究院 一种深度学习网络的训练方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT CIERNIAK: "A Statistical Appraoch to Image Reconstruction from Projections Problem Using Recurrent Neural Network", 《ARTIFICIAL NEURAL NETWORKS- ICANN 2010》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473162A (zh) * 2018-05-11 2019-11-19 精工爱普生株式会社 机器学习装置、摄影时间估计装置及学习模型的生成方法
CN112053414A (zh) * 2020-09-04 2020-12-08 浙江大学 一种从动态对比增强磁共振成像数据中快速提取药代动力学参数的方法
CN112053414B (zh) * 2020-09-04 2023-11-17 浙江大学 一种从动态对比增强磁共振成像数据中快速提取药代动力学参数的方法

Similar Documents

Publication Publication Date Title
Mardani et al. Deep generative adversarial neural networks for compressive sensing MRI
US20230113154A1 (en) Three-Dimensional Segmentation from Two-Dimensional Intracardiac Echocardiography Imaging
CN110047082B (zh) 基于深度学习的胰腺神经内分泌肿瘤自动分割方法及系统
Wang et al. Review and prospect: artificial intelligence in advanced medical imaging
KR101428005B1 (ko) 소수의 저선량 ct 영상을 이용하여 pet 영상을 움직임 보상 및 감쇠 보정하는 방법
CN110475505A (zh) 利用全卷积网络的自动分割
CN110458817B (zh) 医学图像的质量预测方法、装置、设备及存储介质
CN112488976B (zh) 一种基于darts网络的多模态医学图像融合方法
Du et al. Accelerated super-resolution MR image reconstruction via a 3D densely connected deep convolutional neural network
CN107958471A (zh) 基于欠采样数据的ct成像方法、装置、ct设备及存储介质
CN107292858A (zh) 一种基于低秩分解和稀疏表示的多模态医学图像融合方法
CN106618571A (zh) 一种磁共振成像方法和系统
CN102065761A (zh) 成像技术
CN105654425A (zh) 一种应用于医学x光图像的单幅图像超分辨率重建方法
CN106991692A (zh) 将第一流的第一图像数据与第二流的第二图像数据进行配准
Yan et al. Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension
CN106204677A (zh) 一种提高动态对比增强磁共振图像时间分辨率的装置
CN112508884A (zh) 一种癌变区域综合检测装置及方法
US11948288B2 (en) Motion artifacts simulation
CN112133410A (zh) 使用机器学习的mri图像重建
CN109767429A (zh) 一种图像筛查方法及装置
Feng et al. Deep multi-modal aggregation network for MR image reconstruction with auxiliary modality
US11604243B2 (en) Systems and methods for estimating magnetic susceptibility through continuous motion in an MRI scanner
Karani et al. Reducing navigators in free-breathing abdominal MRI via temporal interpolation using convolutional neural networks
Geng et al. Exploring Structural Information for Semantic Segmentation of Ultrasound Images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207