CN106197005A - 精炼炉 - Google Patents

精炼炉 Download PDF

Info

Publication number
CN106197005A
CN106197005A CN201610792907.5A CN201610792907A CN106197005A CN 106197005 A CN106197005 A CN 106197005A CN 201610792907 A CN201610792907 A CN 201610792907A CN 106197005 A CN106197005 A CN 106197005A
Authority
CN
China
Prior art keywords
furnace
value
reverberatory
moment
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610792907.5A
Other languages
English (en)
Other versions
CN106197005B (zh
Inventor
李英道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Technology of ZJU
Original Assignee
Ningbo Institute of Technology of ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Technology of ZJU filed Critical Ningbo Institute of Technology of ZJU
Priority to CN201610792907.5A priority Critical patent/CN106197005B/zh
Publication of CN106197005A publication Critical patent/CN106197005A/zh
Application granted granted Critical
Publication of CN106197005B publication Critical patent/CN106197005B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • F27B3/045Multiple chambers, e.g. one of which is used for charging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0095Process control or regulation methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27MINDEXING SCHEME RELATING TO ASPECTS OF THE CHARGES OR FURNACES, KILNS, OVENS OR RETORTS
    • F27M2001/00Composition, conformation or state of the charge
    • F27M2001/01Charges containing mainly non-ferrous metals
    • F27M2001/015Copper

Abstract

本发明公开了一种精炼炉,旨在提供一种能准确控制燃烧炉和反射炉内压力的精炼炉,其技术方案要点是,包括燃烧炉以及若干设置在燃烧炉侧面的反射炉,所述的燃烧炉连接有主通道,所述的主通道与每个反射炉上部之间设有辅通道,所述的主通道连通有抽风组件,所述的辅通道内均设有相配在辅通道内的阀门组件,所述的燃烧炉和反射炉内设有若干压力检测组件,所述的阀门组件与抽风组件连接有一控制阀门组件与抽风组件运行以将燃烧炉内压力、反射炉内压力均保持在设定范围的控制组件。

