CN106203359A - 基于小波包分析和k邻近算法的内燃机故障诊断方法 - Google Patents

基于小波包分析和k邻近算法的内燃机故障诊断方法 Download PDF

Info

Publication number
CN106203359A
CN106203359A CN201610559010.8A CN201610559010A CN106203359A CN 106203359 A CN106203359 A CN 106203359A CN 201610559010 A CN201610559010 A CN 201610559010A CN 106203359 A CN106203359 A CN 106203359A
Authority
CN
China
Prior art keywords
fault
wavelet packet
nearest neighbor
signal
neighbor algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610559010.8A
Other languages
English (en)
Inventor
郑太雄
谭瑞
杨新琴
杨斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201610559010.8A priority Critical patent/CN106203359A/zh
Publication of CN106203359A publication Critical patent/CN106203359A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24147Distances to closest patterns, e.g. nearest neighbour classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于小波包分析和k邻近算法的内燃机故障诊断方法,涉及在线故障诊断(OBD)技术领域。根据内燃机缸盖振动加速度信号非线性、非平稳性特征,采用基于Meyer小波的离散小波包对其进行三层分解,得到各频带重构信号;通过离散信号能量公式计算第三层各频带重构信号能量并做归一化处理,得到所测故障信号的特征向量;通过图像观测推断出故障特征信号所处频段,并以该频段归一化能量值作为故障特征向量;通过对比分析确定k邻近分类算法的参数k,将得到的k值作为k邻近分类算法的固定参数对多种内燃机气门间隙故障进行诊断。本发明能够在短时间内准确诊断内燃机气门间隙故障,具有实用价值。

Description

基于小波包分析和k邻近算法的内燃机故障诊断方法
技术领域
本发明涉及在线故障诊断(OBD)技术领域,具体是一种基于离散小波包分解和k邻近算法的内燃机气门间隙故障诊断方法。
背景技术
内燃机是一个复杂的非线性动力学系统,它由两大机构五大系统组成。内燃结构复杂,工作条件恶劣,经常会发生各种各样的故障,据统计在内燃机常见故障中,配气机构故障所占比例高达15.1%左右[1]。在配气机构故障中,由于内燃机在使用中的长期磨损或由于安装、调整维修不当等原因,造成内燃机气门间隙异常的故障占有很大比例,严重影响到内燃机的使用寿命。然而,汽车故障诊断系统和其它的测量控制系统由于他们所适应的技术环境发生改变可能无法检测到气门间隙故障,进一步加大了该故障的潜在危险性[2-3]。因此,当内燃机气门间隙故障发生时,能及时有效地诊断故障具有非常重要的意义。
内燃机气门间隙故障诊断主要分为两大步骤:故障特征提取和故障诊断。目前,许多有效的信号特征提取方法被用于气门间隙故障诊断。针对内燃机气门故障信号的非线性、非平稳特征,李刚[4]和王祝平等[5]通过经验模态分解(EMD)对发动机缸盖振动信号进行特征提取,并结合神经网络对发动机气门间隙故障进行了诊断。但是,经验模态分解容易产生模态混叠,对准确提取故障造成一定影响。针对该缺点,司景萍等[6]提出了一种总体平均经验模态分解和支持向量机(SVM)相结合的内燃机故障诊断方法,该方法能有效放大故障诊断特征向量的差异,遗憾的是,文中并没有考虑对不同程度的气门间隙故障进行诊断;蔡燕平等[8]提出了一种基于EMD-Wigner-Ville分布和SVM的内燃机气门间隙故障诊断方法,实验结果表明该方法能准确识别气门间隙故障,诊断正确率达到98.57%。然而,该方法需要大量样本且时间耗费较大。B.P.Tang等[9]提出了基于Morlet小波变换和Wigner-Ville分布的故障诊断方法,并指出Wigner-Ville分布由于时间窗函数的限制并不利于分析非平稳信号;Y.Lei等[7]采用小波包变换对故障信号进行特征提取,并指出短时傅立叶变换在诊断机械故障上具有很大的局限性。另外,B.Tang,X.J.Geng,T.Figlus等[9-14]使用小波变换对内燃机故障信号进行特征提取,结合智能分类算法对故障进行诊断,并取得较高的诊断正确率。但是,小波变换从高频信号中提取有效信息的能力较弱,可能导致故障特征提取不够充分。
近年来,为了提高故障诊断的准确率,许多基于智能分类算法的智能诊断系统得到快速发展。J.D.Wu等[15]使用内燃机振动信号和声音信号作为故障状态信号,提出了基于离散小波变换和SVM的故障诊断,实验结果表明,该方法能有效的对实验所给故障进行故障诊断。需要指出的是,其在SVM核函数参数选择上具有明显的主观性。针对此问题,Z.Y.Wu等[16]将具有良好优化性能的蚁群优化技术应用到SVM惩罚函数和核函数参数的优化,提出了蚁群优化SVM方法。实验结果表明该方法在学习效率和故障识别准确性上都优于优化前的SVM。不过,SVM对非线性问题还没有通用的解决方案,必须通过实验谨慎选择核函数来处理[17]。R.Ahmed等[18]提出了基于曲柄角域振动信号和人工神经网络的内燃机故障检测,并通过与卡尔曼滤波和反向传播神经网络进行比较以验证所提出方法的有效性;L.Jedlinski等[19]通过人工神经网络分析内燃机缸盖震动信号提出了一种非侵入性的内燃机气门间隙故障诊断方法,用于诊断内燃机气门过大或过小故障;Q.Wang等[20]提出了基于非负矩阵分解和集成神经网络的内燃机配气机构故障诊断,实验结果表明,集成神经网络具有更好的泛化能力,使得其诊断准确率高于单一的神经网络。值得提出的是,神经网络需要设置大量的参数,不能观察之间的学习过程,会影响到结果的可信度,学习时间过长,甚至可能达不到学习的目的[21]。
发明内容
本发明针对现有内燃机气门间隙故障诊断技术的不足,目的是提供一种基于离散小波包分解和k邻近算法的内燃机气门间隙故障诊断方法,采用一种合理有效的诊断方法,实现在短时间内对气门间隙故障进行高效诊断。
本发明的技术方案如下:
基于离散小波包分解和k邻近算法的内燃机气门间隙故障诊断方法,包括以下步骤:
采用基于Meyer小波的离散小波包对所测内燃机缸盖振动加速度振动信号进行三层分解得到各频带重构信号di,j(t);
通过信号能量计算公式对第三层各频带重构信号进行量化,并对量化结果归一化处理得到Ei,j
通过图像观测在不同气门间隙故障下,归一化后的能量值的变化规律,确定故障特征所处频带,并将该频带归一化后的能量值E3,j作为故障特征;
通过改变k值,对比分析实验结果,确定最佳k值;基于所得k值,采用k邻近算法对多种气门间隙故障进行诊断。
所述的离散小波包分解是基于内燃机缸盖振动信号包含频率范围相对较窄的特征(通常1kHz~20kHz),采用三层小波包分解。
所述的离散小波包分解,基于故障信号非线性、非平稳特征,其母小波采用无限可导、双正交性和无频谱混叠现象的Meyer小波。
所述的各频带重构信号量化是采用信号能量计算公式对其量化,并对量化结果进行归一化处理,便于后续分析。
所述的故障特征所处频段,采用图像观测法确定。
所述的k邻近算法参数k,通过按递增顺序改变k的值,对比分析诊断结果来确定的。
所述的k邻近算法,基于故障特征均转化为单一属性的归一化值,其距离度量采用欧式距离。
所述的离散小波包分解的可表示为:
d i , 2 j ( t ) = 2 Σ k g ( k ) d i - 1 , j ( 2 t - k ) d i , 2 j - 1 ( t ) = 2 Σ k h ( k ) d i - 1 , j ( 2 t - k ) d 0 , 0 ( t ) = f ( t )
式中,f(t)为所测得的振动加速度信号,h(k)为高通滤波器,g(k)为低通滤波器,di,j(t)为小波包分解后在第i层第j个频带的重构信号。
所述的k邻近算法的计算步骤为:
a.计算已知类别数据集中每个点与当前点的欧式距离;
d ( F i * , A i ) = Σ r = 1 n ( a r ( F i * ) - a r ( A i ) ) 2
其中,F*表示向量F的转置,Fi表示测试样本的特征向量,Ai表示第i个训练样本的特征向量,n为故障特征向量含有元素个数,ar(H)为H向量的第r个元素值。
b.选取与当前点距离最小的k个点;
d[k]=[d1,d2,...,dk]
c.统计前k个点中每个类别的样本出现的概率;
pi=oi/k,i=1,2,...,n
其中,n为测试故障类型总数,oi为第i种故障出现次数。
d.返回前k个点出现概率最高的类别作为当前点的预测分类。
pκ=max(p1,p2,...,pn)
即:测试样本属于故障κ。
与现有技术相比,本发明的优点在于:
1、振动信号作为气门间隙故障的载体能全面的反映故障情况,针对其非线性、非平稳性特征,使用基于Meyer小波的离散小波包分解对信号进行特征提取,该方法不仅能提取低频段的信号特征,而且能够有效提取高频段的信号特征,有效避免了故障特征提取不充分的问题。
2、通过图像观测确定故障信号所在频段,并以该频段归一化后的能量信号作为故障特征,有效避免其他干扰信号对故障诊断带来的影响。
3、使用k邻近算法进行故障诊断,缩短了诊断系统的诊断时间,有效避免了当前一部分智能算法参数难以确定的问题。
附图说明
图1为内燃机气门间隙故障诊断系统框图;
图2为故障诊断流程图;
图3为配气机构结构简图;
图4为三层离散小波包分解结构图;
图5为Meyer小波时域和频域波形图;
图6为图像观测法确定故障信号特征所在频段。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1和图2所示,本发明所述的基于离散小波包分解和k邻近算法的内燃机气门间隙故障诊断方法,包括故障特征提取和故障诊断两大部分,故障特征提取包括:采用离散小波包分解对内燃机缸盖振动信号进行三层分解,得到各频带重构信号;通过信号能量计算公式对各频带信号进行量化,并对量化结果归一化处理;通过图像观测在不同气门间隙故障下,归一化后的能量值的变化规律,确定故障特征所处频带,并将该频带归一化后的能量值作为故障特征。故障诊断包括:通过对比分析得出k邻近算法的最佳k值;然后,通过k邻近算法对多种气门间隙故障进行诊断。
具体实现如下:
1、故障特征提取
本发明中,将内燃机缸盖振动信号作为故障状态信号,如图3所示,其主要以配气机构中的气门落座力、凸轮轴轴承力、气门弹簧力和燃气爆燃力作用于缸盖。图中1、2、3为主要冲击点,4为爆燃冲击力点。气门间隙故障会引起这些力的变化,从而出现异常的振动信号。考虑到内燃机缸盖振动加速度信号的非线性、非平稳特性,对其进行三层离散小波包分解,如图4所示,其分解过程可表示为:
d i , 2 j ( t ) = 2 Σ k g ( k ) d i - 1 , j ( 2 t - k ) d i , 2 j - 1 ( t ) = 2 Σ k h ( k ) d i - 1 , j ( 2 t - k ) d 0 , 0 ( t ) = f ( t ) - - - ( 1 )
式中,f(t)为所测得的振动加速度信号,h(k)为高通滤波器,g(k)为低通滤波器,di,j(t)为小波包分解后在第i层第j个频带的重构信号。
在离散小波包分解过程中,基本小波函数采用Meyer小波,其衰减速度快、光滑性和频谱有限等良好性质,使得其能有效分析非平稳信号。其时域和频域波形图如图5所示,其小波函数和尺度函数定义为:
ψ ( ω ) = ( 2 π ) - 1 / 2 e i ω / 2 s i n ( π 2 v ( 3 2 π | ω | - 1 ) ) , 2 π 3 ≤ | ω | ≤ 4 π 3 ( 2 π ) - 1 / 2 e i ω / 2 c o s ( π 2 v ( 3 2 π | ω | - 1 ) ) , 4 π 3 ≤ | ω | ≤ 8 π 3 0 , | ω | ∉ [ 2 π 3 , 8 π 3 ] - - - ( 2 )
其中,v(a)为构造Meyer小波的辅助函数。且有:
v(a)=a4(35-84a+70a2-20a3),a∈[0,1] (3)
Φ ( ω ) = ( 2 π ) - 1 / 2 , | ω | ≤ 2 π 3 ( 2 π ) - 1 / 2 c o s ( π 2 v ( 3 2 π | ω | - 1 ) ) , 2 π 3 ≤ ω ≤ 4 π 3 0 , | ω | > 4 π 3 - - - ( 4 )
经小波包分解后,根据离散信号能量公式求得各频带重构信号的能量值Ei.j
E i , j = ∫ | d i , j ( t ) | 2 d t = Σ k = 1 M | d i , j ( k ) | 2 - - - ( 5 )
式中,M为重构信号di,j中离散点的个数。
根据理论推导可知,随着气门间隙大小的改变,各频带的信号能量也会发生变化,因此,基于第三层的各频带能量可创建向量F并对其归一化处理:
F=[E30,E31,E32,E33,E34,E35,E36,E37,] (6)
F = F i / Σ j = 0 7 E 3 j - - - ( 7 )
通过测试多组不同故障的样本我们发现随着气门间隙的增大,某些频带的归一化后的能量值也随着增大,如图6所示。我们将该频带对应的归一化能量值作为对应故障的特征向量Fi,其中,i为故障类型标签。
2)故障诊断
在k邻近算法中,k为其唯一参数,取值范围为1至最大样本点的个数。实验中,为了得到最佳诊断效果,我们通过将k的值按递增取值对比分析诊断效果。实验结果表明,当k取9时,诊断效果最佳,如表Ⅰ所示。
表Ⅰ
通过k邻近算法对内燃机气门间隙故障进行诊断,对不同故障做多组测试数据作为k邻近算法的训练样本和测试样本,设A向量和B向量分别为训练样本及其类别标签,其表示如下:
A = ( F 1 , 1 * , F 1 , 2 * , ... , F 1 , n * , F 2 , 1 * , F 2 , 2 * , ... , F 2 , n * , ... , F m , 1 * , F m , 2 * , ... , F m , n * ) B = ( 1 , 1 , ... , 1 , 2 , 2 , ... , 2 , ... , m , m , ... , m ) - - - ( 8 )
其中,n表示单一故障测试总次数,m表示故障类型总数,F*表示F的转置,Fm,n表示第m种故障第n次测试所得的故障特征向量。
给定测试样本特征向量Fi,k邻近算法故障诊断的计算步骤如下:
a.计算当前测试点与每个训练样本点之间的欧式距离;
d ( F i * , A i ) = Σ r = 1 n ( a r ( F i * ) - a r ( A i ) ) 2 - - - ( 9 )
其中,n为故障特征向量含有元素个数,ar(H)为H向量的第r个元素值。
b.选取与当前点距离最小的k个点;
d[k]=[d1,d2,...,dk] (10)
c.统计前k个点中每个类别的样本出现的概率;
pi=oi/k,i=1,2,...,n (11)
其中,n为测试故障类型总数,oi为第i种故障出现次数。
d.返回前k个点出现概率最高的类别作为当前点的预测分类。
pκ=max(p1,p2,...,pn) (12)
即:测试样本属于故障κ。
表Ⅱ表示采用本发明的基于离散小波包分解和k邻近算法的内燃机气门间隙故障诊断方法的实际诊断效果。
表Ⅱ
结果表明该方法能够有效的对内燃机气门间隙故障进行诊断,能够在2.3117s达到95.0%的故障诊断准确率。
参考文献
[1]J.Mohammadpour,M.Franchek,K.Grigoriadis,“A survey on diagnosticsmethods for automotive engines,”Proceedings of the American ControlConference,vol.47,no.3,pp.985-990,Jun-Jul.2011.
[2]J.“Transformation of Nonstationary Signals intoPseudostationary Signals for the Needs of Vehicle Diagnostics,”Acta PhysicaPolonica A,vol.118,no.1,pp.49-53,Jul.2010.
[3]Z.M.Zawisza,“Investigations of the Vibroacoustic SignalsSensitivity to Mechanical Defects Not Recognised by the OBD System in DieselEngines,”Solid State Phenomena,vol.180,no.4,pp.194-199,Nov.2011.
[4]G.Li,D.Y.Cai,S.Wang and H.Bai,“Application of EMD and SOM NeuralNetwork in Gas Engine Fault Diagnosis,”Compressor Technology,vol.1no.2,pp.31-34,Feb.2011.
[5]Z.P.Wang,W.Wang,X.Y.Li and J.Zhang,“Fault Diagnosis of EngineValve Based on EMD and Artificial Neural Network,”Transactions of the ChineseSociety for Agricultural,vol.38no.12,pp.133-136,Dec.2007.
[6]J.P.Si,J.H.Liu,L.N.Guo and J.C.Ma,“Application of EEMD and SVM inEngine Fault Diagnosis,”Vehicle Engine,Serial no.1,pp.81-86,Feb.2012.
[7]Y.Lei,J.Lin,Z.He,et al,“Application of an improved kurtogrammethod for fault diagnosis of rolling element bearings,”Mechanical Systems&Signal Processing,vol.25 no.5,pp.1738-1749,Jul.2011.
[8]Y.P.Cai,A.H.Li,L.S.Shi,P.Xu and W.Zhang,“IC Engine Fault DiagnosisMethod Based on EMD-WVD Vibration Spectrum Time-Frequency Image Recognitionby SVM,”Chinese Internal Combustion Engine Engineering,vol.33no.2,pp.73-78,Apr.2012.
[9]B.Tang,W.Liu,T.Song,“Wind turbine fault diagnosis based on Morletwavelet transformation and Wigner-Ville distribution,”Renewable Energy,vol.35,no.12,pp.2862-2866,Bec.2010.
[10]X.J.Geng,Y.Cheng,“Research on Vibration Signal CharacteristicParameters of Diesel Engines by the Wavelet Technique,”Chinese InternalCombustion Engine Engineering,vol.31,no.4,pp.100-104,Aug.2010.
[11]T.Figlus,A.Wilk,et al,“Condition monitoring of enginetiming system by using wavelet packet decomposition of a acoustic signal,”Journal of Mechanical Science&Technology,vol.28,no.5,pp.1663-1671,May 2014.
[12]J.Pons-Llinares,J.A.Antonino-Daviu,M.Riera-Guasp,et al,“InductionMotor Diagnosis Based on a Transient Current Analytic Wavelet Transform viaFrequency B-Splines,”IEEE Transactions on IndustrialElectronics,vol.58 no.5,pp.1530-1544,May.2011.
[13]L.Yang,H.S.Kang,Y.C.Zhou,et al,“Intelligent Discrimination ofFailure Modes in Thermal Barrier Coatings:Wavelet Transform and NeuralNetwork Analysis of Acoustic Emission Signals,”Experimental Mechanics,vol.55no.2,pp.321-330,Oct.2014.
[14]P.K.Kankar,S.C.Sharma,S.P.Harsha,“Rolling element bearing faultdiagnosis using wavelet transform,”Neurocomputing,vol.74 no.10,pp.1638-1645,May.2011.
[15]J.D.Wu,J.B.Chain,C.W.Chung,et al,“Fault Analysis of Engine TimingGear and Valve Clearance Using Discrete Wavelet and a Support VectorMachine,”International Journal of Computer Theory&Engineering,vol.4 no.489,pp.386-390,Apr.2012.
[16]Z.Y.Wu,H.Q.Yuan,“Fault diagnosis of an engine with an ant colonysupport vector machine,”Journal of Vibration&Shock,vol.28,no.3,pp.83-86,May.2009.
[17]K.Tsuda,“An Overview of Support Vector Machines,”Cd Technology,vol.83,pp.460-466,Feb.2007.
[18]R.Ahmed,M.E.Sayed,S.A.Gadsden,J.Tiong,S.Habibi,“AutomotiveInternal-Combustion-Engine Fault Detection and Classification UsingArtificial Neural Network Techniques,”IEEE Transactions on VehicularTechnology,vol.64,no.1,pp.21-33,Jan.2015.
[19]L.Jedlinski,J.Caban,L.Krzywonos and F.Brumercik,“Application ofvibration signal in the diagnosis of IC engine valve clearance,”Journal ofVibroengineering,vol.17,no.1,pp.175-187,Feb.2015.
[20]Q.Wang,Y.Zhang,C.Lei and Y.S.Zhu,“Fault diagnosis for dieselvalve trains based on non-negative matrix factorization and neural networkensemble,”Mechanical Systems&Signal Processing,vol.23,no.5,pp.1683-1695,Feb.2009.
[21]M.Majumder,P.Roy,A.Mazumdar,“A Generalized Overview of ArtificialNeural Network and Genetic Algorithm,”Impact of Climate Change on NaturalResource Management,vol.22,no.3,pp.393-415,Mar.2010。

Claims (4)

1.一种基于小波包分析和k邻近算法的内燃机故障诊断方法,包括以下步骤:
采用基于Meyer小波的离散小波包对所测内燃机缸盖振动加速度振动信号进行三层分解得到各频带重构信号di,j(t);
通过离散信号能量计算公式对各频带重构信号di,j(t)进行量化,求得其能量值Ei,j并对其进行归一化处理;
通过图像观测在不同气门间隙故障下,各频带归一化后的能量值的变化规律,确定故障特征所处频段E3,j
通过连续改变k值,从诊断时间消耗和诊断准确率对比分析得出最佳k值;
通过k邻近算法对多种内燃机气门间隙故障进行诊断。
2.根据权利要求1所述基于小波包分析和k邻近算法的内燃机故障诊断方法,其特征在于:所述的离散小波包分解表示为:
d i , 2 j ( t ) = 2 Σ k g ( k ) d i - 1 , j ( 2 t - k ) d i , 2 j - 1 ( t ) = 2 Σ k h ( k ) d i - 1 , j ( 2 t - k ) d 0 , 0 ( t ) = f ( t )
式中,f(t)为所测得的振动加速度信号,h(k)为高通滤波器,g(k)为低通滤波器,di,j(t)为小波包分解后在第i层第j个频带的重构信号。
3.根据权利要求1所述基于小波包分析和k邻近算法的内燃机故障诊断方法,其特征在于:所述的k邻近算法,其距离度量使用欧式距离。
4.根据权利要求1所述基于小波包分析和k邻近算法的内燃机故障诊断方法,其特征在于:所述k邻近算法的计算步骤为:
a.计算已知类别数据集中每个点与当前点的欧式距离;
d ( F i * , A i ) = Σ r = 1 n ( a r ( F i * ) - a r ( A i ) ) 2
其中,F*表示向量F的转置,Fi表示测试样本的特征向量,Ai表示第i个训练样本的特征向量,n为故障特征向量含有元素个数,ar(H)为H向量的第r个元素值;
b.选取与当前点距离最小的k个点;
d[k]=[d1,d2,...,dk]
c.统计前k个点中每个类别的样本出现的概率;
pi=oi/k,i=1,2,...,n
其中,n为测试故障类型总数,oi为第i种故障出现次数;
d.返回前k个点出现概率最高的类别作为当前点的预测分类pκ=max(p1,p2,...,pn)
即:测试样本属于故障κ。
CN201610559010.8A 2016-07-15 2016-07-15 基于小波包分析和k邻近算法的内燃机故障诊断方法 Pending CN106203359A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610559010.8A CN106203359A (zh) 2016-07-15 2016-07-15 基于小波包分析和k邻近算法的内燃机故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610559010.8A CN106203359A (zh) 2016-07-15 2016-07-15 基于小波包分析和k邻近算法的内燃机故障诊断方法

Publications (1)

Publication Number Publication Date
CN106203359A true CN106203359A (zh) 2016-12-07

Family

ID=57474558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610559010.8A Pending CN106203359A (zh) 2016-07-15 2016-07-15 基于小波包分析和k邻近算法的内燃机故障诊断方法

Country Status (1)

Country Link
CN (1) CN106203359A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445868A (zh) * 2018-03-26 2018-08-24 安徽省爱夫卡电子科技有限公司 一种基于现代信号处理技术的汽车智能故障诊断系统及方法
CN108613737A (zh) * 2018-05-14 2018-10-02 南京理工大学 基于小波包与stft的飞行器多频振动信号的辨识方法
CN108844725A (zh) * 2018-04-24 2018-11-20 天津大学 一种汽车发动机轴瓦磨损故障诊断方法
CN109359798A (zh) * 2018-08-21 2019-02-19 平安科技(深圳)有限公司 任务分配方法、装置及存储介质
CN110210459A (zh) * 2019-06-24 2019-09-06 北京航空航天大学 一种发动机气门间隙的预测方法及预测装置
CN112894882A (zh) * 2020-12-30 2021-06-04 哈尔滨工业大学芜湖机器人产业技术研究院 基于工业互联网的机器人故障检测系统
CN112949524A (zh) * 2021-03-12 2021-06-11 中国民用航空飞行学院 一种基于经验模态分解与多核学习的发动机故障检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839805A (zh) * 2010-03-19 2010-09-22 同济大学 发动机主动故障质检与智能故障诊断方法
CN102452403A (zh) * 2010-10-27 2012-05-16 上海工程技术大学 机车发动机与传动机构异常状态的智能识别方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839805A (zh) * 2010-03-19 2010-09-22 同济大学 发动机主动故障质检与智能故障诊断方法
CN102452403A (zh) * 2010-10-27 2012-05-16 上海工程技术大学 机车发动机与传动机构异常状态的智能识别方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何庆飞 等: ""基于小波包与神经网络的柴油机故障诊断"", 《内燃机与动力装置》 *
夏彦 等: ""基于LabVIEW的高压配电装置振动信号特征提取和模式识别方法"", 《煤矿安全》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445868A (zh) * 2018-03-26 2018-08-24 安徽省爱夫卡电子科技有限公司 一种基于现代信号处理技术的汽车智能故障诊断系统及方法
CN108844725A (zh) * 2018-04-24 2018-11-20 天津大学 一种汽车发动机轴瓦磨损故障诊断方法
CN108613737A (zh) * 2018-05-14 2018-10-02 南京理工大学 基于小波包与stft的飞行器多频振动信号的辨识方法
CN109359798A (zh) * 2018-08-21 2019-02-19 平安科技(深圳)有限公司 任务分配方法、装置及存储介质
CN110210459A (zh) * 2019-06-24 2019-09-06 北京航空航天大学 一种发动机气门间隙的预测方法及预测装置
CN112894882A (zh) * 2020-12-30 2021-06-04 哈尔滨工业大学芜湖机器人产业技术研究院 基于工业互联网的机器人故障检测系统
CN112949524A (zh) * 2021-03-12 2021-06-11 中国民用航空飞行学院 一种基于经验模态分解与多核学习的发动机故障检测方法
CN112949524B (zh) * 2021-03-12 2022-08-26 中国民用航空飞行学院 一种基于经验模态分解与多核学习的发动机故障检测方法

Similar Documents

Publication Publication Date Title
CN106203359A (zh) 基于小波包分析和k邻近算法的内燃机故障诊断方法
Yadav et al. Audio signature-based condition monitoring of internal combustion engine using FFT and correlation approach
Flett et al. Fault detection and diagnosis of diesel engine valve trains
Li et al. Intelligent fault diagnosis method for marine diesel engines using instantaneous angular speed
CN102435436B (zh) 风扇轴承状态退化评估方法
CN102944416B (zh) 基于多传感器信号融合技术的风电机组叶片故障诊断方法
US20180005463A1 (en) System, Device, and Method for Feature Generation, Selection, and Classification for Audio Detection of Anomalous Engine Operation
CN106482937A (zh) 一种高压断路器机械状态的监测方法
CN105760839A (zh) 基于多特征流形学习与支持向量机的轴承故障诊断方法
Siegel et al. Engine misfire detection with pervasive mobile audio
Wang et al. Using ENN-1 for fault recognition of automotive engine
CN109932179A (zh) 一种基于ds自适应谱重构的滚动轴承故障检测方法
CN108022325B (zh) 一种汽车发动机数据采集与故障隐患分析预警模型
CN105626502A (zh) 基于小波包和拉普拉斯特征映射的柱塞泵健康评估方法
Ren et al. An improved variational mode decomposition method and its application in diesel engine fault diagnosis
Bi et al. A variety of engine faults detection based on optimized variational mode decomposition-robust independent component analysis and fuzzy C-mean clustering
Naveen Venkatesh et al. Misfire detection in spark ignition engine using transfer learning
Yu et al. Rolling bearing fault feature extraction and diagnosis method based on MODWPT and DBN
CN108536961B (zh) 一种船舶柴油机气阀定量检测装置
CN116735203A (zh) 一种基于时频分析结合卷积神经网络的机械故障诊断方法
Ghaderi et al. Fourier transform and correlation-based feature selection for fault detection of automobile engines
Ghaderi et al. Automobile independent fault detection based on acoustic emission using FFT
Dhanraj et al. Implementation of K* classifier for identifying misfire prediction on spark ignition four-stroke engine through vibration data
Li et al. Pattern recognition on diesel engine working condition by using a novel methodology—Hilbert spectrum entropy
Czech An Intelligent approach to wear of piston-cylinder assembly diagnosis based on entropy of wavelet packet and probabilistic neural networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207