CN106203362A - 一种基于脉冲指标的旋转机械故障诊断方法 - Google Patents

一种基于脉冲指标的旋转机械故障诊断方法 Download PDF

Info

Publication number
CN106203362A
CN106203362A CN201610560635.6A CN201610560635A CN106203362A CN 106203362 A CN106203362 A CN 106203362A CN 201610560635 A CN201610560635 A CN 201610560635A CN 106203362 A CN106203362 A CN 106203362A
Authority
CN
China
Prior art keywords
fault
pulse index
signal
time
vibration signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610560635.6A
Other languages
English (en)
Other versions
CN106203362B (zh
Inventor
张清华
王子为
邹子君
谭巨兴
肖明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610560635.6A priority Critical patent/CN106203362B/zh
Publication of CN106203362A publication Critical patent/CN106203362A/zh
Application granted granted Critical
Publication of CN106203362B publication Critical patent/CN106203362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明提供一种基于脉冲指标的旋转机械故障诊断方法,用信号分离的思想构建脉冲指标,克服现有脉冲指标诊断技术的缺点,提高诊断的精确度和可靠性,通过标准振动信号将实时采集振动信号分为无故障振动信号和混合信号,用混合信号和无故障振动信号构建脉冲指标,具有对故障诊断更加灵敏,更加能够通过信号的变化检测微弱故障特征信号。旋转机械设备正常运行和发生故障时,脉冲指标的取值范围重叠少,不同状态下脉冲指标变化明显,对裂轴加偏心轴类故障比较敏感,能够很好地将此故障与其他故障区分开来,旋转机械故障诊断的精确度和可靠性高。

Description

一种基于脉冲指标的旋转机械故障诊断方法
技术领域
本发明涉及一种旋转机械故障诊断方法,特别涉及一种基于脉冲指标的旋转机械故障诊断方法,属于故障诊断与信号处理分析技术领域。
背景技术
大型旋转机械设备(如汽轮机、旋转轴承、压缩机等)是石油、化工、机械制造、航空航天等重要工程领域的关键设备,旋转机械设备正朝着大型化、自动化、精密化的方向不断发展,其组成和结构也变得越来越复杂,发生故障的概率也越来越大,因此对大型旋转机械设备的安全性和可靠性的要求也越来越高。
但是,大型旋转机械设备发生故障时,振动监测信号往往存在大量的非线性、随机、不可遍历的信息,给故障信号的分析和旋转机械故障的诊断带来很大的困难。
现有技术的旋转机械故障诊断主要基于振动信号进行分析,而一般采用时域分析法,通过对机械振动信号的概率密度函数分析,推导出了幅值域中的有量纲指标和无量纲指标,有量纲指标如均值、均方根值等;无量纲指标如脉冲指标、裕度指标、脉冲指标等。
在实际应用中,现有技术的有量纲指标对故障特征敏感,其数值会随着故障的发展而上升,同时因工作条件,如负载、转速等的变化而变化,并极易受环境干扰的影响,表现不够稳定。
无量纲指标中的脉冲指标对于振动监测信号中的扰动不敏感,对点蚀、磨损类故障足够敏感,性能较为稳定。特别地,脉冲指标对信号的幅值和频率的变化不敏感,与旋转机械的工作条件关系不大,只依赖于概率密度函数的形状。因此,脉冲指标在旋转机械故障诊断中得到了广泛的应用。
但是,现有技术利用脉冲指标来诊断旋转机械的故障主要有以下几点问题:一是没有采用信号分离的思想构建脉冲指标,没有对标准振动信号分离,无法更好地体现旋转机械的故障,对故障的诊断不敏感;二是在利用脉冲指标进行分析时,设备正常运行和发生故障时的取值范围会部分重叠,脉冲指标变化极小,对微弱的故障信号反应不灵敏,难以诊断和预测故障,易产生误判,旋转机械故障诊断的精确度和可靠性较差;三是采用磨合期的振动信号作为标准振动信号,没有考虑旋转机械设备在运行初期振动信号中噪声严重,不适宜作为标准振动信号的问题,诊断故障不准确。
发明内容
针对现有技术的不足,本发明提供一种基于脉冲指标的旋转机械故障诊断方法,克服传统脉冲指标诊断技术的缺点,提高诊断的精确度和可靠性,用信号分离的思想构建脉冲指标,由于对标准振动信号的分离,剩余的混合信号能够更好地体现旋转机械的故障,对故障的诊断更加地敏感,所得出的诊断结果能够准确地诊断旋转机械的故障。
为达到以上技术效果,本发明所采用的技术方案如下:
一种基于脉冲指标的旋转机械故障诊断方法,包括以下步骤:
(1)通过振动加速度传感器采集旋转机械在运行磨合期后的正常运行参数,所述正常运行参数为按抽样频率fs采集的无故障振动信号s0(t)(t=0,1,…,T-1);
(2)对无故障振动信号s0(t)进行归一化处理后得到标准振动信号s(t);
(3)对标准振动信号s(t)做快速傅里叶变换(FFT)得到标准振动频域信号S(k)(k=0,1,…,K-1);
(4)通过振动加速度传感器采集旋转机械需要故障诊断时的运行参数,所述故障诊断时的运行参数为按抽样频率fs实时采集旋转机械运行中的实时采集振动信号z(t)(t=0,1,…,T-1);
(5)对实时采集振动信号z(t)做快速傅里叶变换(FFT)得到实时振动频域信号Z(k)(k=0,1,…,K-1);
(6)对标准振动频域信号S(k)取复共轭为S(k)*,将Z(k)与S(k)*相乘得到Y(k)(k=0,1,…,K-1),再对Y(k)(k=0,1,…,K-1)做快速傅里叶逆变换(IFFT)得到两个信号Z(k)与S(k)*的相关函数I(t)(t=0,1,…,T-1);
(7)在t=0,1,…,T-1中取相关函数I(t)的模|I(t)|,|I(t)|的最大值所对应的时间点为实时采集振动信号和标准振动信号的延迟时间τ,τ=argmax|I(t)|;
(8)求实时采集振动信号z(t)与延迟后的标准振动信号s(t-τ)的相关系数c,c=E[z(t)s(t-τ)];
(9)计算混合信号y(t),y(t)为故障特征提取信号和噪声的混合信号,y(t)=z(t)-cs(t-τ);
(10)计算出脉冲指标
一种基于脉冲指标的旋转机械故障诊断方法,进一步的,根据脉冲指标Iys的值,判断旋转机械是否发生故障及故障类别,以下区间值均包括边界值:
脉冲指标Iys的值在3.3236到5.4038之间时,旋转机械运行正常;
脉冲指标Iys的值在6.8489到8.7005之间时,考虑旋转机械发生了裂轴故障;