Description

精炼炉
技术领域
本发明涉及冶金工业领域,更确切地说涉及一种精炼炉。
背景技术
铜是国民经济建设中具有重大战略意义的原材料,而铜的再生性能优于其他金属,因此废杂铜已成为铜业生产中重要的原料来源。废杂铜冶炼过程是将废杂铜原料经冶炼后,生产出合格的阳极板;主要包括熔化、氧化、还原及浇铸等4个流程。为了提高阳极板的质量,必须对冶炼过程中的炉膛负压进行严格的控制。
废杂铜冶炼工艺一般采用精炼炉,精炼炉包括设置在中间的燃烧炉以及对称设置在燃烧炉两侧的反射炉,燃烧炉与两个反射炉有连接通道。精炼炉承担了熔化、氧化和还原等三个主要环节。其中,熔化、氧化过程是在燃烧炉内完成,还原过程在反射炉内完成。实际应用表明,燃烧炉内的负压绝对值要大于反射炉内的负压,同时由于工艺本身的要求,燃烧炉及反射炉的负压不相同,这样就出现三个炉膛内的负压互不相同的问题。目前,大部分的废杂铜冶炼的负压控制都没有实际有效的控制策略,一般都是通过设置多个引风机以及加大引风机的转速,以保证炉体不“喷火”为目的,导致一方面生产出的阳极板的品质得不到保证;另一方面也增加了生产过程中的能耗,提高了生产成本。
发明内容
本发明要解决的技术问题是,提供一种能准确控制燃烧炉和反射炉内压力的精炼炉。
本发明的技术解决方案是,提供一种具有以下结构的精炼炉,包括燃烧炉以及若干设置在燃烧炉侧面的反射炉,所述的燃烧炉连接有主通道,所述的主通道与每个反射炉上部之间设有辅通道,所述的主通道连通有抽风组件,所述的辅通道内均设有相配在辅通道内的阀门组件,所述的燃烧炉和反射炉内设有若干压力检测组件,所述的阀门组件与抽风组件连接有一控制阀门组件与抽风组件运行以将燃烧炉内压力、反射炉内压力均保持在设定范围的控制组件。
优选的,所述的阀门组件包括转动连接在辅通道内的闸门,所述的闸门转动到一定位置时闸门的侧边缘均与辅通道内壁抵触已将辅通道封闭。
优选的,所述的压力检测组件包括设置在燃烧炉内的第一检测元件以及设置在反射炉内的第二检测元件,所述的第二检测元件设置于反射炉上部且远离反射炉与辅通道连接处的位置。
采用以上结构后,本发明的精炼炉,与现有技术相比,具有以下优点:通过辅通道连接燃烧炉和反射炉,主通道连通有抽风组件,所述的辅通道内均设有相配在辅通道内的阀门组件,即通过一抽风组件控制3个炉内的压力,节约能耗,由于燃烧炉内压力、反射炉内压力为无序变化,导致难以稳定燃烧炉内和反射炉内压力,精炼炉内通过压力检测组件和控制器协同控制抽风组件和阀门组件变化以将燃烧炉内和反射炉内压力维持在设定范围内。
一种精炼炉内压力控制方法,包括以下步骤:
S1、燃烧炉侧面设有m个反射炉,控制器记录:各个时刻下的燃烧炉内压力A、反射炉内压力值[B1-Bm]、抽风组件的运行值X、阀门组件的运行值[Y1-Ym],燃烧炉内压力A、反射炉内压力值[B1-Bm]由检测组件反馈;
S2、通过将Tn时刻下An、[B1-Bm]n、Xn、[Y1-Ym]n设置为输入值以及将Tn+1时刻下An+1、[B1-Bm]n+1设置为输出值并拟合多组得到用于预测下一时刻输出值的预测模型Z;
S3、控制器设定燃烧炉内压力以及反射炉内压力值标准区域;控制器通过预测模型Z修正抽风组件的运行值X、阀门组件的运行值[Y1-Ym]将燃烧炉内压力以及反射炉内压力值位于标准区域内;
优选的,所述的步骤S2还包括以下步骤:Tn时刻下预测模型Z由Tn-c-Tn时刻内A、[B1-Bm]、X、[Y1-Ym]数值得到,c大于零且为自然数。
优选的,所述的步骤S2还包括以下步骤:当A、[B1-Bm]、X、[Y1-Ym]中任意一个的变化速率高于阈值时,c的值减小,当A、[B1-Bm]、X、[Y1-Ym]的变化速率均小于阈值时,c的值增大,c设有最大值以及最小值。
优选的,所述的步骤S2还包括以下步骤:预测模型Z由数量为c个输入值与输出值拟合得到,计算预测模型Z在Tn+1时刻的输出值与实际值之间的差值d,预测模型Z在拟合Tn时刻的输入值与实际值之后计算在Tn+1时刻的输出值与实际值之间的差值e,当e≥d时,不将Tn时刻的输入值与实际值更新至预测模型Z中,当e<d时,将Tn时刻的输入值与实际值更新至预测模型Z中并剔除距离Tn时刻最久的输入值与输出值。
优选的,所述的差值d大于阈值与/或差值d与差值e之间的差值大于阈值时,预测模型Z重新取在Tn-Tn-f时刻的输入值和输出值拟合。
优选的,所述的输入值A设置权重数k,预测模型Z在拟合输入值*A之后计算Tn时刻的输出值与实际值之间的差值g,预测模型Z在拟合输入值*A之后计算在Tn时刻的输出值与实际值之间的差值h,当g≥h时,将设置为新的权重数,当g<h时,将设置为新的权重数;同理得权重数k可分别设置在任意输入值上。
采用以上结构后,本发明的精炼炉,与现有技术相比,具有以下优点:通过不建立线性模型,直接将多组输入值和输出值通过数据拟合的方式建立预测模型Z,即大大降低了对模型先验知识的要求,尤其适合对模型未知的精炼炉内压力控制过程的优化控制,且由于燃烧炉内压力A以及反射炉内压力值[B1-Bm]由于反应过程一直在无规则非线性的变化中,且由于燃烧炉以及反射炉内压力变化使抽风组件与阀门组件实际运行于期望运行有一定无规则的偏差,即一直具备稳态误差,通过直接拟合多组输入值与输出值之间建立预测模型Z能避免稳态误差对控制精度的影响,使燃烧炉内和反射炉内压力维持在较准确的范围内。
附图说明
图1是本发明的精炼炉的结构示意图。
图中所示:1、燃烧炉;2、反射炉;3、主通道;4、辅通道;5、阀门组件;51、闸门;61、第一检测元件;62、第二检测元件。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
请参阅图1所示,本发明的精炼炉,包括燃烧炉1以及若干设置在燃烧炉1侧面的反射炉2,所述的燃烧炉1连接有主通道3,所述的主通道3与每个反射炉2上部之间设有辅通道4,所述的主通道3连通有抽风组件,所述的辅通道4内均设有相配在辅通道4内的阀门组件5,所述的燃烧炉1和反射炉2内设有若干压力检测组件,所述的阀门组件5与抽风组件连接有一控制阀门组件5与抽风组件运行以将燃烧炉1内压力、反射炉2内压力均保持在设定范围的控制组件,通过辅通道4连接燃烧炉1和反射炉2,主通道3连通有抽风组件,所述的辅通道4内均设有相配在辅通道4内的阀门组件5,即通过一抽风组件控制3个炉内的压力,节约能耗,由于燃烧炉1内压力、反射炉2内压力为无序变化,导致难以稳定燃烧炉1内和反射炉2内压力,精炼炉内通过压力检测组件和控制器协同控制抽风组件和阀门组件5变化以将燃烧炉1内和反射炉2内压力维持在设定范围内。
所述的阀门组件5包括转动连接在辅通道4内的闸门51,所述的闸门51转动到一定位置时闸门51的侧边缘均与辅通道4内壁抵触已将辅通道4封闭,通过一转动的阀门可以控制辅通道4内的流通开口,通过流通开口的大小变化实现对气流量的控制,即能改变精炼炉与燃烧炉1内的压力,结构简单可靠,且仅在变化的时候驱动,大大提高了流通开口的稳定性。
所述的压力检测组件包括设置在燃烧炉1内的第一检测元件61以及设置在反射炉2内的第二检测元件62,所述的第二检测元件62设置于反射炉2上部且远离反射炉2与辅通道4连接处的位置,通过将第二检测元件62设置于反射炉2上部且远离反射炉2与辅通道4连接处的位置能远离反射炉2与辅通道4连接处,即可避免反射炉2与辅通道4连接处无序的压力变化影响第二检测元件62的检测结果,且第二检测元件62设置于反射炉2上部且远离反射炉2与辅通道4连接处的位置位于反射炉2的折角处,即能较准确的反应反射炉2内平均压力,使检测结果能更为准确的反应反射炉2内压力。
一种精炼炉内压力控制方法,包括以下步骤:
S1、燃烧炉1侧面设有m个反射炉2,控制器记录:各个时刻下的燃烧炉1内压力A、反射炉2内压力值[B1-Bm]、抽风组件的运行值X、阀门组件5的运行值[Y1-Ym],燃烧炉1内压力A、反射炉2内压力值[B1-Bm]由检测组件反馈;S2、通过将Tn时刻下An、[B1-Bm]n、Xn、[Y1-Ym]n设置为输入值以及将Tn+1时刻下An+1、[B1-Bm]n+1设置为输出值并拟合多组得到用于预测下一时刻输出值的预测模型Z;
S3、控制器设定燃烧炉1内压力以及反射炉2内压力值标准区域;控制器通过预测模型Z修正抽风组件的运行值X、阀门组件5的运行值[Y1-Ym]将燃烧炉1内压力以及反射炉2内压力值位于标准区域内;
通过不建立线性模型,直接将多组输入值和输出值通过数据拟合的方式建立预测模型Z,即大大降低了对模型先验知识的要求,尤其适合对模型未知的精炼炉内压力控制过程的优化控制,且由于燃烧炉1内压力A以及反射炉2内压力值[B1-Bm]由于反应过程一直在无规则非线性的变化中,且由于燃烧炉1以及反射炉2内压力变化使抽风组件与阀门组件5实际运行于期望运行有一定无规则的偏差,即一直具备稳态误差,通过直接拟合多组输入值与输出值之间建立预测模型Z能避免稳态误差对控制精度的影响,使燃烧炉1内和反射炉2内压力维持在较准确的范围内。
所述的步骤S2还包括以下步骤:Tn时刻下预测模型Z由Tn-c-Tn时刻内A、[B1-Bm]、X、[Y1-Ym]数值得到,c大于零且为自然数,即通过取一直在更新的c组输入值、输出值为拟合预测模型Z的数值,即可以一直更新预测模型Z,且基于最新的数据能使预测模型Z更加准确的预测当下的情况。
所述的步骤S2还包括以下步骤:当A、[B1-Bm]、X、[Y1-Ym]中任意一个的变化速率高于阈值时,c的值减小,当A、[B1-Bm]、X、[Y1-Ym]的变化速率均小于阈值时,c的值增大,c设有最大值以及最小值,通过输入值的变化率能推测实际模型的变化率,当模型的变化率高于阈值时,减少采样数据,快速拟合预测模型Z,使预测模型Z能跟上实际模型的变化率,一定程度的加强预测模型Z的预测精度,当模型的变化率低于阈值时,增加采样数据,准确拟合预测模型Z,使预测模型Z更加符合实际模型,加强了预测模型Z的预测精度。
所述的步骤S2还包括以下步骤:预测模型Z由数量为c个输入值与输出值拟合得到,计算预测模型Z在Tn+1时刻的输出值与实际值之间的差值d,预测模型Z在拟合Tn时刻的输入值与实际值之后计算在Tn+1时刻的输出值与实际值之间的差值e,当e≥d时,不将Tn时刻的输入值与实际值更新至预测模型Z中,当e<d时,将Tn时刻的输入值与实际值更新至预测模型Z中并剔除距离Tn时刻最久的输入值与输出值,即通过比较更新后或者不更新的情况下预测模型Z的精度来判断是否更新,即通过判断新的辨识模型是否能够改进一步预测误差来决定是否更新模型的控制策略,大大增加了预测模型Z的精度。
所述的差值d大于阈值与/或差值d与差值e之间的差值大于阈值时,预测模型Z重新取在Tn-Tn-f时刻的输入值和输出值拟合,通过阈值判断预测模型Z在准确预测,当出现意外干扰或等原因预测模型Z不精确时,可以直接放弃原有预测模型Z,重新拟合。
优选的,所述的输入值A设置权重数k,预测模型Z在拟合输入值*A之后计算Tn时刻的输出值与实际值之间的差值g,预测模型Z在拟合输入值*A之后计算在Tn时刻的输出值与实际值之间的差值h,当g≥h时,将设置为新的权重数,当g<h时,将设置为新的权重数;同理得权重数k可分别设置在任意输入值上,由于机理模型具有明显的物理意义,但是模型比较简化,预测精度往往不高,而纯数据驱动建模虽然有相对较高的拟合能力,但是没有明显物理意义,所得模型不具有可解释性,外推泛化能力受限,基于以上原因,通过基于定性机理的数据驱动控制策略。即不需要过程的详细机理过程,只需要对过程的输入输出变量做定性分析,得到主要变量之间的配对关系,通过调节输入变量之间的权重,加大主要变量的权重系数,弱化次要变量或干扰变量的影响,从而加快控制器收敛速度,提高预测模型Z的精度。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种精炼炉,包括燃烧炉(1)以及若干设置在燃烧炉(1)侧面的反射炉(2),其特征在于:所述的燃烧炉(1)连接有主通道(3),所述的主通道(3)与每个反射炉(2)上部之间设有辅通道(4),所述的主通道(3)连通有抽风组件,所述的辅通道(4)内均设有相配在辅通道(4)内的阀门组件(5),所述的燃烧炉(1)和反射炉(2)内设有若干压力检测组件,所述的阀门组件(5)与抽风组件连接有一控制阀门组件(5)与抽风组件运行以将燃烧炉(1)内压力、反射炉(2)内压力均保持在设定范围的控制组件。
2.根据权利要求1所述的精炼炉,其特征在于:所述的阀门组件(5)包括转动连接在辅通道(4)内的闸门(51),所述的闸门(51)转动到一定位置时闸门(51)的侧边缘均与辅通道(4)内壁抵触已将辅通道(4)封闭。
3.根据权利要求1所述的精炼炉,其特征在于:所述的压力检测组件包括设置在燃烧炉(1)内的第一检测元件(61)以及设置在反射炉(2)内的第二检测元件(62),所述的第二检测元件(62)设置于反射炉(2)上部且远离反射炉(2)与辅通道(4)连接处的位置。
4.一种精炼炉内压力控制方法,其特征在于:包括以下步骤:
S1、燃烧炉(1)侧面设有m个反射炉(2),控制器记录:各个时刻下的燃烧炉(1)内压力A、反射炉(2)内压力值[B1-Bm]、抽风组件的运行值X、阀门组件(5)的运行值[Y1-Ym],燃烧炉(1)内压力A、反射炉(2)内压力值[B1-Bm]由检测组件反馈;
S2、通过将Tn时刻下An、[B1-Bm]n、Xn、[Y1-Ym]n设置为输入值以及将Tn+1时刻下An+1、[B1-Bm]n+1设置为输出值并拟合多组得到用于预测下一时刻输出值的预测模型Z;
S3、控制器设定燃烧炉(1)内压力以及反射炉(2)内压力值标准区域;控制器通过预测模型Z修正抽风组件的运行值X、阀门组件(5)的运行值[Y1-Ym]将燃烧炉(1)内压力以及反射炉(2)内压力值位于标准区域内。
5.根据权利要求4所述的一种精炼炉内压力控制方法,其特征在于:所述的步骤S2还包括以下步骤:Tn时刻下预测模型Z由Tn-c-Tn时刻内A、[B1-Bm]、X、[Y1-Ym]数值得到,c大于零且为自然数。
6.根据权利要求5所述的一种精炼炉内压力控制方法,其特征在于:所述的步骤S2还包括以下步骤:当A、[B1-Bm]、X、[Y1-Ym]中任意一个的变化速率高于阈值时,c的值减小,当A、[B1-Bm]、X、[Y1-Ym]的变化速率均小于阈值时,c的值增大,c设有最大值以及最小值。
7.根据权利要求5所述的一种精炼炉内压力控制方法,其特征在于:所述的步骤S2还包括以下步骤:预测模型Z由数量为c个输入值与输出值拟合得到,计算预测模型Z在Tn+1时刻的输出值与实际值之间的差值d,预测模型Z在拟合Tn时刻的输入值与实际值之后计算在Tn+1时刻的输出值与实际值之间的差值e,当e≥d时,不将Tn时刻的输入值与实际值更新至预测模型Z中,当e<d时,将Tn时刻的输入值与实际值更新至预测模型Z中并剔除距离Tn时刻最久的输入值与输出值。
8.根据权利要求7所述的一种精炼炉内压力控制方法,其特征在于:所述的差值d大于阈值与/或差值d与差值e之间的差值大于阈值时,预测模型Z重新取在Tn-Tn-f时刻的输入值和输出值拟合。
9.根据权利要求4所述的一种精炼炉内压力控制方法,其特征在于:所述的输入值A设置权重数k,预测模型Z在拟合输入值(k+i)*A之后计算Tn时刻的输出值与实际值之间的差值g,预测模型Z在拟合输入值(k-i)*A之后计算在Tn时刻的输出值与实际值之间的差值h,当g≥h时,将(k+i)设置为新的权重数,当g<h时,将(k+i)设置为新的权重数;同理得权重数k可分别设置在任意输入值上。
CN201610792907.5A 2016-08-31 2016-08-31 精炼炉内压力控制方法 Expired - Fee Related CN106197005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610792907.5A CN106197005B (zh) 2016-08-31 2016-08-31 精炼炉内压力控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610792907.5A CN106197005B (zh) 2016-08-31 2016-08-31 精炼炉内压力控制方法

Publications (2)

Publication Number Publication Date
CN106197005A true CN106197005A (zh) 2016-12-07
CN106197005B CN106197005B (zh) 2018-04-20

Family

ID=58085595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610792907.5A Expired - Fee Related CN106197005B (zh) 2016-08-31 2016-08-31 精炼炉内压力控制方法

Country Status (1)

Country Link
CN (1) CN106197005B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2060073A (en) * 1930-06-05 1936-11-10 American Metal Co Ltd Copper refining method
JPH11132463A (ja) * 1997-11-04 1999-05-21 Osaka Gas Co Ltd 加熱炉用バーナ
CN202107749U (zh) * 2011-06-09 2012-01-11 大冶有色金属股份有限公司 富氧热风助燃铜精炼反射炉
CN103131870A (zh) * 2013-03-05 2013-06-05 浙江大学宁波理工学院 用于预处理废杂铜冶炼炉炉内温度分布数据的方法
CN104232929A (zh) * 2014-10-08 2014-12-24 大冶有色金属集团控股有限公司 一种新型高品位杂铜精炼炉系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2060073A (en) * 1930-06-05 1936-11-10 American Metal Co Ltd Copper refining method
JPH11132463A (ja) * 1997-11-04 1999-05-21 Osaka Gas Co Ltd 加熱炉用バーナ
CN202107749U (zh) * 2011-06-09 2012-01-11 大冶有色金属股份有限公司 富氧热风助燃铜精炼反射炉
CN103131870A (zh) * 2013-03-05 2013-06-05 浙江大学宁波理工学院 用于预处理废杂铜冶炼炉炉内温度分布数据的方法
CN104232929A (zh) * 2014-10-08 2014-12-24 大冶有色金属集团控股有限公司 一种新型高品位杂铜精炼炉系统

Also Published As

Publication number Publication date
CN106197005B (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
US20210365784A1 (en) Method for deriving fault diagnosis rules of blast furnace based on deep neural network
CN103399486A (zh) 塑料烘干器温度优化节能控制方法
CN109376500A (zh) 基于预测模型的烧结过程综合焦比在线优化方法及系统
CN106773682A (zh) 基于时滞动态确定的玻璃窑炉池底温度智能预测控制方法
CN106249724A (zh) 一种高炉多元铁水质量预测控制方法及系统
CN103194553A (zh) 一种基于最小二乘支持向量机的钢铁冶炼高炉氧气使用量控制方法
Feng et al. Hybrid intelligent control based on condition identification for combustion process in heating furnace of compact strip production
CN109885012A (zh) 一种金湿法冶金全流程实时优化补偿方法
CN106197005A (zh) 精炼炉
Wang et al. Stability and stabilization for a class of complex production processes via LMIs
CN106148727A (zh) 一种精炼炉
CN102876822B (zh) 高炉操作的闭环控制系统
CN106322996B (zh) 单风机多风道精炼炉内压力控制方法
CN106382813B (zh) 炼铜用精炼炉内压力控制方法
CN112329269A (zh) 一种基于工况识别的烧结点火温度建模预测方法
CN106382820B (zh) 一种单风机多风道精炼炉内压力控制方法
Xie et al. Optimal control strategy of working condition transition for copper flash smelting process
Yang et al. A multi-objective optimization model based on long short-term memory and non-dominated sorting genetic algorithm II
CN102880047B (zh) 炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法
Deng et al. Simulation study on steel plant capacity and equipment efficiency based on plant simulation
CN115309045A (zh) 一种面向工业系统多工况学习的预测控制方法和系统
Wang et al. PID Decoupling Controller Design for Electroslag Remelting Process Using Cuckoo Search Algorithm with Self-tuning Dynamic Searching Mechanism.
Yan et al. Application study of sigmoid regularization method in coke quality prediction
CN105734189A (zh) 一种高炉运行过程中喷煤量决策的方法
CN106647243A (zh) 压延机风阀自动控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180420

Termination date: 20180831

CF01 Termination of patent right due to non-payment of annual fee