CN106189743A - A kind of display device based on electrostatic defending - Google Patents

A kind of display device based on electrostatic defending Download PDF

Info

Publication number
CN106189743A
CN106189743A CN201610677115.3A CN201610677115A CN106189743A CN 106189743 A CN106189743 A CN 106189743A CN 201610677115 A CN201610677115 A CN 201610677115A CN 106189743 A CN106189743 A CN 106189743A
Authority
CN
China
Prior art keywords
antistatic coating
carbon fiber
copper
copper powder
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610677115.3A
Other languages
Chinese (zh)
Other versions
CN106189743B (en
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan City Shunde District Longgao Lcd Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610677115.3A priority Critical patent/CN106189743B/en
Publication of CN106189743A publication Critical patent/CN106189743A/en
Application granted granted Critical
Publication of CN106189743B publication Critical patent/CN106189743B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

The application relates to a kind of display device based on electrostatic defending, including show ontology, show ontology is provided with display and display housing, described display housing outer surface is provided with antistatic coating, described antistatic coating is formed with antistatic coating coating 1~3 μm, described antistatic coating is with unsaturated-resin as base material, with copper powder and copper carbon fiber as filler.

Description

A kind of display device based on electrostatic defending
Technical field
The application relates to field of display devices, particularly relates to a kind of display device based on electrostatic defending.
Background technology
Display device, also known as display, is a kind of device exporting information, is widely used in computer, TV, projection etc. Equipment, display device, according to display operation principle used, is divided into the classes such as plasma, liquid crystal, light emitting diode, cathode ray tube Type.
Owing to display device is usually directed to high-sensitive electronic component, and display surface usually can produce electrostatic, its Display device and operator all can be produced adverse effect.
Summary of the invention
It is desirable to provide a kind of display device based on electrostatic defending, to solve problem set forth above.
Providing a kind of display device based on electrostatic defending in embodiments of the invention, including show ontology, display is originally Body is provided with display and display housing, and described display housing outer surface is provided with antistatic coating.
The technical scheme that embodiments of the invention provide can include following beneficial effect:
The present invention is provided with antistatic coating at display housing outer surface, and its surface resistivity is relatively low, possesses good anti-quiet Electricity effect, thus solve problem set forth above.
Aspect and advantage that the application adds will part be given in the following description, and part will become from the following description Obtain substantially, or recognized by the practice of the application.It should be appreciated that above general description and details hereinafter only describe It is exemplary and explanatory, the application can not be limited.
Accompanying drawing explanation
The invention will be further described to utilize accompanying drawing, but the embodiment in accompanying drawing does not constitute any limit to the present invention System, for those of ordinary skill in the art, on the premise of not paying creative work, it is also possible to obtain according to the following drawings Other accompanying drawing.
Fig. 1 is the structural representation of display device of the present invention.
Fig. 2 is the preparation flow figure of antistatic coating of the present invention.
Detailed description of the invention
Here will illustrate exemplary embodiment in detail, its example represents in the accompanying drawings.Explained below relates to During accompanying drawing, unless otherwise indicated, the same numbers in different accompanying drawings represents same or analogous key element.Following exemplary embodiment Described in embodiment do not represent all embodiments consistent with the present invention.On the contrary, they are only with the most appended The example of the apparatus and method that some aspects that described in detail in claims, the present invention are consistent.
Electrostatic coatings is a kind of functional coating, and it can conduct electric charge and can get rid of stored charge, say, that electrostatic The existing antistatic property of coating, has again the barrier propterty of coating itself.The U.S. is the earliest in the conducting resinl patent that 1948 announce Disclosed electrically-conducting paint;In early days, mainly based on silver system and carbon system anti-static coatings.
Along with the R and D of antistatic coating, Related product is more and more abundanter, its building industry, electron trade, Furniture industry, aviation and military field application are wide.At present, antistatic coating is divided into Intrinsical and addition type, and Intrinsical resists Electrostatic coatings is to be film forming matter by the polymer itself with electric conductivity, but, it is high that preparation cost prepared by this kind of coating, and application is relatively Few;Addition type antistatic coating is to add certain conductive filler in nonconducting resin itself to realize static conductive function, its Being formed conductive network in resin by conductive filler, embody electric conductivity, current conductive filler mainly has: carbon-based material, metal mold Powder, metal-oxide, conducting nanoparticles and antistatic additive etc..
Currently for antistatic coating, it is presented below as development trend: develop the addition type antistatic coating of high performance-price ratio, And reach preferable anti-static effect, be on the one hand exploitation high conductivity, low cost novel conductive fillers, to replace The precious metal materials such as silver, nickel, copper;On the other hand it is the electric conductivity improving addition type conductive filler, to keep the thing of original matrix Reason-chemical property, the most still facing a lot of problem for efficient conductive filler needs to solve.
Application scenarios one:
Fig. 1 shows a kind of based on electrostatic defending the display device that embodiments herein relates to, including show ontology, Show ontology is provided with display 1 and display housing 2, and described display housing 2 outer surface is provided with antistatic coating.
The present invention is provided with antistatic coating at display housing outer surface, and its surface resistivity is relatively low, possesses good anti-quiet Electricity effect.
Preferably, described antistatic coating is formed by antistatic coating coating, and described antistatic coating uses unsaturation tree Fat is base material, containing cis-butenedioic anhydride in described unsaturated-resin, and phthalic anhydride, disodiumedetate poly-400, propylene glycol, ethylene glycol, fourth Enediol, NaOH, dibutyl tin laurate, MEHQ.
In antistatic coating involved by the application, unsaturated-resin is base material, is that the aqueous of a kind of ultraviolet light polymerization is coated with Material, described unsaturated-resin side base contains the highly polar groups such as ether, hydroxyl, carboxyl, can produce conductive ion, become macromolecule Electrolyte, the surface resistivity of described unsaturated-resin is 5.2 × 109Ω/cm2
Preferably, described antistatic coating uses copper powder and copper carbon fiber to be filler, described copper powder and described coppered carbon Fiber quality is than for 3:4, and described copper powder size is 200 mesh, and described copper carbon fiber copper film thickness is 170nm.
In the antistatic coating of the application, copper powder uniformly mixes with copper carbon fiber, is internally formed two dimension conduction at coating Network, reduces the surface resistivity of antistatic coating further.
Preferably, such as Fig. 2, the making step of described antistatic coating is as follows:
Step one, Treatment of Carbon:
Carbon fiber is cut into 2~5mm, is then immersed in 10h in acetone soln, then with deionized water to carbon fiber Clean 3~5 times;At room temperature, the carbon fiber after cleaning is immersed in concentrated nitric acid, takes out, then use deionized water after 1h Repeatedly clean, next put into oscillation cleaning 1h in supersonic cleaning machine, at 100 DEG C, be dried 2h;Dried carbon fiber is put into In magnetic control sputtering device, 10-4It is deposited with one layer of copper film at carbon fiber surface under Pa base vacuum, obtains copper carbon fiber;
Step 2, process copper powder:
50ml dehydrated alcohol concentrated hydrochloric acid solution is formulated in clean container, then weighs 25g copper powder and put in container, By solution stirring 1h, it is purified, then rinse 3 times with ether and dehydrated alcohol, until by-product HCl and CuCl2 Clean from Copper Powder Surface, then copper powder is placed in vacuum drying oven, take out standby after being dried 12h;
Step 3, prepares unsaturated-resin:
Take cis-butenedioic anhydride 0.44mol, phthalic anhydride 0.06mol, poly-400 0.145mol of disodiumedetate, propylene glycol 0.12mol, ethylene glycol 0.18mol, butylene glycol 0.05mol, add 0.3mol NaOH, 0.1% catalyst dibutyltin cinnamic acid two fourth Ji Xi, the polymerization inhibitor MEHQ mixing of 5/10000ths, fill this blend in the 250ml there-necked flask of band water knockout drum, It is placed in conduction oil, electric stirring, 160 DEG C of nitrogen atmospheres react 60min;It is warmed up to 180 DEG C, melt polymerization in nitrogen atmosphere 120min, then it is warming up to 195 DEG C, in nitrogen atmosphere, melt polymerization is 60 to acid number, is cooled to 100 DEG C and pours out, obtains after cooling The transparent unsaturated-resin of buff;
Step 4, prepares antistatic coating:
First weigh unsaturated-resin 100ml, add 5g copper powder and copper carbon fiber, be sufficiently mixed, add 3% silicon Alkane coupling agent, by mixture mechanical agitation, obtains antistatic coating.
Preferably, the antistatic coating prepared being coated in target object surface, coating thickness is 1~3 μm, then will It irradiates under distance ultraviolet source 10cm and makes curing of coatings.
Show it is further preferred that antistatic coating involved by the application to be carried out antistatic test, when copper powder adds Amount mass ratio is 3~10%, when copper powder and copper carbon fiber mass ratio are 3:4, and the surface resistivity of described antistatic coating It is 0.6~2.5 × 107Ω/cm2;After 60 days, aging resistance test shows, surface resistivity variable quantity is less than 5%.
Application scenarios two:
Fig. 1 shows a kind of based on electrostatic defending the display device that embodiments herein relates to, including show ontology, Show ontology is provided with display 1 and display housing 2, and described display housing 2 outer surface is provided with antistatic coating.
The present invention is provided with antistatic coating at display housing outer surface, and its surface resistivity is relatively low, possesses good anti-quiet Electricity effect.
Preferably, described antistatic coating is formed by antistatic coating coating, and described antistatic coating uses unsaturation tree Fat is base material, containing cis-butenedioic anhydride in described unsaturated-resin, and phthalic anhydride, disodiumedetate poly-400, propylene glycol, ethylene glycol, fourth Enediol, NaOH, dibutyl tin laurate, MEHQ.
In antistatic coating involved by the application, unsaturated-resin is base material, is that the aqueous of a kind of ultraviolet light polymerization is coated with Material, described unsaturated-resin side base contains the highly polar groups such as ether, hydroxyl, carboxyl, can produce conductive ion, become macromolecule Electrolyte, the surface resistivity of described unsaturated-resin is 5.2 × 109Ω/cm2
Preferably, described antistatic coating uses copper powder and copper carbon fiber to be filler, described copper powder and described coppered carbon Fiber quality is than for 3:4, and described copper powder size is 200 mesh, and described copper carbon fiber copper film thickness is 170nm.
In the antistatic coating of the application, copper powder uniformly mixes with copper carbon fiber, is internally formed two dimension conduction at coating Network, reduces the surface resistivity of antistatic coating further.
Preferably, such as Fig. 2, the making step of described antistatic coating is as follows:
Step one, Treatment of Carbon:
Carbon fiber is cut into 2~5mm, is then immersed in 10h in acetone soln, then with deionized water to carbon fiber Clean 3~5 times;At room temperature, the carbon fiber after cleaning is immersed in concentrated nitric acid, takes out, then use deionized water after 1h Repeatedly clean, next put into oscillation cleaning 1h in supersonic cleaning machine, at 100 DEG C, be dried 2h;Dried carbon fiber is put into In magnetic control sputtering device, 10-4It is deposited with one layer of copper film at carbon fiber surface under Pa base vacuum, obtains copper carbon fiber;
Step 2, process copper powder:
50ml dehydrated alcohol concentrated hydrochloric acid solution is formulated in clean container, then weighs 25g copper powder and put in container, By solution stirring 1h, it is purified, then rinse 3 times with ether and dehydrated alcohol, until by-product HCl and CuCl2 Clean from Copper Powder Surface, then copper powder is placed in vacuum drying oven, take out standby after being dried 12h;
Step 3, prepares unsaturated-resin:
Take cis-butenedioic anhydride 0.44mol, phthalic anhydride 0.06mol, poly-400 0.145mol of disodiumedetate, propylene glycol 0.12mol, ethylene glycol 0.18mol, butylene glycol 0.05mol, add 0.3mol NaOH, 0.1% catalyst dibutyltin cinnamic acid two fourth Ji Xi, the polymerization inhibitor MEHQ mixing of 5/10000ths, fill this blend in the 250ml there-necked flask of band water knockout drum, It is placed in conduction oil, electric stirring, 160 DEG C of nitrogen atmospheres react 60min;It is warmed up to 180 DEG C, melt polymerization in nitrogen atmosphere 120min, then it is warming up to 195 DEG C, in nitrogen atmosphere, melt polymerization is 60 to acid number, is cooled to 100 DEG C and pours out, obtains after cooling The transparent unsaturated-resin of buff;
Step 4, prepares antistatic coating:
First weigh unsaturated-resin 100ml, add 5g copper powder and copper carbon fiber, be sufficiently mixed, add 3% silicon Alkane coupling agent, by mixture mechanical agitation, obtains antistatic coating.
Preferably, the antistatic coating prepared being coated in target object surface, coating thickness is 1~3 μm, then will It irradiates under distance ultraviolet source 10cm and makes curing of coatings.
Show it is further preferred that antistatic coating involved by the application to be carried out antistatic test, when copper powder adds Amount mass ratio is 3%, and when copper powder and copper carbon fiber mass ratio are 3:4, the surface resistivity of described antistatic coating is 0.6 ×107Ω/cm2;After 60 days, aging resistance test shows, surface resistivity variable quantity is less than 5%.
Application scenarios three:
Fig. 1 shows a kind of based on electrostatic defending the display device that embodiments herein relates to, including show ontology, Show ontology is provided with display 1 and display housing 2, and described display housing 2 outer surface is provided with antistatic coating.
The present invention is provided with antistatic coating at display housing outer surface, and its surface resistivity is relatively low, possesses good anti-quiet Electricity effect.
Preferably, described antistatic coating is formed by antistatic coating coating, and described antistatic coating uses unsaturation tree Fat is base material, containing cis-butenedioic anhydride in described unsaturated-resin, and phthalic anhydride, disodiumedetate poly-400, propylene glycol, ethylene glycol, fourth Enediol, NaOH, dibutyl tin laurate, MEHQ.
In antistatic coating involved by the application, unsaturated-resin is base material, is that the aqueous of a kind of ultraviolet light polymerization is coated with Material, described unsaturated-resin side base contains the highly polar groups such as ether, hydroxyl, carboxyl, can produce conductive ion, become macromolecule Electrolyte, the surface resistivity of described unsaturated-resin is 5.2 × 109Ω/cm2
Preferably, described antistatic coating uses copper powder and copper carbon fiber to be filler, described copper powder and described coppered carbon Fiber quality is than for 3:4, and described copper powder size is 200 mesh, and described copper carbon fiber copper film thickness is 170nm.
In the antistatic coating of the application, copper powder uniformly mixes with copper carbon fiber, is internally formed two dimension conduction at coating Network, reduces the surface resistivity of antistatic coating further.
Preferably, such as Fig. 2, the making step of described antistatic coating is as follows:
Step one, Treatment of Carbon:
Carbon fiber is cut into 2~5mm, is then immersed in 10h in acetone soln, then with deionized water to carbon fiber Clean 3~5 times;At room temperature, the carbon fiber after cleaning is immersed in concentrated nitric acid, takes out, then use deionized water after 1h Repeatedly clean, next put into oscillation cleaning 1h in supersonic cleaning machine, at 100 DEG C, be dried 2h;Dried carbon fiber is put into In magnetic control sputtering device, 10-4It is deposited with one layer of copper film at carbon fiber surface under Pa base vacuum, obtains copper carbon fiber;
Step 2, process copper powder:
50ml dehydrated alcohol concentrated hydrochloric acid solution is formulated in clean container, then weighs 25g copper powder and put in container, By solution stirring 1h, it is purified, then rinse 3 times with ether and dehydrated alcohol, until by-product HCl and CuCl2 Clean from Copper Powder Surface, then copper powder is placed in vacuum drying oven, take out standby after being dried 12h;
Step 3, prepares unsaturated-resin:
Take cis-butenedioic anhydride 0.44mol, phthalic anhydride 0.06mol, poly-400 0.145mol of disodiumedetate, propylene glycol 0.12mol, ethylene glycol 0.18mol, butylene glycol 0.05mol, add 0.3mol NaOH, 0.1% catalyst dibutyltin cinnamic acid two fourth Ji Xi, the polymerization inhibitor MEHQ mixing of 5/10000ths, fill this blend in the 250ml there-necked flask of band water knockout drum, It is placed in conduction oil, electric stirring, 160 DEG C of nitrogen atmospheres react 60min;It is warmed up to 180 DEG C, melt polymerization in nitrogen atmosphere 120min, then it is warming up to 195 DEG C, in nitrogen atmosphere, melt polymerization is 60 to acid number, is cooled to 100 DEG C and pours out, obtains after cooling The transparent unsaturated-resin of buff;
Step 4, prepares antistatic coating:
First weigh unsaturated-resin 100ml, add 5g copper powder and copper carbon fiber, be sufficiently mixed, add 3% silicon Alkane coupling agent, by mixture mechanical agitation, obtains antistatic coating.
Preferably, the antistatic coating prepared being coated in target object surface, coating thickness is 1~3 μm, then will It irradiates under distance ultraviolet source 10cm and makes curing of coatings.
Show it is further preferred that antistatic coating involved by the application to be carried out antistatic test, when copper powder adds Amount mass ratio is 5%, and when copper powder and copper carbon fiber mass ratio are 3:4, the surface resistivity of described antistatic coating is 1.3 ×107Ω/cm2;After 60 days, aging resistance test shows, surface resistivity variable quantity is less than 5%.
Application scenarios four:
Fig. 1 shows a kind of based on electrostatic defending the display device that embodiments herein relates to, including show ontology, Show ontology is provided with display 1 and display housing 2, and described display housing 2 outer surface is provided with antistatic coating.
The present invention is provided with antistatic coating at display housing outer surface, and its surface resistivity is relatively low, possesses good anti-quiet Electricity effect.
Preferably, described antistatic coating is formed by antistatic coating coating, and described antistatic coating uses unsaturation tree Fat is base material, containing cis-butenedioic anhydride in described unsaturated-resin, and phthalic anhydride, disodiumedetate poly-400, propylene glycol, ethylene glycol, fourth Enediol, NaOH, dibutyl tin laurate, MEHQ.
In antistatic coating involved by the application, unsaturated-resin is base material, is that the aqueous of a kind of ultraviolet light polymerization is coated with Material, described unsaturated-resin side base contains the highly polar groups such as ether, hydroxyl, carboxyl, can produce conductive ion, become macromolecule Electrolyte, the surface resistivity of described unsaturated-resin is 5.2 × 109Ω/cm2
Preferably, described antistatic coating uses copper powder and copper carbon fiber to be filler, described copper powder and described coppered carbon Fiber quality is than for 3:4, and described copper powder size is 200 mesh, and described copper carbon fiber copper film thickness is 170nm.
In the antistatic coating of the application, copper powder uniformly mixes with copper carbon fiber, is internally formed two dimension conduction at coating Network, reduces the surface resistivity of antistatic coating further.
Preferably, such as Fig. 2, the making step of described antistatic coating is as follows:
Step one, Treatment of Carbon:
Carbon fiber is cut into 2~5mm, is then immersed in 10h in acetone soln, then with deionized water to carbon fiber Clean 3~5 times;At room temperature, the carbon fiber after cleaning is immersed in concentrated nitric acid, takes out, then use deionized water after 1h Repeatedly clean, next put into oscillation cleaning 1h in supersonic cleaning machine, at 100 DEG C, be dried 2h;Dried carbon fiber is put into In magnetic control sputtering device, 10-4It is deposited with one layer of copper film at carbon fiber surface under Pa base vacuum, obtains copper carbon fiber;
Step 2, process copper powder:
50ml dehydrated alcohol concentrated hydrochloric acid solution is formulated in clean container, then weighs 25g copper powder and put in container, By solution stirring 1h, it is purified, then rinse 3 times with ether and dehydrated alcohol, until by-product HCl and CuCl2 Clean from Copper Powder Surface, then copper powder is placed in vacuum drying oven, take out standby after being dried 12h;
Step 3, prepares unsaturated-resin:
Take cis-butenedioic anhydride 0.44mol, phthalic anhydride 0.06mol, poly-400 0.145mol of disodiumedetate, propylene glycol 0.12mol, ethylene glycol 0.18mol, butylene glycol 0.05mol, add 0.3mol NaOH, 0.1% catalyst dibutyltin cinnamic acid two fourth Ji Xi, the polymerization inhibitor MEHQ mixing of 5/10000ths, fill this blend in the 250ml there-necked flask of band water knockout drum, It is placed in conduction oil, electric stirring, 160 DEG C of nitrogen atmospheres react 60min;It is warmed up to 180 DEG C, melt polymerization in nitrogen atmosphere 120min, then it is warming up to 195 DEG C, in nitrogen atmosphere, melt polymerization is 60 to acid number, is cooled to 100 DEG C and pours out, obtains after cooling The transparent unsaturated-resin of buff;
Step 4, prepares antistatic coating:
First weigh unsaturated-resin 100ml, add 5g copper powder and copper carbon fiber, be sufficiently mixed, add 3% silicon Alkane coupling agent, by mixture mechanical agitation, obtains antistatic coating.
Preferably, the antistatic coating prepared being coated in target object surface, coating thickness is 1~3 μm, then will It irradiates under distance ultraviolet source 10cm and makes curing of coatings.
Show it is further preferred that antistatic coating involved by the application to be carried out antistatic test, when copper powder adds Amount mass ratio is 7%, and when copper powder and copper carbon fiber mass ratio are 3:4, the surface resistivity of described antistatic coating is 2.1 ×107Ω/cm2;After 60 days, aging resistance test shows, surface resistivity variable quantity is less than 5%.
Application scenarios five:
Fig. 1 shows a kind of based on electrostatic defending the display device that embodiments herein relates to, including show ontology, Show ontology is provided with display 1 and display housing 2, and described display housing 2 outer surface is provided with antistatic coating.
The present invention is provided with antistatic coating at display housing outer surface, and its surface resistivity is relatively low, possesses good anti-quiet Electricity effect.
Preferably, described antistatic coating is formed by antistatic coating coating, and described antistatic coating uses unsaturation tree Fat is base material, containing cis-butenedioic anhydride in described unsaturated-resin, and phthalic anhydride, disodiumedetate poly-400, propylene glycol, ethylene glycol, fourth Enediol, NaOH, dibutyl tin laurate, MEHQ.
In antistatic coating involved by the application, unsaturated-resin is base material, is that the aqueous of a kind of ultraviolet light polymerization is coated with Material, described unsaturated-resin side base contains the highly polar groups such as ether, hydroxyl, carboxyl, can produce conductive ion, become macromolecule Electrolyte, the surface resistivity of described unsaturated-resin is 5.2 × 109Ω/cm2
Preferably, described antistatic coating uses copper powder and copper carbon fiber to be filler, described copper powder and described coppered carbon Fiber quality is than for 3:4, and described copper powder size is 200 mesh, and described copper carbon fiber copper film thickness is 170nm.
In the antistatic coating of the application, copper powder uniformly mixes with copper carbon fiber, is internally formed two dimension conduction at coating Network, reduces the surface resistivity of antistatic coating further.
Preferably, such as Fig. 2, the making step of described antistatic coating is as follows:
Step one, Treatment of Carbon:
Carbon fiber is cut into 2~5mm, is then immersed in 10h in acetone soln, then with deionized water to carbon fiber Clean 3~5 times;At room temperature, the carbon fiber after cleaning is immersed in concentrated nitric acid, takes out, then use deionized water after 1h Repeatedly clean, next put into oscillation cleaning 1h in supersonic cleaning machine, at 100 DEG C, be dried 2h;Dried carbon fiber is put into In magnetic control sputtering device, 10-4It is deposited with one layer of copper film at carbon fiber surface under Pa base vacuum, obtains copper carbon fiber;
Step 2, process copper powder:
50ml dehydrated alcohol concentrated hydrochloric acid solution is formulated in clean container, then weighs 25g copper powder and put in container, By solution stirring 1h, it is purified, then rinse 3 times with ether and dehydrated alcohol, until by-product HCl and CuCl2 Clean from Copper Powder Surface, then copper powder is placed in vacuum drying oven, take out standby after being dried 12h;
Step 3, prepares unsaturated-resin:
Take cis-butenedioic anhydride 0.44mol, phthalic anhydride 0.06mol, poly-400 0.145mol of disodiumedetate, propylene glycol 0.12mol, ethylene glycol 0.18mol, butylene glycol 0.05mol, add 0.3mol NaOH, 0.1% catalyst dibutyltin cinnamic acid two fourth Ji Xi, the polymerization inhibitor MEHQ mixing of 5/10000ths, fill this blend in the 250ml there-necked flask of band water knockout drum, It is placed in conduction oil, electric stirring, 160 DEG C of nitrogen atmospheres react 60min;It is warmed up to 180 DEG C, melt polymerization in nitrogen atmosphere 120min, then it is warming up to 195 DEG C, in nitrogen atmosphere, melt polymerization is 60 to acid number, is cooled to 100 DEG C and pours out, obtains after cooling The transparent unsaturated-resin of buff;
Step 4, prepares antistatic coating:
First weigh unsaturated-resin 100ml, add 5g copper powder and copper carbon fiber, be sufficiently mixed, add 3% silicon Alkane coupling agent, by mixture mechanical agitation, obtains antistatic coating.
Preferably, the antistatic coating prepared being coated in target object surface, coating thickness is 1~3 μm, then will It irradiates under distance ultraviolet source 10cm and makes curing of coatings.
Show it is further preferred that antistatic coating involved by the application to be carried out antistatic test, when copper powder adds Amount mass ratio is 10%, and when copper powder and copper carbon fiber mass ratio are 3:4, the surface resistivity of described antistatic coating is 2.5×107Ω/cm2;After 60 days, aging resistance test shows, surface resistivity variable quantity is less than 5%.
Those skilled in the art, after considering description and putting into practice invention disclosed herein, will readily occur to its of the present invention Its embodiment.The application is intended to any modification, purposes or the adaptations of the present invention, these modification, purposes or Person's adaptations is followed the general principle of the present invention and includes the undocumented common knowledge in the art of the application Or conventional techniques means.Description and embodiments is considered only as exemplary, and true scope and spirit of the invention are by following Claim is pointed out.
It should be appreciated that the invention is not limited in precision architecture described above and illustrated in the accompanying drawings, and And various modifications and changes can carried out without departing from the scope.The scope of the present invention is only limited by appended claim.

Claims (3)

1. a display device based on electrostatic defending, including show ontology, show ontology is provided with display and display housing, its Being characterised by, described display housing outer surface is provided with antistatic coating.
Display device the most according to claim 1, it is characterised in that described antistatic coating coats 1 with antistatic coating ~3 μm formed, described antistatic coating is with unsaturated-resin as base material, with copper powder and copper carbon fiber as filler.
Display device the most according to claim 2, it is characterised in that described copper powder with described copper carbon fiber mass ratio is 3:4, described copper powder size is 200 mesh, and described copper carbon fiber copper film thickness is 170nm.
CN201610677115.3A 2016-08-16 2016-08-16 A kind of display device based on electrostatic protection Expired - Fee Related CN106189743B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610677115.3A CN106189743B (en) 2016-08-16 2016-08-16 A kind of display device based on electrostatic protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610677115.3A CN106189743B (en) 2016-08-16 2016-08-16 A kind of display device based on electrostatic protection

Publications (2)

Publication Number Publication Date
CN106189743A true CN106189743A (en) 2016-12-07
CN106189743B CN106189743B (en) 2018-07-20

Family

ID=57522495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610677115.3A Expired - Fee Related CN106189743B (en) 2016-08-16 2016-08-16 A kind of display device based on electrostatic protection

Country Status (1)

Country Link
CN (1) CN106189743B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873274A (en) * 1987-09-24 1989-10-10 Morton Thiokol, Inc. In-mold coating powders with two initiators or 1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane as a single initiator
CN201828740U (en) * 2010-10-13 2011-05-11 北京京东方光电科技有限公司 Display device
CN102807808A (en) * 2012-08-07 2012-12-05 衡阳恒缘电工材料有限公司 Unsaturated resin varnish and preparation method thereof
CN104448676A (en) * 2014-12-29 2015-03-25 安徽瑞研新材料技术研究院有限公司 Metal macromolecule alloy shielding material and machining process thereof
CN104877531A (en) * 2015-06-12 2015-09-02 江永波 Method for producing powder coating by using unsaturated polyester paint waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873274A (en) * 1987-09-24 1989-10-10 Morton Thiokol, Inc. In-mold coating powders with two initiators or 1,1-di(t-butylperoxy)-3,3,5-trimethylcyclohexane as a single initiator
KR930008157B1 (en) * 1987-09-24 1993-08-26 모르톤 티오콜, 인코오포레이티드 Inactiva polyester resin coating powder composition
CN201828740U (en) * 2010-10-13 2011-05-11 北京京东方光电科技有限公司 Display device
CN102807808A (en) * 2012-08-07 2012-12-05 衡阳恒缘电工材料有限公司 Unsaturated resin varnish and preparation method thereof
CN104448676A (en) * 2014-12-29 2015-03-25 安徽瑞研新材料技术研究院有限公司 Metal macromolecule alloy shielding material and machining process thereof
CN104877531A (en) * 2015-06-12 2015-09-02 江永波 Method for producing powder coating by using unsaturated polyester paint waste

Also Published As

Publication number Publication date
CN106189743B (en) 2018-07-20

Similar Documents

Publication Publication Date Title
CN106010196B (en) A kind of graphite ene-type radiation shielding coating
CN108604473B (en) Conductive paste and conductive film formed using the same
CN102329560A (en) Novel electromagnetic shielding paint for surface of silicone rubber
EP0455019B1 (en) Conductive paste composition
CN104449022B (en) Carbon-serial conductive coating with ultralow content of carbon tubes and preparation method thereof
CN104387828B (en) A kind of carbon series conductive coating and preparation method thereof
CN110167994B (en) Silver-coated silicone rubber particles, conductive paste containing the particles, and method for producing conductive film using the conductive paste
CN106189743A (en) A kind of display device based on electrostatic defending
CN111560188B (en) Nano-silver/graphene composite electromagnetic shielding ink and preparation method thereof
JP6891876B2 (en) Polyester-based polymer composition
CN106047103A (en) Antistatic coating
CN105199564B (en) A kind of powder thermosetting electromagnetic screen coating
CN106217324A (en) A kind of antistatic workbench
CN106318153A (en) Electric cabinet with antistatic function
CN106280928A (en) A kind of Special anti-static Turnover Box for flat-panel display
CN105504765A (en) Novel conductive plastic
CN106057080A (en) Bus stop billboard
CN106047102A (en) Conveying belt for production line
CN106321346A (en) Windmill blade with anti-static function
CN106253435A (en) A kind of solar recharging power supply
JPH0578454A (en) Curing agent for epoxy resin
JP2018002916A (en) Conductive resin composition
CN109306549A (en) A kind of conductive coating graphene conductive fiber and preparation method
TWI619764B (en) Curable resin composition, article, and method for fabricating the same
CN109637693A (en) A kind of conductive silver paste and preparation method thereof based on from the silver-colored frame of sintering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180606

Address after: 528000 dragon head industrial zone, Longjiang Town, Shunde District, Foshan, Guangdong

Applicant after: FOSHAN CITY SHUNDE DISTRICT LONGGAO LCD Co.,Ltd.

Address before: 315200 No. 555 north tunnel road, Zhenhai District, Ningbo, Zhejiang

Applicant before: Yang Lin

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180720

CF01 Termination of patent right due to non-payment of annual fee