CN106196702B - 一种输出电能的第二类吸收式热泵 - Google Patents

一种输出电能的第二类吸收式热泵 Download PDF

Info

Publication number
CN106196702B
CN106196702B CN201610546459.0A CN201610546459A CN106196702B CN 106196702 B CN106196702 B CN 106196702B CN 201610546459 A CN201610546459 A CN 201610546459A CN 106196702 B CN106196702 B CN 106196702B
Authority
CN
China
Prior art keywords
ammonia
solenoid valve
cuprammonium
primary battery
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610546459.0A
Other languages
English (en)
Other versions
CN106196702A (zh
Inventor
张绍志
王福添
陈光明
王璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610546459.0A priority Critical patent/CN106196702B/zh
Publication of CN106196702A publication Critical patent/CN106196702A/zh
Application granted granted Critical
Publication of CN106196702B publication Critical patent/CN106196702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

本发明公开了一种输出电能的第二类吸收式热泵,包括吸收器、热交换器、节流阀、发生塔、溶液泵、冷凝器、溶剂泵、铜氨原电池装置、控制器。其特点是用铜氨原电池装置代替了传统的第二类吸收式热泵系统中的蒸发器,通过控制器控制铜氨原电池装置中的电磁阀切换通道,使铜氨原电池的阴极与阳极在每次放电完后发生互换,变为可再生的原电池,从而使得系统能不断输出电能,并在吸收器得到高温热水。本发明中的铜氨原电池装置和发生塔的热源可以充分利用工业废水、工艺废热、太阳能热水等低品位的热源,使系统产生更高品位的热能与电能,实现热电联产,切实做到节能减排。

Description

一种输出电能的第二类吸收式热泵
技术领域
本发明涉及一种第二类吸收式热泵,尤其涉及一种输出电能的第二类吸收式热泵。
背景技术
能源是人类活动必不可少的一部分,如今,世界上使用的能源主要是煤、石油、天然气等不可再生的化石能源,而这些不可再生能源将日益减少并终将枯竭,如何提高能源的利用率成为了解决能源问题的一个重要方面。
在石油化工,轻工业等行业中,存在着大量低品位工业余热,这些余热大部分是被直接排放到环境中,这不仅造成了巨大的能源浪费,而且也造成了环境的热污染。近年来,有机朗肯循环低温余热发电技术、第二类吸收式热泵技术、热驱动化学电池等低品位热能利用技术及热电联产技术都为我国的节能事业带来了巨大的贡献。其中第二类吸收式热泵也叫升温型热泵,是利用大量的中温热源作驱动,制取热量少于但温度高于中温热源的热水或蒸汽,从而提高了热源的利用品位;因此,有关第二类吸收式热泵方面的理论研究与工业开发愈来愈受到人们的关注。另一方面,热电联产是基于能源梯级利用概念,将供热与发电过程一体化的联产系统,它能同时生产电和热能,较之分别生成电,热能的方式节约燃料,减轻了大气污染,实现了节能减排。
在第二类吸收式热泵系统中,其主要部件主要由蒸发器、冷凝器、吸收器、发生器、热交换器、溶液泵、溶剂泵,以及各个设备之间连接的连接管、配管及阀门等构成;其中发生器和蒸发器均采用中温驱动热源加热,输出的热水或蒸汽为高温热能,能够满足工业某些生产工艺的需要;因此传统的第二类吸收式热泵只能获得热能,不能输出电能,实现不了热电联产;而且实际获得高温热水是来自于吸收器,蒸发器在第二类吸收式热泵系统中属于高压部分,同样需要消耗低品位热源的热量,导致系统的COP降低。
发明内容
为了克服现有技术中的问题,本发明提供了一种输出电能的第二类吸收式热泵,采用铜氨原电池装置替换传统的第二类吸收式热泵中的蒸发器部件,系统可以利用工业废水、工艺废热、太阳能热水等低品位热源,并且可以同时输出电能,得到高温热水,实现热电联产。
一种输出电能的第二类吸收式热泵,包括吸收器、热交换器、节流阀、发生塔、溶液泵、单向阀V1、冷凝器、溶剂泵、铜氨原电池装置、控制器;所使用的工质对是氨-水溶液;氨-水溶液从吸收器流出,经过热交换器,节流阀节流降压后进入发生塔,发生产生氨气和水;水经过溶液泵、单向阀V1、热交换器,返回至吸收器,完成水的循环;氨气流入冷凝器冷凝,由溶剂泵泵送到铜氨原电池装置,返回至吸收器,完成氨气的循环;控制器控制铜氨原电池装置。
所述的铜氨原电池装置采用铜氨原电池,阳极发生的反应是氨与铜反应生成铜氨络合物,阴极发生的反应是铜离子还原为铜。
所述的铜氨原电池装置包括一进二出电磁阀V2、单向阀V3、反应室Ⅰ、单向阀V6、反应室Ⅱ、单向阀V7、单向阀V4、二进一出电磁阀V5、精馏塔、一进二出电磁阀V8;氨气的其一通道由:一进二出电磁阀V2,通向单向阀V6,流入反应室Ⅱ,经过单向阀V7,二进一出电磁阀V5,进入精馏塔,精馏产生的氨气返回至吸收器,精馏后的溶液由一进二出电磁阀V8返回至反应室Ⅱ;氨气的另一通道由:一进二出电磁阀V2通向单向阀V3,流入反应室Ⅰ,经过单向阀V4,二进一出电磁阀V5,进入精馏塔,精馏产生的氨气返回至吸收器,精馏后的溶液由一进二出电磁阀V8返回至反应室Ⅰ。
所述的控制器控制铜氨原电池装置,是通过控制铜氨原电池装置中的一进二出电磁阀V2、二进一出电磁阀V5、一进二出电磁阀V8,三个阀门通道发生切换。
一种输出电能的第二类吸收式热泵的工作方法,系统运行周期由两个阶段组成;第一阶段:由吸收器出来的氨-水溶液节流降压后进入发生塔,发生生成氨气和水,水由溶液泵返回到吸收器,完成循环;而发生的氨气进入冷凝器冷凝,由溶剂泵送到一进二出的电磁阀V2,通道是进入到反应室Ⅱ,此时,反应室Ⅱ为铜氨原电池的阳极室,另一反应室Ⅰ为阴极室,铜氨原电池阴阳极发生反应,产生电能;当电池放电完成时,反应室Ⅱ既阳极室的溶液经过二进一出电磁阀V5,进入精馏塔,精馏产生的氨气重新返回到吸收器中,完成氨气回路循环,而精馏后的溶液由一进二出的电磁阀V8返回至反应室Ⅱ,之后,控制器控制一进二出电磁阀V2,二进一出电磁阀V5,一进二出电磁阀V8,三个阀门通道发生切换,系统运行周期的第一阶段完成;第二阶段:吸收器吸收由精馏塔出来的氨气后,变成氨-水溶液,进入发生塔,发生产生的水返回至吸收器,完成循环;发生的氨气进入冷凝器冷凝,由溶剂泵送到一进二出电磁阀V2,通道是进入到反应室Ⅰ,成为铜氨原电池的阳极室,另一反应室Ⅱ为阴极室,发生阴阳极反应,产生电能。放电完成后反应室Ⅰ的溶液通过二进一出电磁阀V5,进入到精馏塔精馏,产生的氨气进入吸收器,完成氨气回路循环,精馏后的溶液返回至反应室Ⅰ,控制器控制一进二出电磁阀V2、二进一出电磁阀V5、一进二出电磁阀V8,三个电磁阀切换通道,第二阶段完成;随着第二阶段的完成,系统的一次运行周期便完成,准备进入下一次运行周期,如此往复,系统便能循环运行。
本发明的有益效果是:可充分利用不同低品位的热源来产生更高品位的热水与电能,天然工质对氨-水溶液即作为第二类吸收式热泵中的工质对,也作为铜氨原电池中阳极的反应物,将原电池与第二类吸收式热泵结合起来,成为一种可输出电能的第二类吸收式热泵,实现热电联产,切实做到了节能减排。
附图说明
图1为本发明一种输出电能的第二类吸收式热泵的一种结构示意图;
图2为本发明一种输出电能的第二类吸收式热泵的运行周期的第一阶段示意图;
图3为本发明一种输出电能的第二类吸收式热泵的运行周期的第二阶段示意图;
图中:1.吸收器,2.热交换器,3.节流阀,4.发生塔,5.溶液泵,6.单向阀V1,7.冷凝器,8.溶剂泵,9.一进二出电磁阀V2,10.单向阀V3,11.反应室Ⅰ,12.单向阀V6,13.反应室Ⅱ,14.单向阀V7,15.单向阀V4,16.二进一出电磁阀V5,17.精馏塔,18.一进二出电磁阀V8,19.控制器。
具体实施方式
下面结合附图对本发明进一步说明具体的实施方法。
本申请中铜氨原电池的工作原理是:铜氨原电池的两电极都是铜电极,当氨气通入阳极室时,导致铜氨原电池的阳极与阴极氨气浓度产生差异,其中阳极发生的反应是铜与氨气反应生成铜氨络合物,具体反应式为:Cu + 4 NH3 → Cu(NH3)4 2++ 2e-,阴极发生的反应是铜离子得到电子被还原为铜,具体的反应式为:Cu2++ 2e- → Cu,构成成为原电池,产生电能。当原电池放电完成后,阳极室溶液进入精馏塔,利用低品位热源精馏铜氨络合物得到含铜离子的溶液和氨气,具体的反应式是:Cu(NH3)4 2+ → Cu2+ + 4NH3,精馏后含铜离子的溶液返回阳极室,氨气通入吸收器;在下一阶段,氨气加入到上一阶段的阴极室,与被还原的铜发生阳极反应,成为阳极室;上一阶段的阳极室发生铜离子还原为铜的阴极反应,成为阴极室;可以发现,下一阶段的铜氨原电池的阴极与阳极相当于上一阶段的阳极和阴极,发生了互换,重新构成了新的铜氨原电池,而且每次铜氨原电池阳极反应消耗的铜在阴极被还原,在下一次反应阴极与阳极又互换,从而使的铜电极没有被消耗,变为可再生的铜氨原电池。
如图1所示,一种输出电能的第二类吸收式热泵,包括吸收器1、热交换器2、节流阀3、发生塔4、溶液泵5、单向阀V1(6)、冷凝器7、溶剂泵8、铜氨原电池装置、控制器19;所使用的工质对是氨-水溶液;氨-水溶液从吸收器1流出,经过热交换器2、节流阀3,节流降压后进入发生塔4,发生产生氨气和水;水由溶液泵5通过单向阀V1(6)、热交换器2,返回至吸收器1,完成水的循环;氨气流入冷凝器7冷凝,由溶剂泵8泵送到铜氨原电池装置,返回至吸收器1,完成氨气的循环;控制器19控制铜氨原电池装置。
所述的铜氨原电池装置包括一进二出电磁阀V2(9)、单向阀V3(10)、反应室Ⅰ11、单向阀V6(12)、反应室Ⅱ(13)、单向阀V7(14)、单向阀V4(15)、二进一出电磁阀V5(16)、精馏塔17、一进二出电磁阀V8(18);氨气的其一通道由:一进二出电磁阀V2(9),通向单向阀V6(12),流入反应室Ⅱ13,经过单向阀V7(14),二进一出电磁阀V5(16),进入精馏塔17,精馏产生的氨气返回至吸收器1,精馏后的溶液由一进二出电磁阀V8(18)返回至反应室Ⅱ13;氨气的另一通道由:一进二出电磁阀V2(9)通向单向阀V3(10),流入反应室Ⅰ11,经过单向阀V4(15),二进一出电磁阀V5(16),进入精馏塔17,精馏产生的氨气返回至吸收器1,精馏后的溶液由一进二出电磁阀V8(18)返回至反应室Ⅰ11。
所述的控制器(19)控制铜氨原电池装置,是通过控制铜氨原电池装置中的一进二出电磁阀V2(9)、二进一出电磁阀V5(16)、一进二出电磁阀V8(18),三个阀门通道发生切换。
本发明的工作方法为:
系统运行的一个周期由两个阶段组成。系统运行周期的第一阶段如附图2所示:由吸收器1出来的氨-水溶液经过热交换器2,氨-水溶液的温度得到一定的降低,由节流阀3节流降压后进入发生塔4,由于低品位热源的作用,其中低品位热源可以是工业废水、工业废热、太阳能热水等,发生生成氨气和水,产生的水由溶液泵5泵送作用,经过单向阀V1(6),这里单向阀的作用是防止水回流,进入热交换器2,水的温度得到提高,再次回到吸收器1,水回路循环完成;而产生的氨气进入冷凝器7,冷凝产生液氨,由溶剂泵8泵送进入一进二出的电磁阀V2(9),通道是流向单向阀V6(12),进入到反应室Ⅱ13,此时,反应室Ⅱ13为铜氨原电池的阳极室,另一反应室Ⅰ11为阴极室,铜氨原电池阴极与阳极发生反应,构成原电池,产生电能;当反应电压小于25mv时,可认为电池反应完成,此时反应室Ⅱ13既阳极室的溶液经过单向阀V7(14),二进一出电磁阀V5(16),进入精馏塔17,精馏产生的氨气重新返回到吸收器1中,完成氨气回路循环。而精馏后的溶液由一进二出的电磁阀V8(18)返回至反应室Ⅱ13,之后,控制器19作用,控制一进二出电磁阀V2(9),二进一出电磁阀V5(16),一进二出电磁阀V8(18),三个电磁阀的阀门通道发生切换,系统运行周期的第一阶段完成,进入第二阶段。
系统运行周期的第二阶段如附图3所示,吸收器1吸收由精馏塔17出来的氨气后,与返回的水混合变成氨-水溶液,之后同样的经过热交换器2,节流阀3节流降压后进入发生塔4,在低品位热源的作用下产生氨气和水,水由溶液泵5泵送经过单向阀V6(12),热交换器2返回至吸收器1,水回路循环完成;发生的氨气进入冷凝器7,由溶剂泵8泵送经过一进二出电磁阀V2(9),通道是流向单向阀V3(10),进入到反应室Ⅰ11,这时的反应室Ⅰ11为铜氨原电池的阳极室,另一反应室Ⅱ13为阴极室,铜氨原电池阴阳极发生反应,产生电能。可以发现第二阶段铜氨原电池反应的阴极与阳极与上一阶段的阴极与阳极正好相反,之后反应室Ⅰ11的溶液,同样是阳极室溶液通过单向阀V4(15),二进一出电磁阀V5(16),进入到精馏塔(17)精馏,产生的氨气进入吸收器1,完成氨气回路循环,精馏后的溶液通过一进二出的电磁阀V8(18)返回至反应室Ⅰ11,控制器19作用,控制一进二出电磁阀V2(9),二进一出电磁阀V5(16),一进二出电磁阀V8(18)三个电磁阀切换通道,系统运行周期的第二阶段完成。随着系统运行周期第二阶段的完成,系统的一次运行周期便完成,准备进入下一次运行周期,依次进入第一阶段,第二阶段,运行周期便再次完成;之后如此往复,系统便能循环运行,不断产生电能与热水,实现热电联产。

Claims (5)

1.一种输出电能的第二类吸收式热泵,其特征在于:包括吸收器(1)、热交换器(2)、节流阀(3)、发生塔(4)、溶液泵(5)、单向阀V1(6)、冷凝器(7)、溶剂泵(8)、铜氨原电池装置、控制器(19);所使用的工质对是氨-水溶液;氨-水溶液从吸收器(1)流出,经过热交换器(2),节流阀(3)节流降压后进入发生塔(4),发生产生氨气和水;水由溶液泵(5)通过单向阀V1(6)、热交换器(2)返回至吸收器(1),完成水的循环;氨气流入冷凝器(7)冷凝,由溶剂泵(8)泵送到铜氨原电池装置,返回至吸收器(1),完成氨气的循环;控制器(19)控制铜氨原电池装置。
2.根据权利要求1所述的一种输出电能的第二类吸收式热泵,其特征在于:所述的铜氨原电池装置采用铜氨原电池,阳极发生的反应是氨与铜反应生成铜氨络合物,阴极发生的反应是铜离子还原为铜。
3.根据权利要求1所述的一种输出电能的第二类吸收式热泵,其特征在于:所述的铜氨原电池装置包括一进二出电磁阀V2(9)、单向阀V3(10)、反应室Ⅰ(11)、单向阀V6(12)、反应室Ⅱ(13)、单向阀V7(14)、单向阀V4(15)、二进一出电磁阀V5(16)、精馏塔(17)、一进二出电磁阀V8(18);氨气的其一通道由:一进二出电磁阀V2(9),通向单向阀V6(12),流入反应室Ⅱ(13),经过单向阀V7(14),二进一出电磁阀V5(16),进入精馏塔(17),精馏产生的氨气返回至吸收器(1),精馏后的溶液由一进二出电磁阀V8(18)返回至反应室Ⅱ(13);氨气的另一通道由:一进二出电磁阀V2(9)通向单向阀V3(10),流入反应室Ⅰ(11),经过单向阀V4(15),二进一出电磁阀V5(16),进入精馏塔(17),精馏产生的氨气返回至吸收器(1),精馏后的溶液由一进二出电磁阀V8(18)返回至反应室Ⅰ(11)。
4.根据权利要求3所述的一种输出电能的第二类吸收式热泵,其特征在于:所述的控制器(19)控制铜氨原电池装置,是通过控制铜氨原电池装置中的一进二出电磁阀V2(9)、二进一出电磁阀V5(16)、一进二出电磁阀V8(18),三个阀门通道发生切换。
5.一种输出电能的第二类吸收式热泵的工作方法,其特征在于:系统运行周期由两个阶段组成;第一阶段:由吸收器(1)出来的氨-水溶液节流降压后进入发生塔(4),发生生成氨气和水,水由溶液泵(5)返回到吸收器(1),完成循环;而发生的氨气进入冷凝器(7)冷凝,由溶剂泵(8)送到一进二出的电磁阀V2(9),通道是进入到反应室Ⅱ(13),此时,反应室Ⅱ(13)为铜氨原电池的阳极室,另一反应室Ⅰ(11)为阴极室,铜氨原电池阴阳极发生反应,产生电能;当电池放电完成时,反应室Ⅱ(13)既阳极室的溶液经过二进一出电磁阀V5(16),进入精馏塔(17),精馏产生的氨气重新返回到吸收器(1)中,完成氨气回路循环,而精馏后的溶液由一进二出电磁阀V8(18)返回至反应室Ⅱ(13),之后,控制器(19)控制一进二出电磁阀V2(9)、二进一出电磁阀V5(16)、一进二出电磁阀V8(18),三个阀门通道发生切换,系统运行周期的第一阶段完成;进入第二阶段:吸收器(1)吸收由精馏塔(17)出来的氨气后,变成氨-水溶液,进入发生塔(4),发生产生的水返回至吸收器(1),完成循环;发生的氨气进入冷凝器(7)冷凝,由溶剂泵(8)送到一进二出电磁阀V2(9),通道是进入到反应室Ⅰ(11),成为铜氨原电池的阳极室,另一反应室Ⅱ(13)为阴极室,发生阴阳极反应,产生电能;放电完成后反应室Ⅰ(11)的溶液通过二进一出电磁阀V5(16),进入到精馏塔(17)精馏,产生的氨气进入吸收器(1),完成氨气回路循环,精馏后的溶液返回至反应室Ⅰ(11),控制器(19)控制一进二出电磁阀V2(9)、二进一出电磁阀V5(16)、一进二出电磁阀V8(18),三个阀门切换通道,第二阶段完成;随着第二阶段的完成,系统的一次运行周期便完成,准备进入下一次运行周期,如此往复,系统便能循环运行。
CN201610546459.0A 2016-07-13 2016-07-13 一种输出电能的第二类吸收式热泵 Active CN106196702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610546459.0A CN106196702B (zh) 2016-07-13 2016-07-13 一种输出电能的第二类吸收式热泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610546459.0A CN106196702B (zh) 2016-07-13 2016-07-13 一种输出电能的第二类吸收式热泵

Publications (2)

Publication Number Publication Date
CN106196702A CN106196702A (zh) 2016-12-07
CN106196702B true CN106196702B (zh) 2018-08-07

Family

ID=57477436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610546459.0A Active CN106196702B (zh) 2016-07-13 2016-07-13 一种输出电能的第二类吸收式热泵

Country Status (1)

Country Link
CN (1) CN106196702B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB368918A (en) * 1930-01-25 1932-03-17 Electrolux Ltd Improvements in or relating to absorption refrigerating apparatus
JP2001050609A (ja) * 1999-05-28 2001-02-23 Osaka Gas Co Ltd 排熱吸収冷凍機
CN201025418Y (zh) * 2007-01-12 2008-02-20 中国科学技术大学 一种固体氧化物燃料电池热电冷联供和储能装置
CN101575008A (zh) * 2009-06-10 2009-11-11 北京航空航天大学 多电飞行器的机载冷热电联产系统
CN102628623A (zh) * 2012-04-20 2012-08-08 新奥科技发展有限公司 一种能源供应系统
CN103983039A (zh) * 2014-06-04 2014-08-13 泰山集团股份有限公司 余热氨吸收发电制冷机及液氨发电装置
CN104061706A (zh) * 2014-07-02 2014-09-24 山东大学 基于分馏冷凝氨动力/制冷循环和sofc/gt的联供系统
CN104653237A (zh) * 2013-11-25 2015-05-27 陕西银河网电科技有限公司 一种燃料电池冷热电联产系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB368918A (en) * 1930-01-25 1932-03-17 Electrolux Ltd Improvements in or relating to absorption refrigerating apparatus
JP2001050609A (ja) * 1999-05-28 2001-02-23 Osaka Gas Co Ltd 排熱吸収冷凍機
CN201025418Y (zh) * 2007-01-12 2008-02-20 中国科学技术大学 一种固体氧化物燃料电池热电冷联供和储能装置
CN101575008A (zh) * 2009-06-10 2009-11-11 北京航空航天大学 多电飞行器的机载冷热电联产系统
CN102628623A (zh) * 2012-04-20 2012-08-08 新奥科技发展有限公司 一种能源供应系统
CN104653237A (zh) * 2013-11-25 2015-05-27 陕西银河网电科技有限公司 一种燃料电池冷热电联产系统
CN103983039A (zh) * 2014-06-04 2014-08-13 泰山集团股份有限公司 余热氨吸收发电制冷机及液氨发电装置
CN104061706A (zh) * 2014-07-02 2014-09-24 山东大学 基于分馏冷凝氨动力/制冷循环和sofc/gt的联供系统

Also Published As

Publication number Publication date
CN106196702A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN103752142B (zh) 一种太阳能辅助二氧化碳捕集集成系统
CN110748465B (zh) 一种氢储能太阳能燃煤耦合灵活发电系统及运行方法
CN108050571B (zh) 单级平衡式氨-水再吸收式热泵循环设备及供热方法
JPH06101932A (ja) 排熱を利用する吸収ヒートポンプ及びコ−ジェネレ−ションシステム
CN106582200B (zh) 一种利用中间抽汽的变温吸附电厂烟气碳捕集系统
CN114484921A (zh) 耦合吸收式热泵梯级利用余热分布式供能系统及运行方法
CN104697235A (zh) 一种基于电渗析的三元工质氨水吸收式制冷系统
CN114413503B (zh) 可再生能源驱动的零碳高效的分布式供能系统及运行方法
CN103041675A (zh) 一种用于溶液深度除湿系统的溶液再生装置
CN106196702B (zh) 一种输出电能的第二类吸收式热泵
CN108088111B (zh) 两级等温氨-水再吸收式热泵循环及供热方法
CN107630727B (zh) 一种中低温热能驱动的发电、制冷及碳捕集耦合系统
CN106568226B (zh) 一种低品位热驱动的冷电联供系统及其应用方法
Yang et al. Optimization of heat source side technical scheme of combined heat and water system based on a coal-fired power plant
CN109099743B (zh) 一种多热源余热回收系统
CN108072192B (zh) 三级等温平衡式氨-水再吸收式热泵循环及供热方法
CN210892819U (zh) 一种并联型冷热电三联产卡列纳循环系统装置
Zhao et al. Cascade utilization of flue gas waste heat in combined heat and power system with high back-pressure (CHP-HBP)
CN111764980A (zh) 可变工质的有机朗肯循环发电系统
CN203090721U (zh) 一种用于溶液深度除湿系统的溶液再生装置
CN202709255U (zh) 一种节能热电联产系统
CN112919565A (zh) 太阳能-温泉-热泵耦合多级膜蒸馏水处理系统及方法
CN212389399U (zh) 可变工质的有机朗肯循环发电系统
CN110542238A (zh) 一种单双效复合直燃型第一类溴化锂吸收式热泵机组
CN110542239A (zh) 单双效复合蒸吸二段直燃型第一类溴化锂吸收式热泵机组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant