CN106197548A - 一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器 - Google Patents

一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器 Download PDF

Info

Publication number
CN106197548A
CN106197548A CN201610638017.9A CN201610638017A CN106197548A CN 106197548 A CN106197548 A CN 106197548A CN 201610638017 A CN201610638017 A CN 201610638017A CN 106197548 A CN106197548 A CN 106197548A
Authority
CN
China
Prior art keywords
magnetic field
wimble structure
fbg
fiber bragg
arachidis hypogaeae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610638017.9A
Other languages
English (en)
Inventor
曹晔
赵月
童峥嵘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201610638017.9A priority Critical patent/CN106197548A/zh
Publication of CN106197548A publication Critical patent/CN106197548A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提供了一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器,并用其实现双参量同时测量,属于光纤传感技术领域。本发明的光纤磁场传感器输出信号中存在光纤布拉格光栅(FBG)的透射峰和模间干涉峰,根据透射峰和干涉峰对温度和磁场的不同敏感性,可实现对温度和磁场的同时测量。使用本结构进行传感实验,利用敏感矩阵,在已知透射峰和干涉峰的波长改变量的情况下获知温度以及磁场的改变量。该传感器在航天、环境检测、医疗方面有着潜在的应用价值。

Description

一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁 场传感器
技术领域
本发明属于光纤传感技术领域,特别是涉及双参量测量(磁场、温度)光纤传感技术。
背景技术
微弱磁场的测量已经被广泛应用于航空航天、信息存储和环境监测等领域。与用电子技术来监测外界磁场强度的方法相比,光纤磁场传感器灵敏度高、体积小,远程操作损耗低,因此受到更广泛的关注。然而,光纤的主要成分是二氧化硅,光纤装置本身对外界磁场强度的变化不敏感,将光纤装置与磁性材料相结合,可以实现对外界磁场强度的测量,例如磁电阻材料、磁光材料等。
利用磁流体的可调折射率特性,许多利用磁流体作为磁感应材料的光纤磁场传感器被相继提出。将干涉结构与磁流体封装于毛细管,利用模式干涉及光纤光栅的特性对测量量的灵敏度不同,可以消除传感测量中的交叉灵敏问题,从而可以做到双参量甚至多参量测量。
发明内容
本发明提出并制作了一种锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器,输出信号中存在光纤布拉格(FBG)透射峰和干涉峰,根据其对温度和磁场的不同敏感性,可用其实现双参量同时测量并消除交叉灵敏。
为达到上述目的,本发明的技术方案为:
一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器,包括磁流体涂覆的锥结构和花生锥结构、光纤布拉格光栅、宽带光源、光谱分析仪、磁铁、特斯拉计,锥结构和花生锥结构构成的传感结构与磁流体封装于毛细管中;
宽带光源的光经入射端单模光纤依次通过锥结构、花生锥结构、光纤布拉格光栅经出射端单模光纤传输到到光谱分析仪。
进一步的,经出射端单模光纤的输出信号包含光纤布拉格光栅的透射峰和干涉峰,利用它们对磁场和温度的不同灵敏度能够实现同时测量。
进一步的,锥结构和花生锥结构之间的长度为2.4cm,单模光纤纤芯直径为8.3μm,包层直径为125μm,在普通单模上写制的光纤布拉格光栅在室温条件下其中心波长为1534.03nm。
进一步的,该传感结构用于实现温度和磁场的同时测量,方法具体为:观察光谱图,当dip1和dipFBG发生波长漂移时,分别获取dip1的波长改变量Δλ1和dipFBG的波长改变量ΔλFBG,使用下式计算获得环境温度变化量ΔT和磁场强度的变化量ΔH:
Δ T Δ H = 1 D K H F B G - K H 1 - K T F B G K T 1 Δ λ 1 Δ λ F B G
其中D=KT1KHFBG-KTFBGKH1
式中,KT1、KH1分别为dip1对于温度和磁场的敏感系数,KTFBG和KHFBG是dipFBG对于温度和磁场的敏感系数。
本发明的优点和有益效果:
本发明提出了一种干涉型光纤磁场传感器,结构简单且容易制作,只需要普通的单模光纤及刻写在单模光纤中的光纤布拉格光栅。该传感器中输出信号包含干涉峰和FBG的透射峰,根据其对温度和磁场的不同敏感性,可以实现对温度和磁场的同时测量。该发明的干涉型传感器在航天、环境检测、医疗方面有着潜在的应用价值。
附图说明
图1为本发明光纤磁场传感器结构示意图;
图2为本发明图1中传感结构放大示意图;
图3为本发明光纤磁场传感器的输出信号谱;
图中:1.宽带光源、2.入射端单模光纤、3.传感结构、4.磁铁、5.特斯拉计、6.出射端单模光纤、7.光谱分析仪、8.锥结构、9.花生锥结构、10.光纤布拉格光栅(FBG)。
具体实施方式
实施例:
本发明基于锥结构和花生锥结构级联光纤布拉格光栅(FBG)的光纤磁场传感器,如图1、2所示。由磁流体涂覆的锥结构8和花生锥结构9、光纤布拉格光栅(FBG)10、宽带光源(BBS)1、光谱分析仪(OSA)7、磁铁4、特斯拉计5组成,锥结构8和花生锥结构9构成的传感结构3与磁流体封装于毛细管中。
宽带光源的光经入射端单模光纤2依次通过锥结构8、花生锥结构9、光纤布拉格光栅10经出射端单模光纤6传输到到光谱分析仪7。
所述的光纤布拉格光栅(FBG)10室温条件下中心波长为1534.03nm,锥结构8和花生锥结构9之间的距离为2.4cm,单模光纤纤芯直径为8.3μm,包层直径为125μm。
如图1所示,本发明在同时对温度和磁场进行传感时光路传输为:宽带光源的光从入射端单模光纤2入射进锥结构8后,纤芯中的一部分光进入包层激发起高阶包层模式,其余的光继续在纤芯中传输。包层中的光到达花生锥结构9时,被重新耦合回纤芯,与纤芯中的光发生干涉。纤芯中的光继续传播经过光纤布拉格光栅10后,满足布拉格波长的光被反射,其余的光被透射通过出射端单模光纤6传输至光谱分析仪7中,监测环境温度和磁场的变化。
使用磁流体涂覆的锥结构8和花生锥结构9级联光纤布拉格光栅(FBG)10的光纤磁场传感器进行温度和磁场的同时测量,具体方法为:
观察光谱图,室温下传感器的透射谱为图3。
当dip1和dipFBG发生波长漂移时,分别获取dip1的波长改变量Δλ1和dipFBG的波长改变量ΔλFBG,敏感矩阵如下式所示:
Δλ 1 Δλ F B G = K T 1 K H 1 K T F B G K H 2 Δ T Δ H
式中,KT1、KH1分别为dip1对于温度和磁场的敏感系数,KTFBG和KHFBG是dipFBG对于温度和磁场的敏感系数。
其中KT1、KH1以及KTFBG和KHFBG可以通过测量获得,其中测量过程具体为:
首先利用磁场传感实验装置测量磁场,如图1所示,通过磁铁外加磁场,磁场强度通过改变磁铁与传感结构的距离而变化,利用特斯拉计测量磁场的强度,得到KH1和KHFBG
然后用所述传感器对温度进行测量,将制作好的传感器固定于恒温板上,设置恒温板温度变化范围为25℃-43℃,每隔2℃记录一次数据,得到KT1和KTFBG
根据以上测量获得敏感矩阵。
使用敏感矩阵,获得温度和磁场的变化:
Δ T Δ H = 1 D K H F B G - K H 1 - K T F B G K T 1 Δλ 1 Δλ F B G
其中D=KT1KHFBG-KTFBGKH1
应当明确的是,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,按本发明构思所做出的显而易见的改进和修饰都应该在本发明的保护范围之内。

Claims (4)

1.一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器,其特征在于:包括磁流体涂覆的锥结构(8)和花生锥结构(9)、光纤布拉格光栅(10)、宽带光源(1)、光谱分析仪(7)、磁铁(4)、特斯拉计(5),锥结构(8)和花生锥结构(9)构成的传感结构(3)与磁流体封装于毛细管中;
宽带光源的光经入射端单模光纤(2)依次通过锥结构(8)、花生锥结构(9)、光纤布拉格光栅(10)经出射端单模光纤(6)传输到到光谱分析仪(7)。
2.根据权利要求1所述的光纤传感器,其特征在于:经出射端单模光纤(6)的输出信号包含光纤布拉格光栅(10)的透射峰和干涉峰,利用它们对磁场和温度的不同灵敏度能够实现同时测量。
3.根据权利要求1所述的光纤传感器,其特征在于:锥结构8和花生锥结构9之间的长度为2.4cm,单模光纤纤芯直径为8.3μm,包层直径为125μm,在普通单模上写制的光纤布拉格光栅10在室温条件下其中心波长为1534.03nm。
4.根据权利要求1或2或3所述的一种光纤磁场传感器,其特征在于:所述的传感结构(3)用于实现温度和磁场的同时测量,方法具体为:观察光谱图,当dip1和dipFBG发生波长漂移时,分别获取dip1的波长改变量Δλ1和dipFBG的波长改变量ΔλFBG,使用下式计算获得环境温度变化量ΔT和磁场强度的变化量ΔH:
Δ T Δ H = 1 D K H F B G - K H 1 - K T F B G K T 1 Δ λ 1 Δ λ F B G
其中D=KT1KHFBG-KTFBGKH1
式中,KT1、KH1分别为dip1对于温度和磁场的敏感系数,KTFBG和KHFBG是dipFBG对于温度和磁场的敏感系数。
CN201610638017.9A 2016-08-04 2016-08-04 一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器 Pending CN106197548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610638017.9A CN106197548A (zh) 2016-08-04 2016-08-04 一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610638017.9A CN106197548A (zh) 2016-08-04 2016-08-04 一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器

Publications (1)

Publication Number Publication Date
CN106197548A true CN106197548A (zh) 2016-12-07

Family

ID=57513571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610638017.9A Pending CN106197548A (zh) 2016-08-04 2016-08-04 一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器

Country Status (1)

Country Link
CN (1) CN106197548A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063499A (zh) * 2017-04-19 2017-08-18 天津理工大学 一种基于少模光纤锥结构的双参量光纤传感器及制备方法
CN108593119A (zh) * 2018-04-11 2018-09-28 南京大学 一种连续分布式微结构光纤生化传感器和信号处理方法
CN109116272A (zh) * 2018-09-26 2019-01-01 河南科技大学 一种基于锥形光纤光栅的大带宽磁场传感器以及制备方法
CN114136924A (zh) * 2021-11-30 2022-03-04 哈尔滨理工大学 MXene与GMM包覆气体和磁场测量光纤传感器
CN117367512A (zh) * 2023-11-10 2024-01-09 南京信息工程大学 一种基于mz干涉和f-p干涉的新型温度压力光纤传感器及其制备方法以及灵敏度测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591786A (en) * 1984-08-17 1986-05-27 The United States Of America As Represented By The Secretary Of The Navy Fiber-optic magnetic gradiometer with variable magnetic biasing fields
US7826065B1 (en) * 2008-07-15 2010-11-02 Sandia Corporation Tuned optical cavity magnetometer
CN104020424A (zh) * 2014-05-28 2014-09-03 江苏金迪电子科技有限公司 一种全光纤型磁场传感器
CN104316106A (zh) * 2014-10-28 2015-01-28 天津理工大学 一种基于马赫增德尔干涉和光纤布拉格光栅的光纤传感器
CN104330101A (zh) * 2014-10-28 2015-02-04 天津理工大学 一种可同时测量温度和微位移的光纤传感器
CN204269150U (zh) * 2014-10-30 2015-04-15 中国计量学院 一种基于花生形结构和光纤布拉格光栅(fbg)融合的光纤传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591786A (en) * 1984-08-17 1986-05-27 The United States Of America As Represented By The Secretary Of The Navy Fiber-optic magnetic gradiometer with variable magnetic biasing fields
US7826065B1 (en) * 2008-07-15 2010-11-02 Sandia Corporation Tuned optical cavity magnetometer
CN104020424A (zh) * 2014-05-28 2014-09-03 江苏金迪电子科技有限公司 一种全光纤型磁场传感器
CN104316106A (zh) * 2014-10-28 2015-01-28 天津理工大学 一种基于马赫增德尔干涉和光纤布拉格光栅的光纤传感器
CN104330101A (zh) * 2014-10-28 2015-02-04 天津理工大学 一种可同时测量温度和微位移的光纤传感器
CN204269150U (zh) * 2014-10-30 2015-04-15 中国计量学院 一种基于花生形结构和光纤布拉格光栅(fbg)融合的光纤传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUIHAOWANG等: "Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference", 《OPTICSCOMMUNICATIONS》 *
蔺际超: "基于磁流体包覆复合光纤光栅的磁场传感器研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063499A (zh) * 2017-04-19 2017-08-18 天津理工大学 一种基于少模光纤锥结构的双参量光纤传感器及制备方法
CN108593119A (zh) * 2018-04-11 2018-09-28 南京大学 一种连续分布式微结构光纤生化传感器和信号处理方法
CN109116272A (zh) * 2018-09-26 2019-01-01 河南科技大学 一种基于锥形光纤光栅的大带宽磁场传感器以及制备方法
CN109116272B (zh) * 2018-09-26 2020-09-08 河南科技大学 一种基于锥形光纤光栅的大带宽磁场传感器以及制备方法
CN114136924A (zh) * 2021-11-30 2022-03-04 哈尔滨理工大学 MXene与GMM包覆气体和磁场测量光纤传感器
CN114136924B (zh) * 2021-11-30 2024-01-26 哈尔滨理工大学 MXene与GMM包覆气体和磁场测量光纤传感器
CN117367512A (zh) * 2023-11-10 2024-01-09 南京信息工程大学 一种基于mz干涉和f-p干涉的新型温度压力光纤传感器及其制备方法以及灵敏度测量方法
CN117367512B (zh) * 2023-11-10 2024-05-14 南京信息工程大学 一种温度压力光纤传感器的灵敏度测量方法

Similar Documents

Publication Publication Date Title
CN106197548A (zh) 一种基于锥结构和花生锥结构级联光纤布拉格光栅的光纤磁场传感器
Lawrence et al. A fiber optic sensor for transverse strain measurement
CN103940530B (zh) 一种基于空心环形波导光纤的温度传感器
CN108332876A (zh) 一种光纤温度传感器
CN106338702A (zh) 基于磁流体填充光纤微腔的温度不敏感磁场传感器
Ding et al. Distributed optical fiber current sensor based on magnetostriction in OFDR
CN105371785B (zh) 一种曲率测量方法
CN101126666A (zh) 高灵敏度光纤温度传感器
CN206488795U (zh) 一种基于磁流体包覆的全光纤磁场传感器
CN205262638U (zh) 用于对温度和应变同时测量的双芯光子晶体光纤传感器
CN106568466A (zh) 细芯微结构光纤干涉仪传感器及其温度、应变检测方法
Shao et al. Fiber-optic magnetic field sensor using a phase-shifted fiber Bragg grating assisted by a TbDyFe bar
CN205655942U (zh) 一种应变和温度同时测量的光纤传感器
CN106500740B (zh) 一种基于磁场和温度的双参量光纤传感器及其制备方法
CN102162753A (zh) 同时测量长周期光纤光栅温度与应变的传感器结构
CN105716755A (zh) 一种基于Loyt-Sagnac干涉仪的灵敏度增强型传感器
CN101639387B (zh) 基于极值对应的波长检测的光纤温度传感器及其温度传感方法
CN109031168A (zh) 一种基于磁流体的锥形少模光纤磁场传感器
CN108195485A (zh) 基于lpfg与mz级联测量温度与应变的双参数传感器及其制备方法
CN202126393U (zh) 一种基于拉锥及灌注型光子晶体光纤的折射率传感器
CN106932364A (zh) 宏弯曲错位拉锥型光纤液体折射率传感器
Zhang et al. Performance investigation on pressure sensing from fiber Bragg grating loop ring-down cavity
Liu et al. Mach-Zehnder interferometer for high temperature (1000° C) sensing based on a few-mode fiber
CN103453940A (zh) 基于多模结构的光纤传感器
CN107830947A (zh) 一种基于Sagnac环与FP腔串联的光谱探测温度传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161207

WD01 Invention patent application deemed withdrawn after publication