脉冲指标Iys的值在6.1114到8.8693之间时,考虑旋转机械发生了弯轴故障;
脉冲指标Iys的值在6.2296到8.2932之间时,考虑旋转机械发生了偏心轴故障;
脉冲指标Iys的值在5.7939到8.7031之间时,考虑旋转机械发生了裂轴+弯轴故障;
脉冲指标Iys的值在5.8316到8.9699之间时,考虑旋转机械发生了裂轴+偏心轴故障;
脉冲指标Iys的值在6.0261到7.9502之间时,考虑旋转机械发生了弯轴+偏心轴故障;
脉冲指标Iys的值在7.7297到8.9531之间时,考虑旋转机械发生了裂轴+弯轴+偏心轴故障。
一种基于脉冲指标的旋转机械故障诊断方法,进一步的,快速傅里叶变换(FFT)采用有限序列离散傅里叶变换(DFT)的快速算法,所述快速傅里叶变换(FFT)采用频率抽取算法,在频域内把序列按照奇偶分组并利用周期性和对称性进行计算。
一种基于脉冲指标的旋转机械故障诊断方法,进一步的,快速傅里叶逆变换(IFFT)通过Y(k)频域中的频谱,将每个频率分量变换成时域正弦波,再全部叠加得到相关函数I(t)。
一种基于脉冲指标的旋转机械故障诊断方法,进一步的,步骤(1)和步骤(4)按1024个点为一组进行采样,采样频率为1000Hz。
与现有技术相比,本发明的优点在于:
1.本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,通过标准振动信号将实时采集的旋转机械振动信号分为无故障振动信号和混合信号,其中混合信号包含了故障特征信号和高斯噪声。用混合信号和无故障振动信号构建脉冲指标,使用了信号分离的思想构建脉冲指标,由于对标准振动信号的分离,剩余的混合信号能够更好地体现旋转机械的故障,对故障的诊断更加地敏感,与现有脉冲指标相比,更加能够通过信号的变化检测微弱故障特征信号。
2.本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,通过一系列的数学运算,使得旋转机械设备正常运行和发生故障时,得到的脉冲指标的取值范围相对重叠少,不同状态下脉冲指标变化明显,不容易产生误判,对裂轴加偏心轴类故障敏感,能够很好地将此故障与其他故障区分开来,旋转机械故障诊断的精确度和可靠性较高。
3.本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,采用磨合期结束后的振动信号归一化后作为标准振动信号,考虑了旋转机械设备在运行初期振动信号中噪声严重,不适宜作为标准振动信号的问题,故障信号反应灵敏,诊断故障更加准确有效。
附图说明
图1是本发明提供的一种基于脉冲指标的旋转机械故障诊断方法的流程图。
具体实施方式
下面结合附图,对本发明提供的一种基于脉冲指标的旋转机械故障诊断方法的技术方案进行进一步的描述,使本领域的技术人员可以更好的理解本发明并能予以实施。
参见图1和表1,本发明提供一种基于脉冲指标的旋转机械故障诊断方法,包括以下步骤:
(1)通过振动加速度传感器采集旋转机械在运行磨合期后的正常运行参数,正常运行参数为按抽样频率fs采集的无故障振动信号s0(t)(t=0,1,…,T-1),按1024个点为一组进行采样,脉冲指标取50组,取脉冲指标50组的最小值与最大值作为该脉冲指标的取值范围;
(2)对无故障振动信号s0(t)进行归一化处理后得到标准振动信号s(t),采用磨合期后的振动信号归一化后作为标准振动信号,考虑了旋转机械设备在运行初期振动信号中噪声严重,不适宜作为标准振动信号的问题,故障信号反应灵敏,诊断故障更加准确有效;
(3)对标准振动信号s(t)做快速傅里叶变换(FFT)得到标准振动频域信号S(k)(k=0,1,…,K-1);
(4)通过振动加速度传感器采集旋转机械需要故障诊断时的运行参数,所述故障诊断时的运行参数为按抽样频率fs实时采集旋转机械运行中的实时采集振动信号z(t)(t=0,1,…,T-1);
(5)对实时采集振动信号z(t)做快速傅里叶变换(FFT)得到实时振动频域信号Z(k)(k=0,1,…,K-1);
(6)对标准振动频域信号S(k)求共轭复数为S(k)*,共轭复数的两个实部相等,虚部互为相反数。
当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。将Z(k)与S(k)*相乘得到Y(k)(k=0,1,…,K-1),再对Y(k)(k=0,1,…,K-1)做快速傅里叶逆变换(IFFT)得到两个信号Z(k)与S(k)*的相关函数I(t)(t=0,1,…,T-1);
(7)在t=0,1,…,T-1中取相关函数I(t)的模|I(t)|,|I(t)|的最大值所对应的时间点为实时采集振动信号和标准振动信号的延迟时间τ,τ=argmax|I(t)|;
(8)求实时采集振动信号z(t)与延迟后的标准振动信号s(t-τ)的相关系数c,c为z(t)s(t-τ)的数学期望,c=E[z(t)s(t-τ)];
(9)计算z(t)-cs(t-τ)得到y(t),y(t)为故障特征提取信号和噪声的混合信号;
实时采集振动信号z(t)=cs(t-τ)+x(t)+ν(t),时间τ为实时振动信号和标准信号的延迟时间,ν(t)为高斯噪声,x(t)为故障特征信号,c为相关系数,y(t)为故障特征提取信号和噪声的混合信号,则y(t)=x(t)+υ(t),实时采集振动信号z(t)=cs(t-τ)+y(t);
通过标准振动信号s(t)将实时采集振动信号z(t)分为无故障振动信号和混合信号y(t),混合信号包含了故障特征信号x(t)和高斯噪声ν(t),用混合信号y(t)和无故障振动信号构建脉冲指标,具有对故障诊断更加灵敏,与现有脉冲指标相比,更加能够通过信号的变化检测微弱故障特征信号;
(10)计算出脉冲指标E为数学期望。
作为一种优选方案,本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,根据脉冲指标Iys的值,判断旋转机械是否发生故障及故障类别,以下区间值均包括边界值:
脉冲指标Iys的值在3.3236到5.4038之间时,旋转机械运行正常;
脉冲指标Iys的值在6.8489到8.7005之间时,考虑旋转机械发生了裂轴故障;
脉冲指标Iys的值在6.1114到8.8693之间时,考虑旋转机械发生了弯轴故障;
脉冲指标Iys的值在6.2296到8.2932之间时,考虑旋转机械发生了偏心轴故障;
脉冲指标Iys的值在5.7939到8.7031之间时,考虑旋转机械发生了裂轴+弯轴故障;
脉冲指标Iys的值在5.8316到8.9699之间时,考虑旋转机械发生了裂轴+偏心轴故障;
脉冲指标Iys的值在6.0261到7.9502之间时,考虑旋转机械发生了弯轴+偏心轴故障;
脉冲指标Iys的值在7.7297到8.9531之间时,考虑旋转机械发生了裂轴+弯轴+偏心轴故障。
表1
本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,旋转机械设备正常运行和发生故障时,脉冲指标的取值范围不重叠,不同状态下脉冲指标变化明显,对裂轴加偏心轴类故障比较敏感,不容易产生误判,基于脉冲指标的旋转机械故障诊断方法对复合故障的抗干扰能力较强,旋转机械故障诊断的精确度和可靠性较高。
作为一种优选方案,本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,快速傅里叶变换(FFT)采用有限序列离散傅里叶变换(DFT)的快速算法,快速傅里叶变换(FFT)采用频率抽取算法,在频域内把序列按照奇偶分组并利用周期性和对称性进行计算。
作为一种优选方案,本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,快速傅里叶逆变换(IFFT)通过Y(k)频域中的频谱,将每个频率分量变换成时域正弦波,再全部叠加得到相关函数I(t)。快速傅里叶变换大大提升了计算机的运算效率,减少了运算次数。离散傅里叶变换以及逆变换分别如下:
X ( k ) = Σ n = 0 N - 1 x ( n ) e - j 2 π k n / N
x ( n ) = 1 N Σ k = 0 N - 1 X ( k ) e j 2 π k n / N
其中0≤k≤N-1,令W=e-j2π/N,则N点序列的离散傅里叶变换为:
X ( k ) = Σ n = 0 N - 1 x ( n ) W k n , ( 0 ≤ k ≤ N - 1 )
Wkn具有周期性:Wkn=Wn(k+N)=Wk(n+N)
Wkn具有对称性:Wkn=-Wkn+N/2
通过周期性和对称性简化了离散傅里叶变换。
作为一种优选方案,本发明提供的一种基于脉冲指标的旋转机械故障诊断方法,步骤(1)和步骤(4)按1024个点为一组进行采样,采样频率为1000Hz。
本发明提供的一种脉冲指标在不同故障下的敏感程度不同,对裂轴加偏心轴类故障比较敏感,能够很好地将此故障与其他故障区分开来,本能很好的反映了不同故障特征信息,构建的脉冲指标是以比值构成,具有不受机器工况影响的特点,所构建的脉冲指标对轴承等裂轴加偏心轴类故障具有反应快、敏感性好的优点。
上述实施方式为本发明较佳的实施方式,但本发明的实施方式并不受上述实施方式的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
上述实施方式为本发明较佳的实施方式,但本发明的实施方式并不受上述实施方式的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种基于脉冲指标的旋转机械故障诊断方法,其特征在于,包括以下步骤:
(1)通过振动加速度传感器采集旋转机械在运行磨合期后的正常运行参数,所述正常运行参数为按抽样频率fs采集的无故障振动信号s0(t)(t=0,1,…,T-1);
(2)对无故障振动信号s0(t)进行归一化处理后得到标准振动信号s(t);
(3)对标准振动信号s(t)做快速傅里叶变换得到标准振动频域信号S(k)(k=0,1,…,K-1);
(4)通过振动加速度传感器采集旋转机械需要故障诊断时的运行参数,所述故障诊断时的运行参数为按抽样频率fs实时采集旋转机械运行中的实时采集振动信号z(t)(t=0,1,…,T-1);
(5)对实时采集振动信号z(t)做快速傅里叶变换得到实时振动频域信号Z(k)(k=0,1,…,K-1);
(6)对标准振动频域信号S(k)取复共轭为S(k)*,将Z(k)与S(k)*相乘得到Y(k)(k=0,1,…,K-1),再对Y(k)(k=0,1,…,K-1)做快速傅里叶逆变换得到两个信号Z(k)与S(k)*的相关函数I(t)(t=0,1,…,T-1);
(7)在t=0,1,…,T-1中取相关函数I(t)的模|I(t)|,|I(t)|的最大值所对应的时间点为实时采集振动信号和标准振动信号的延迟时间τ,τ=argmax|I(t)|;
(8)求实时采集振动信号z(t)与延迟后的标准振动信号s(t-τ)的相关系数c,c=E[z(t)s(t-τ)];
(9)计算混合信号y(t),y(t)为故障特征提取信号和噪声的混合信号,y(t)=z(t)-cs(t-τ);
(10)计算出脉冲指标
2.根据权利要求1所述的一种基于脉冲指标的旋转机械故障诊断方法,其特征在于,根据所述根据脉冲指标Iys的值,判断旋转机械是否发生故障及故障类别,以下区间值均包括边界值:
脉冲指标Iys的值在3.3236到5.4038之间时,旋转机械运行正常;
脉冲指标Iys的值在6.8489到8.7005之间时,考虑旋转机械发生了裂轴故障;
脉冲指标Iys的值在6.1114到8.8693之间时,考虑旋转机械发生了弯轴故障;
脉冲指标Iys的值在6.2296到8.2932之间时,考虑旋转机械发生了偏心轴故障;
脉冲指标Iys的值在5.7939到8.7031之间时,考虑旋转机械发生了裂轴+弯轴故障;
脉冲指标Iys的值在5.8316到8.9699之间时,考虑旋转机械发生了裂轴+偏心轴故障;
脉冲指标Iys的值在6.0261到7.9502之间时,考虑旋转机械发生了弯轴+偏心轴故障;
脉冲指标Iys的值在7.7297到8.9531之间时,考虑旋转机械发生了裂轴+弯轴+偏心轴故障。
3.根据权利要求1所述的一种基于脉冲指标的旋转机械故障诊断方法,其特征在于:所述步骤(3)和步骤(5)中的快速傅里叶变换采用有限序列离散傅里叶变换的快速算法,所述快速傅里叶变换采用频率抽取算法,在频域内把序列按照奇偶分组并利用周期性和对称性进行计算。
4.根据权利要求1所述的一种基于脉冲指标的旋转机械故障诊断方法,其特征在于:所述步骤(7)中的快速傅里叶逆变换通过Y(k)频域中的频谱,将每个频率分量变换成时域正弦波,再全部叠加得到相关函数I(t)。
5.根据权利要求1或4所述的一种基于脉冲指标的旋转机械故障诊断方法,其特征在于:所述步骤(1)和步骤(4)按1024个点为一组进行采样,采样频率为1000Hz。
CN201610560635.6A 2016-07-13 2016-07-13 一种基于脉冲指标的旋转机械故障诊断方法 Active CN106203362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610560635.6A CN106203362B (zh) 2016-07-13 2016-07-13 一种基于脉冲指标的旋转机械故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610560635.6A CN106203362B (zh) 2016-07-13 2016-07-13 一种基于脉冲指标的旋转机械故障诊断方法

Publications (2)

Publication Number Publication Date
CN106203362A true CN106203362A (zh) 2016-12-07
CN106203362B CN106203362B (zh) 2019-02-12

Family

ID=57474734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610560635.6A Active CN106203362B (zh) 2016-07-13 2016-07-13 一种基于脉冲指标的旋转机械故障诊断方法

Country Status (1)

Country Link
CN (1) CN106203362B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073482A (zh) * 2016-12-12 2019-07-30 日商乐华股份有限公司 波形分析装置、及波形分析方法
CN111060301A (zh) * 2019-12-27 2020-04-24 中国联合网络通信集团有限公司 一种故障诊断方法及装置
CN113109050A (zh) * 2021-03-18 2021-07-13 重庆大学 一种基于循环脉冲的滚动轴承微弱故障诊断方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160791B (zh) * 2019-06-27 2021-03-23 郑州轻工业学院 基于小波-谱峭度的感应电机轴承故障诊断系统及诊断方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222831A (ja) * 1993-01-26 1994-08-12 Tohoku Electric Power Co Inc 振動波形観測による異常診断装置
CN102095560A (zh) * 2010-11-09 2011-06-15 中国人民解放军重庆通信学院 基于噪声测试的机械故障判别系统及方法
CN102519578A (zh) * 2011-12-15 2012-06-27 广东石油化工学院 一种旋转机械混合信号的时频域频谱提取方法
CN104677619A (zh) * 2015-02-11 2015-06-03 中煤科工集团重庆研究院有限公司 基于复信号双边谱的旋转机械故障特征提取方法
CN105426655A (zh) * 2015-10-28 2016-03-23 广东石油化工学院 一种基于无量纲指标的旋转机械故障诊断方法
CN105510066A (zh) * 2015-11-25 2016-04-20 长兴昇阳科技有限公司 基于自适应降噪算法的一类旋转机械系统故障诊断方法
CN105527077A (zh) * 2015-11-15 2016-04-27 长兴昇阳科技有限公司 一种基于振动信号的通用旋转机械故障诊断与检测的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222831A (ja) * 1993-01-26 1994-08-12 Tohoku Electric Power Co Inc 振動波形観測による異常診断装置
CN102095560A (zh) * 2010-11-09 2011-06-15 中国人民解放军重庆通信学院 基于噪声测试的机械故障判别系统及方法
CN102519578A (zh) * 2011-12-15 2012-06-27 广东石油化工学院 一种旋转机械混合信号的时频域频谱提取方法
CN104677619A (zh) * 2015-02-11 2015-06-03 中煤科工集团重庆研究院有限公司 基于复信号双边谱的旋转机械故障特征提取方法
CN105426655A (zh) * 2015-10-28 2016-03-23 广东石油化工学院 一种基于无量纲指标的旋转机械故障诊断方法
CN105527077A (zh) * 2015-11-15 2016-04-27 长兴昇阳科技有限公司 一种基于振动信号的通用旋转机械故障诊断与检测的方法
CN105510066A (zh) * 2015-11-25 2016-04-20 长兴昇阳科技有限公司 基于自适应降噪算法的一类旋转机械系统故障诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
严峻: "基于冲击脉冲法诊断滚动轴承故障的研究", 《风机技术》 *
王志坚等: "基于MED_EEMD的滚动轴承微弱故障特征提取_王志坚", 《农业工程学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073482A (zh) * 2016-12-12 2019-07-30 日商乐华股份有限公司 波形分析装置、及波形分析方法
CN110073482B (zh) * 2016-12-12 2023-07-28 日商乐华股份有限公司 波形分析装置、及波形分析方法
CN111060301A (zh) * 2019-12-27 2020-04-24 中国联合网络通信集团有限公司 一种故障诊断方法及装置
CN113109050A (zh) * 2021-03-18 2021-07-13 重庆大学 一种基于循环脉冲的滚动轴承微弱故障诊断方法

Also Published As

Publication number Publication date
CN106203362B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN106248356A (zh) 一种基于峭度指标的旋转机械故障诊断方法
Zhao et al. Deep convolutional neural network based planet bearing fault classification
Ai et al. Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance
Zhao et al. Fault diagnosis of wind turbine bearing based on variational mode decomposition and Teager energy operator
CN103575523B (zh) 基于FastICA-谱峭度-包络谱分析的旋转机械故障诊断方法
CN105760839A (zh) 基于多特征流形学习与支持向量机的轴承故障诊断方法
Ericsson et al. Towards automatic detection of local bearing defects in rotating machines
CN103091096A (zh) 基于eemd和小波包变换的早期故障敏感特征提取方法
CN106203362A (zh) 一种基于脉冲指标的旋转机械故障诊断方法
Feng et al. Ensemble empirical mode decomposition-based Teager energy spectrum for bearing fault diagnosis
CN107003665B (zh) 用于评估连接到马达的旋转机械的状态的方法
Shakya et al. Vibration-based fault diagnosis in rolling element bearings: ranking of various time, frequency and time-frequency domain data-based damage identi cation parameters
Meng et al. General synchroextracting chirplet transform: Application to the rotor rub-impact fault diagnosis
CN105784366A (zh) 一种变转速下的风电机组轴承故障诊断方法
Saidi et al. The use of SESK as a trend parameter for localized bearing fault diagnosis in induction machines
Schmidt et al. An informative frequency band identification framework for gearbox fault diagnosis under time-varying operating conditions
CN105651504A (zh) 基于自适应小波能量的旋转机械故障特征提取方法
CN107655693A (zh) 一种船舶发动机故障诊断系统及方法
Li et al. Fault diagnosis of rolling bearing under speed fluctuation condition based on Vold-Kalman filter and RCMFE
CN109932179A (zh) 一种基于ds自适应谱重构的滚动轴承故障检测方法
CN103018044A (zh) 一种改进冲击字典匹配追踪算法的轴承复合故障诊断方法
CN106198079A (zh) 一种基于裕度指标的旋转机械故障诊断方法
Cheng et al. Incipient fault detection for the planetary gearbox in rotorcraft based on a statistical metric of the analog tachometer signal
CN107505127B (zh) 一种列车万向轴动不平衡特征谱线提取方法
Li et al. Use of vibration signal to estimate instantaneous angular frequency under strong nonstationary regimes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant