CN106199502B - 最优化比幅无线电测向方法 - Google Patents

最优化比幅无线电测向方法 Download PDF

Info

Publication number
CN106199502B
CN106199502B CN201610462418.3A CN201610462418A CN106199502B CN 106199502 B CN106199502 B CN 106199502B CN 201610462418 A CN201610462418 A CN 201610462418A CN 106199502 B CN106199502 B CN 106199502B
Authority
CN
China
Prior art keywords
directional aerial
direction finding
finding
width
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610462418.3A
Other languages
English (en)
Other versions
CN106199502A (zh
Inventor
邱承跃
白宇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Dianzhen Technology Co Ltd
Original Assignee
Chengdu Dianzhen Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Dianzhen Technology Co Ltd filed Critical Chengdu Dianzhen Technology Co Ltd
Priority to CN201610462418.3A priority Critical patent/CN106199502B/zh
Publication of CN106199502A publication Critical patent/CN106199502A/zh
Application granted granted Critical
Publication of CN106199502B publication Critical patent/CN106199502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction

Abstract

本发明公开了一种最优化比幅无线电测向方法,涉及无线电测向技术领域。本发明采用已知方向特征的定向天线在多个明显不同的方位角上接收无线电信号,并对接收到的无线电信号进行处理,通过最优化方法进行测向;首创利用数字荧光频谱的固定天线无线电测向,解决了瞬态信号和同频信号的快速测向问题。本发明的发明目的在于:找到一种兼有高灵敏度、高精确度,对部件的一致性要求不高,能实现宽带多频同时测向,也能实现荧光频谱测向的测向方法。

Description

最优化比幅无线电测向方法
技术领域
本发明涉及无线电测向技术领域,更具体地说涉及一种最优化比幅无线电测向方法。
背景技术
一方面,社会的发展促使无线电事业迅速发展,无线电测向技术作为无线电监测、技术侦查和电子对抗的一项重要的技术手段,已得到业界越来越多的关注。根据测向原理的不同,测向体制可分为幅度法、相位法、多普勒法、时间差法和空间谱估计法等。
幅度法测向系统由于其结构简单、性能稳定等优点而被广泛运用于无线电测向领域。幅度法按幅度信息利用方式的不同,可细分为最大信号法(也称大音点法)、最小信号法(也称小音点法)和幅度比较法;按接收通道数量的不同,可细分为单通道和多通道两种;按接收天线数量的不同,可细分为单天线和多天线两种。对于多通道幅度法测向系统,系统要求每个波束天线和其接收通路都有着严格一致的幅度特性;而基于单接收通道的幅度法测向系统降低了各通道幅度特性不一致对系统测向性能的影响,其测向精度可得到大幅度提高,但时效性不如多通道幅度法测向系统。
目前已有的幅度法测向技术分别具有以下缺陷:
1、最大信号法测向虽然测向灵敏度高,但测向精确度不高,测向速度慢。因为一方面,定向天线的方向图在最大增益角度附近变化平缓,对角度变化不敏感;另一方面,需要大量的天线方位角-信号强度数据对,才能得出最大信号所在的天线方位角。
2、最小信号法虽然测向精确度较高,但测向灵敏度不高,测向速度慢。因为一方面,定向天线的方向图在最小增益角度附近变化陡峭,但此处天线增益低;另一方面,需要大量的天线方位角-信号强度数据对,才能得出最大信号所在的天线方位角。
3、已有的幅度比较法,幅度的比较由电路实现,对部件的一致性要求高,调试难度大,且只能进行实时测向。
第二方面,随着无线电技术的迅猛发展,高速跳频、扩频、时分复用、复杂调制等新技术得到越来越广泛的应用,短脉冲信号、扫频干扰等各种低截获概率信号日益增多,利用传统技术手段进行无线电信号监测面临诸多困难,难以对瞬态信号和不同瞬时发射概率的同频信号进行测向。而数字荧光频谱技术合理解决快速傅里叶变换(FFT)频谱速度快而人眼观察速度有限的瞬时频谱幅度分布频次分析显示技术,可以在瞬时间内累积大量的频谱图,累积效果用位图颜色显示,颜色对应规则一般是红色、橙色、黄色等暖色表明发生频次(即出现概率)较高,黑色、蓝色、浅蓝色等冷色表明发生频次较低,还可以使用其它幅度等级方案。这样就能将快速的、隐秘的信号变化过程用瞬时频谱幅度分布频次的形式展现出来,能够侦测各种瞬态信号、同频信号,满足复杂电磁环境下的无线电监测工作需要。典型的产品有美国泰克公司生产的H500/H600型便携式实时频谱分析仪和RSA6100A系列实时频谱分析仪、德国罗德与施瓦茨公司生产ESMD型监测接收机、美国是德科技公司生产的9020/9030型频谱分析仪配置RTSA选件等等。利用数字荧光频谱数据进行测向,就能够解决瞬态信号和不同瞬时发射概率的同频信号的测向难题,但传统的测向方法大都不适用数字荧光频谱。成都点阵科技有限公司对此作了有益的探索,2011年将数字荧光频谱技术用于其DZM-80型便携式监测测向系统中,震惊美国,导致美国泰克公司的H600型实时频谱仪对中国的禁运。从本质上说,成都点阵科技有限公司当时采用的仍然是最大信号法,申请了申请号为201110209773.7的“利用瞬时频谱幅度分布频次数据的无线电测向方法”发明专利,由于在主权利项表述得创新性不够,未获得专利权。
第三方面,最优化方法也称做运筹学方法,是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,目的在于针对所研究的系统,求得一个合理运用各子系统能力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,人们经常会遇到求函数的极值或最大值最小值问题,这一类问题就是最优化问题,而求解最优化问题的数学方法被称为最优化方法,它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值、最小值问题,包括线性规划、整数规划、非线性规划、动态规划和智能优化方法等。但迄今尚未用于无线电测向领域。
发明内容
为了克服上述现有技术的缺陷,本发明将最优化方法引入无线电测向领域,提供了最优化比幅无线电测向方法,本发明采用已知方向特征的定向天线在多个明显不同的方位角上接收无线电信号,并对接收到的无线电信号进行处理,通过最优化方法进行测向。本发明的发明目的在于:找到一种兼有高灵敏度、高精确度,对部件的一致性要求不高,能实现宽带多频同时测向,也能实现荧光频谱测向的测向方法。
为了解决上述现有技术中存在的问题,本发明是通过下述技术方案实现的:
最优化比幅无线电测向方法,其特征在于:包括如下步骤:
数据获取步骤:通过已知方向特征且定单向的定向天线,在不少于3个明显不同的方位角进行测试,获取天线方位角和对应的信号强度数据;
建模步骤:进行最优化建模,以无线电信号方位角为决策变量,以不同方位角上特定频率、特定瞬时概率的实测信号强度与根据天线方向特性计算的信号强度之间的偏差的累积量为目标函数,建立无约束非线性规划模型;
测向计算步骤:通过最优化算法进行计算,求解特定频率上的信号来波方向,得到偏差累计量最小的信号方位角即是信号来源方向。
定向天线在不少于3个明显不同的方位角进行测试,具体是指:通过旋转一付已知方向特征且定单向的定向天线,获取不少于3个明显不同方位角的信号强度数据;所述定向天线进行测量的方位角的数量N满足N≥CEIL(360÷S),且N≥3,任意2个相邻方位的夹角不大于S,其中S表示定向天线的主波束宽度。
定向天线在不少于3个明显不同的方位角进行测试,具体是指:通过至少3付已知方向特征且定单向的定向天线设置在不同的方位角上;定向天线的数量满足N≥CEIL(360÷),且N≥3,表示多付天线主波束宽度的平均值。
多付定向天线不相同,任意相邻两方位角之间的夹角不大于相邻定向天线主波束宽度的平均值。
多付定向天线相同,任意相邻两方位角之间的夹角不大于定向天线主波束宽度。
所述无约束非线性规划模型为最小二乘法模型或最小距离法模型。
所述最小距离法模型为最小曼哈顿距离模型、最小欧式距离模型或最小切比雪夫距离模型。
与现有技术相比,本发明所带来的有益的技术效果表现在:
1、本发明的测向方法,以信号方位角为决策变量,以不同方位角上特定频率上特定瞬时概率的实测信号强度与根据定向天线的天线特性推算的信号强度之间偏差的累积量为目标函数,建立无约束非线性规划模型;并通过微处理器进行最优化计算,求解特定频率上的信号来波方向,使得偏差累积量最小的信号方位角即是信号来波方向,实现了无线电信号的实时测向,与现有技术相比本发明方法的效果表现在:首创利用数字荧光频谱的固定天线无线电测向,解决了瞬态信号和同频信号的快速测向问题。传统的固定天线无线电测向方法,包括幅度比较法、相位法、多普勒法、时间差法和空间谱估计法等,利用电子线路实现,无法利用数字荧光频谱数据,也就无法实现固定天线无线电测向。本发明的测向方法,在微处理器中以最优化方法进行测向运算,所以能够实现利用数字荧光频谱的固定天线无线电测向。
2、本发明公开的测向方法可以达到实时测向,本发明的测向方法兼有最大信号法、最小信号法和已有幅度比较法的优点,充分利用了定向天线的所有方向特性,测向灵敏度高,测向精确度也高,而且对部件的一致性要求不高;为最优化计算提供数据支撑,不仅能够实时测向,也能够利用存储的数据事后测向。
具体实施方式
实施例1
作为本发明一较佳实施例,本实施例公开了:
最优化比幅无线电测向方法,包括如下步骤:
数据获取步骤:通过已知方向特征且定单向的定向天线,在不少于3个明显不同的方位角进行测试,获取天线方位角和对应的信号强度数据;
建模步骤:进行最优化建模,以无线电信号方位角为决策变量,以不同方位角上特定频率、特定瞬时概率的实测信号强度与根据天线方向特性计算的信号强度之间的偏差的累积量为目标函数,建立无约束非线性规划模型;
测向计算步骤:通过最优化算法进行计算,求解特定频率上的信号来波方向,得到偏差累计量最小的信号方位角即是信号来源方向。
实施例2
作为本发明又一较佳实施例,本实施例公开了:
最优化比幅无线电测向方法,包括如下步骤:
数据获取步骤:通过已知方向特征且定单向的定向天线,在不少于3个明显不同的方位角进行测试,获取天线方位角和对应的信号强度数据;
建模步骤:进行最优化建模,以无线电信号方位角为决策变量,以不同方位角上特定频率、特定瞬时概率的实测信号强度与根据天线方向特性计算的信号强度之间的偏差的累积量为目标函数,建立无约束非线性规划模型;
测向计算步骤:通过最优化算法进行计算,求解特定频率上的信号来波方向,得到偏差累计量最小的信号方位角即是信号来源方向;
在本实施例中,定向天线在不少于3个明显不同的方位角进行测试,具体是指:通过旋转一付已知方向特征且定单向的定向天线,获取不少于3个明显不同方位角的信号强度数据;定向天线旋转的天线方位角的夹角不大于定向天线的主波束宽度;
如果以一付的定向天线通过旋转实现,不必转满360°,可以缺省定向天线主波束宽度和120°两者中的最小值,就能够准确测向。
实施例3
作为本发明又一较佳实施例,本实施例公开了:
最优化比幅无线电测向方法,包括如下步骤:
数据获取步骤:通过已知方向特征且定单向的定向天线,在不少于3个明显不同的方位角进行测试,获取天线方位角和对应的信号强度数据;
建模步骤:进行最优化建模,以无线电信号方位角为决策变量,以不同方位角上特定频率、特定瞬时概率的实测信号强度与根据天线方向特性计算的信号强度之间的偏差的累积量为目标函数,建立无约束非线性规划模型;
测向计算步骤:通过最优化算法进行计算,求解特定频率上的信号来波方向,得到偏差累计量最小的信号方位角即是信号来源方向;
在本实施例中,定向天线在不少于3个明显不同的方位角进行测试,具体是指:通过至少3付已知方向特征且定单向的定向天线设置在不同的方位角上;定向天线的数量满足N≥CEIL(360÷),且N≥3,表示多付天线主波束宽度的平均值。
当多付定向天线不相同时,任意相邻两方位角之间的夹角不大于相邻定向天线主波束宽度的平均值。
当多付定向天线相同时,任意相邻两方位角之间的夹角不大于定向天线主波束宽度。
实施例4
作为本发明又一较佳实施例,本实施例公开了:
最优化比幅无线电测向方法,包括如下步骤:
数据获取步骤:通过已知方向特征且定单向的定向天线,在不少于3个明显不同的方位角进行测试,获取天线方位角和对应的信号强度数据;
建模步骤:进行最优化建模,以无线电信号方位角为决策变量,以不同方位角上特定频率、特定瞬时概率的实测信号强度与根据天线方向特性计算的信号强度之间的偏差的累积量为目标函数,建立无约束非线性规划模型;
测向计算步骤:通过最优化算法进行计算,求解特定频率上的信号来波方向,得到偏差累计量最小的信号方位角即是信号来源方向;
在本实施例中,定向天线在不少于3个明显不同的方位角进行测试,具体是指:通过至少3付已知方向特征且定单向的定向天线设置在不同的方位角上;定向天线的数量满足N≥CEIL(360÷),且N≥3,表示多付天线主波束宽度的平均值;
当多付定向天线不相同时,任意相邻两方位角之间的夹角不大于相邻定向天线主波束宽度的平均值;
当多付定向天线相同时,任意相邻两方位角之间的夹角不大于定向天线主波束宽度;
所述无约束非线性规划模型为最小二乘法模型,也可以是最小距离法模型;
当采用最小距离法模型时,又可以细分为最小曼哈顿距离模型,也可以是最小欧式距离模型,还可以是最小切比雪夫距离模型。

Claims (7)

1.最优化比幅无线电测向方法,其特征在于:包括如下步骤:
数据获取步骤:通过已知方向特征且定单向的定向天线,在不少于3个不同的方位角进行测试,获取天线方位角和对应的信号强度数据;
建模步骤:进行最优化建模,以无线电信号方位角为决策变量,以不同方位角上特定频率、特定瞬时概率的实测信号强度与根据天线方向特性计算的信号强度之间的偏差的累积量为目标函数,建立无约束非线性规划模型;
测向计算步骤:通过最优化算法进行计算,求解特定频率上的信号来波方向,得到偏差累计量最小的信号方位角即是信号来源方向。
2.如权利要求1所述的最优化比幅无线电测向方法,其特征在于:定向天线在不少于3个不同的方位角进行测试,具体是指:通过旋转一付已知方向特征且定单向的定向天线,获取不少于3个不同方位角的信号强度数据;所述定向天线进行测量的方位角的数量N满足N≥CEIL(360÷S),且N≥3,任意2个相邻方位的夹角不大于S,其中S表示定向天线的主波束宽度。
3.如权利要求1所述的最优化比幅无线电测向方法,其特征在于:定向天线在不少于3个不同的方位角进行测试,具体是指:通过至少3付已知方向特征且定单向的定向天线设置在不同的方位角上;定向天线的数量满足N≥CEIL(360÷),且N≥3,表示多付天线主波束宽度的平均值。
4.如权利要求3所述的最优化比幅无线电测向方法,其特征在于:多付定向天线不相同,任意相邻两方位角之间的夹角不大于相邻定向天线主波束宽度的平均值。
5.如权利要求3所述的最优化比幅无线电测向方法,其特征在于:多付定向天线相同,任意相邻两方位角之间的夹角不大于定向天线主波束宽度。
6.如权利要求1所述的最优化比幅无线电测向方法,其特征在于:所述无约束非线性规划模型为最小二乘法模型或最小距离法模型。
7.如权利要求6所述的最优化比幅无线电测向方法,其特征在于:所述最小距离法模型为最小曼哈顿距离模型、最小欧式距离模型或最小切比雪夫距离模型。
CN201610462418.3A 2016-06-23 2016-06-23 最优化比幅无线电测向方法 Active CN106199502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610462418.3A CN106199502B (zh) 2016-06-23 2016-06-23 最优化比幅无线电测向方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610462418.3A CN106199502B (zh) 2016-06-23 2016-06-23 最优化比幅无线电测向方法

Publications (2)

Publication Number Publication Date
CN106199502A CN106199502A (zh) 2016-12-07
CN106199502B true CN106199502B (zh) 2018-07-27

Family

ID=57461323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610462418.3A Active CN106199502B (zh) 2016-06-23 2016-06-23 最优化比幅无线电测向方法

Country Status (1)

Country Link
CN (1) CN106199502B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324309B (zh) * 2018-09-10 2020-12-04 中国航天科工集团八五一一研究所 一种旋转单天线测角装置及其测量方法
CN113777556B (zh) * 2021-07-26 2023-09-08 中国电子科技集团公司第二十九研究所 一种无线电信号三维比幅测向方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719600A (en) * 1995-12-12 1998-02-17 Hewlett-Packard Company Gradient calculation system and method
CN1063267C (zh) * 1997-10-15 2001-03-14 电子工业部第五十四研究所 同频多信号测向与侦收的方法和装置
CN102288936A (zh) * 2011-07-26 2011-12-21 成都点阵科技有限公司 利用瞬时频谱幅度分布频次数据的无线电测向方法
CN102445679A (zh) * 2011-09-22 2012-05-09 成都中安频谱科技有限公司 三信道空间谱估计测向系统的测向方法
DE102014102207A1 (de) * 2014-02-20 2015-08-20 Epcos Ag Abstimmbarer Duplexer
CN204203457U (zh) * 2014-11-28 2015-03-11 宁晓卫 基于空间谱估计算法的短波测向系统

Also Published As

Publication number Publication date
CN106199502A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN108051772A (zh) 幅相联合测量来波方位信息的方法
CN102944866B (zh) 基于干涉仪体制的航管二次雷达应答信号测向方法
CN103501538B (zh) 基于多径能量指纹的室内定位方法
CN104812061A (zh) 一种基于mimo-ofdm信道状态信息的室内测距及定位方法
CN104515909B (zh) 一种基于相关法的大天线方向图测量方法
CN106597368B (zh) 室内干扰源的定位方法及系统
CN106154218B (zh) 一种无线电监测测向方法
CN105933077B (zh) 多通道的最优化比幅荧光频谱无线电测向系统及方法
CN106714298A (zh) 一种基于天线阵列的无线定位方法
CN106199502B (zh) 最优化比幅无线电测向方法
CN106054124B (zh) 多天线单通道的最优化比幅荧光频谱无线电测向系统及方法
CN206348451U (zh) 多天线单通道的最优化比幅荧光频谱无线电测向系统
CN105954708B (zh) 单天线最优化比幅荧光频谱无线电测向系统及方法
CN105929361B (zh) 单天线最优化比幅无线电测向系统及方法
CN105933078B (zh) 多天线单通道的最优化比幅无线电测向系统及方法
CN206348452U (zh) 单天线最优化比幅荧光频谱无线电测向系统
CN205754355U (zh) 多通道的最优化比幅荧光频谱无线电测向系统
CN206362921U (zh) 单天线最优化比幅无线电测向系统
CN106209274B (zh) 多通道的最优化比幅无线电测向系统及方法
Mohaghegh et al. Bluetooth low energy direction finding principle
Pereira et al. Multi-technology RF fingerprinting with leaky-feeder in underground tunnels
Shirai et al. An Experimental Investigation of the MUSIC-based Wireless Position Location using LCX antenna at 5GHz band
RU133326U1 (ru) Пассивное радиолокационное устройство пеленгации воздушных объектов
CN205749874U (zh) 多天线单通道的最优化比幅无线电测向系统
Khaliel et al. Evaluation and Comparison of Planar Printable and Grounded Harmonic RFID Tags

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant