CN106186619B - 一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法 - Google Patents

一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法 Download PDF

Info

Publication number
CN106186619B
CN106186619B CN201610674864.0A CN201610674864A CN106186619B CN 106186619 B CN106186619 B CN 106186619B CN 201610674864 A CN201610674864 A CN 201610674864A CN 106186619 B CN106186619 B CN 106186619B
Authority
CN
China
Prior art keywords
sludge
water inlet
aeration
synthesis
butyric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610674864.0A
Other languages
English (en)
Other versions
CN106186619A (zh
Inventor
董国文
王仁章
李奇勇
张丽华
牛玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanming University
Original Assignee
Sanming University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanming University filed Critical Sanming University
Priority to CN201610674864.0A priority Critical patent/CN106186619B/zh
Publication of CN106186619A publication Critical patent/CN106186619A/zh
Application granted granted Critical
Publication of CN106186619B publication Critical patent/CN106186619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明提供一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法,采用月桂酸钠作为碳源对活性污泥进行好氧驯化。每个驯化周期为12‑36 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水。每次从停止好氧曝气到重新曝气的总时间以不超过30 min为宜。每个周期在排泥前取样测MLSS、pH值和DO,待上述值稳定时,说明污泥驯化已完成。待污泥驯化稳定后即可进行下一步的污泥合成羟基丁酸和羟基辛酸共聚体实验。利用活性污泥这种廉价的底物生产附加值更高的生物化学品将成为污泥资源化的新途径。

Description

一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法
技术领域
本发明属于污泥处理领域,具体涉及一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法。
背景技术
污水处理过程中所产生的活性污泥是污水处理系统中自然形成的微生物与有机物的聚集体,含有大量碳水化合物、脂类、蛋白质、维生素等有机物和不同种类的微生物,这些含碳物质经一定处理 ( 如水解酸化 ) 后,可以转化为丁酸、丙酸、乙酸等小分子物质,成为合成 PHA 的良好底物,并且使用乙酸、丙酸、丁酸和戊酸等小分子脂肪酸的混合物可以得到 3- 羟基丁酸 (HB) 与3- 羟基戊酸 (HV) 的共聚物,PHVB 是目前市场上 PHA 生产中最主要的产品之一。因此利用活性污泥作为生产 PHAs 的廉价原料来源,不仅可以大大降低 PHAs的生产成本,同时解决了剩余活性污泥造成的环境污染和占用耕地的问题。
应用生物技术将有机废物转化为生物能源和生物化学品已成为有机固体废物资源化的热点。然而,活性污泥无论是用来产甲烷还是产氢气,获得的产物附加值都比较低,其经济效益不容乐观。因此,利用活性污泥这种廉价的底物生产附加值更高的生物化学品将成为污泥资源化的新途径。比如,污泥厌氧发酵生产挥发性脂肪酸(VFAs)和污泥合成可降解塑料聚羟基烷酸酯(PHAs)。
发明内容
本发明的目的在于提供一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法。
为实现上述目的,本发明采用如下技术方案:
一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法,所述方法为:
(1)将污泥进行驯化,每个驯化周期为12-36 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水;进水为模拟废水,进水体积为4-6L;进水结束后,采用空气压缩机进行曝气,保持曝气量为1-3 L/min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为1-3 g/L,污泥浓度以MLSS计;最后,沉淀后排出4-6 L上清液;每次从停止好氧曝气到重新曝气的总时间10-30 min;每个周期在排泥前取样测MLSS、SVI、pH值和DO,待上述值稳定时,污泥颜色呈黄棕色时,污泥驯化完成;
(2)在驯化好的活性污泥中加入5-7 mmol/L的月桂酸钠,分3次投加,pH控制在7.0-8.0之间,不添加氮磷,连续曝气保持DO在2-3mg/L条件下,即合成羟基丁酸和羟基辛酸共聚体。
优选的,所述方法为:
(1)每个驯化周期为24 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水;进水为模拟废水,进水体积为5 L;进水结束后,采用空气压缩机进行曝气,保持曝气量为2 L/min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为2 g/L,污泥浓度以MLSS计;最后,沉淀后排出5 L上清液;每次从停止好氧曝气到重新曝气的总时间不超过20 min;每个周期在排泥前取样测MLSS、SVI、pH值和DO,待上述值稳定时,污泥颜色呈黄棕色时,污泥驯化完成;
(2)在驯化好的活性污泥中加入6 mmol/L的月桂酸钠,分3次投加,pH控制在7.5之间,不添加氮磷,连续曝气保持DO在2mg/L条件下,即合成P(HB-HO)。
本发明采用月桂酸钠作为碳源对活性污泥进行好氧驯化。驯化过程中不控制温度和pH值。每个驯化周期为24 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水。进水为模拟废水,进水体积为5 L;进水结束后,采用空气压缩机进行曝气,保持曝气量为2 L/min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为2 g/L,污泥浓度以MLSS计;最后,沉淀后排出5 L上清液。每次从停止好氧曝气到重新曝气的总时间以不超过30 min为宜。每个周期在排泥前取样测MLSS、SVI、pH值和DO,待上述值稳定时,污泥颜色呈黄棕色时,污泥驯化完成。待污泥驯化稳定后即可进行下一步的污泥合成P(HB-HO)实验。
当污泥驯化稳定后,利用驯化稳定的活性污泥,根据实验要求加入相应的模拟废水进行P(HB-HO)的合成实验。污泥合成P(HB-HO)是间歇式反应器(SBR),通过考察氮源和磷源、碳源投加方式、碳源浓度以及曝气方式对活性污泥累积P(HB-HO)过程的影响,获得合成P(HB-HO)的最佳工艺参数。
在连续曝气保持一定的DO条件下,pH控制在7.0-8.0之间,月桂酸钠浓度在5-7mmol/L的浓度范围内可以生物合成P(HB-HO),分次投加,限氮限磷可以提高活性污泥累积P(HB-HO)的含量。
(1) 氮源和磷源对活性污泥累积P(HB-HO)具有非常重要的影响。在限氮限磷条件下,当月桂酸钠浓度为6 mmol/L时,一次性投加碳源时P(HB-HO)的最大累积量达到156.8mg/L,占污泥干重的质量分数为9.03 %,比在有氮有磷条件下高出32 mg/L。
(2) 分次投加方月桂酸钠比一次投加方式更利于活性污泥累积P(HB-HO),在限氮限磷条件下,当月桂酸钠浓度为6 mmol/L时,一次性投加碳源和分次投加碳源时P(HB-HO)的最大累积量分别达到156.8 mg/L和387.2 mg/L,占污泥干重的质量分数分别为9.03 %和14.7 %,P(HB-HO)浓度在分次投加碳源条件下比一次性投加碳源条件下高出约230 mg/L。
(3) 连续曝气的方式有利于活性污泥对P(HB-HO)的累积。间歇曝气和调节pH可以调控P(HB-HO)样品中HO的比例,合成的P(HB-HO)样品中HO的单体含量在8-17 %。
污泥中P(HB-HO)的提取方法用氯仿法,提取的样品用红外光谱分析,证实为P(HB-HO)。
本发明的优点在于:利用廉价的剩余活性污泥,辅助长链的碳源月桂酸钠,经过调控生产得到新型生物可降解塑料——P(HB-HO),实现剩余污泥的资源化回收利用和生物化学品合成的多重目的。
附图说明
图1 提取的样品。
图2 提取的样品红外表征。
具体实施方式
实施例1
一种污泥生物合成P(HB-HO)的方法,所述方法为:
(1)每个驯化周期为24 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水;进水为模拟废水,进水体积为5 L;进水结束后,采用空气压缩机进行曝气,保持曝气量为2 L/min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为2 g/L,污泥浓度以MLSS计;最后,沉淀后排出上清液;每次从停止好氧曝气到重新曝气的总时间不超过20 min;每个周期在排泥前取样测MLSS、SVI、pH值和DO,待上述值稳定时,污泥颜色呈黄棕色时,污泥驯化完成;2g/L左右,SVI值为65左右,污泥龄为5d。
(2)在驯化好的活性污泥中加入6 mmol/L的月桂酸钠,分3次投加,pH控制在7.5,不添加氮磷,连续曝气保持DO在2mg/L条件下,即合成P(HB-HO)。
污泥中P(HB-HO)的提取用氯仿法,获得P(HB-HO)的最终累积量为387.2 mg/L,占污泥干重的质量分数为14.7 %,HB和HO分别为349.6mg/L和35.6mg/L,合成的P(HB-HO)样品中HO的单体含量在9.2%。
实施例2
驯化过程中不控制温度和pH值。每个驯化周期为12h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水。进水为模拟废水,进水体积为4L;进水结束后,采用增氧泵进行曝气,保持曝气量为1.0 L /min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为1 g/L,污泥浓度以混合液悬浮固体浓度计;最后,沉淀后排出上清液。每次从停止好氧曝气到重新曝气的总时间以不超过30 min为宜。每个周期在排泥前取样测MLSS、SVI等指标,待上述值稳定,污泥颜色呈黄棕色时,说明污泥驯化已完成。此时污泥浓度为2g/L左右,SVI值为65左右,污泥龄为5d。
在驯化好的活性污泥中加入5 mmol/L的月桂酸钠,分3次投加,pH控制在8,不添加氮磷,连续曝气保持曝气量为2.6 L /min,即合成P(HB-HO)。
污泥中P(HB-HO)的提取用氯仿法,获得P(HB-HO)的最终累积量为283.1 mg/L,占污泥干重的质量分数为11.8 %,HB和HO分别为257.9 mg/L和25.2 mg/L,合成的P(HB-HO)样品中HO的单体含量在8.9 %。
实施例3
(1)每个驯化周期为24 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水;进水为模拟废水,进水体积为5 L;进水结束后,采用空气压缩机进行曝气,保持曝气量为2 L/min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为2 g/L,污泥浓度以MLSS计;最后,沉淀后排出5 L上清液;每次从停止好氧曝气到重新曝气的总时间不超过30 min;每个周期在排泥前取样测MLSS、SVI、pH值和DO,待上述值稳定时,污泥颜色呈黄棕色时,污泥驯化完成;2g/L左右,SVI值为65左右,污泥龄为5d。
(2)在驯化好的活性污泥中加入7 mmol/L的月桂酸钠,分3次投加,pH控制在7.5以上,不添加氮磷,连续曝气保持DO在3mg/L条件下,即合成P(HB-HO)。
污泥中P(HB-HO)的提取用氯仿法,获得P(HB-HO)的最终累积量为156.8 mg/L,占污泥干重的质量分数为9.03 %,HB和HO分别为130.4 mg/L和26.4 mg/L,合成的P(HB-HO)样品中HO的单体含量在16.8 %。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法,其特征在于:所述方法为:
(1)将污泥进行驯化,每个驯化周期为24 h,每个周期运行方式为:进水+好氧曝气+排泥+沉淀+出水;进水为模拟废水,进水体积为5 L;进水结束后,采用空气压缩机进行曝气,保持曝气量为2 L/min;在停止好氧曝气前排出一定量的活性污泥混合液,以控制反应器内污泥浓度为2 g/L,污泥浓度以MLSS计;最后,沉淀后排出上清液5L;每次从停止好氧曝气到重新曝气的总时间20min;每个周期在排泥前取样测MLSS、SVI、pH值和DO,待上述值稳定时,污泥颜色呈黄棕色时,污泥驯化完成;
(2)在驯化好的活性污泥中加入6 mmol/L的月桂酸钠,分3次投加, pH控制在7.5,不添加氮磷,连续曝气保持DO在2mg/L条件下,即合成羟基丁酸和羟基辛酸共聚体。
CN201610674864.0A 2016-08-17 2016-08-17 一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法 Active CN106186619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610674864.0A CN106186619B (zh) 2016-08-17 2016-08-17 一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610674864.0A CN106186619B (zh) 2016-08-17 2016-08-17 一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法

Publications (2)

Publication Number Publication Date
CN106186619A CN106186619A (zh) 2016-12-07
CN106186619B true CN106186619B (zh) 2019-11-19

Family

ID=57522527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610674864.0A Active CN106186619B (zh) 2016-08-17 2016-08-17 一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法

Country Status (1)

Country Link
CN (1) CN106186619B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408658A (zh) * 2019-07-30 2019-11-05 河海大学 一种利用白酒废水作为基质生产聚羟基烷酸酯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505025A (zh) * 2011-12-02 2012-06-20 厦门大学 一种以剩余污泥发酵液为底物合成聚羟基脂肪酸酯的方法
CN104561144A (zh) * 2015-01-09 2015-04-29 厦门大学 一种利用剩余活性污泥生产中长链聚羟基烷酸酯的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283688C (zh) * 2004-12-24 2006-11-08 山西大学 一种羟基烷酸聚合体及其生产方法
CN101671624B (zh) * 2009-09-15 2012-08-22 厦门大学 一种污泥驯化及污泥合成聚羟基脂肪酸酯的反应装置及其合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505025A (zh) * 2011-12-02 2012-06-20 厦门大学 一种以剩余污泥发酵液为底物合成聚羟基脂肪酸酯的方法
CN104561144A (zh) * 2015-01-09 2015-04-29 厦门大学 一种利用剩余活性污泥生产中长链聚羟基烷酸酯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一株根瘤菌培养条件优化及代谢调控研究;张建国 等;《生物技术》;20050228;第15卷(第1期);74-76页 *

Also Published As

Publication number Publication date
CN106186619A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
Fan et al. Denitrification performance and mechanism of a novel isolated Acinetobacter sp. FYF8 in oligotrophic ecosystem
Zhu et al. Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges
JP5855102B2 (ja) 都市廃水の処理方法及びバイオポリマー生成能力を有するバイオマスの生成方法
Gao et al. Heterotrophic denitrification strategy for marine recirculating aquaculture wastewater treatment using mariculture solid wastes fermentation liquid as carbon source: Optimization of COD/NO3−-N ratio and hydraulic retention time
CN104498541B (zh) 利用餐厨垃圾生产短链挥发性脂肪酸的方法及短链挥发性脂肪酸
Yang et al. Using air instead of biogas for mixing and its effect on anaerobic digestion of animal wastewater with high suspended solids
Mohammadi et al. High-rate fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket-fixed film reactor
Hao et al. Rapidly achieving partial denitrification from nitrate wastewater in a alkaline fermentation system with primary sludge as inoculated sludge and fermentable substrate
Gao et al. Denitrification performance evaluation and kinetics analysis with mariculture solid wastes (MSW) derived carbon source in marine recirculating aquaculture systems (RAS)
Yang et al. Simultaneous enhancement on lignin degradation and methane production from anaerobic co-digestion of waste activated sludge and alkaline lignin supplemented with N2-nanobubble water
Li et al. Achieving valorization of fermented activated sludge using pretreated waste wood feedstock for volatile fatty acids accumulation
Tanikkul et al. Production of methane from ozonated palm oil mill effluent
Qi et al. Fermentation liquid production of food wastes as carbon source for denitrification: Laboratory and full-scale investigation
Yin et al. Thermoanaerobacterium sp. Strain RBIITD as a dominant species in accelerating thermophilic dark fermentation start up through pH and substrate concentration regulation
Sitthikitpanya et al. Co-generation of biohydrogen and biochemicals from co-digestion of Chlorella sp. biomass hydrolysate with sugarcane leaf hydrolysate in an integrated circular biorefinery concept
Li et al. Enhancing simultaneous electrosynthesis of CO2 and nitrogen removal in microbial fuel cell (MFC) cathode compartment by adding Fe–C/biochar compound substrates
de Oliveira et al. Effect of microaerophilic treatment on swine wastewater (SWW) treatment: Engineering and microbiological aspects
Wu et al. Characteristics of NO2--N accumulation in partial denitrification during granular sludge formation
CN101285077A (zh) 一种利用水生植物制备短链脂肪酸的方法
Lin et al. Insight investigation of the on-site activated sludge reduction induced by metabolic uncoupler: Effects of 2, 6-dichlorophenol on soluble microbial products, microbial activity, and environmental impact
Yin et al. Thermophilic dark fermentation fast start-up of hydrogen production with substrate concentration regulation and moderate pretreatment inoculum
CN106186619B (zh) 一种污泥生物合成羟基丁酸和羟基辛酸共聚体的方法
Li et al. Highly efficient and low-energy nitrogen removal of sludge reduction liquid by coupling denitrification-partial nitrification-Anammox in an innovative auto-recycling integration device with different partitions
Agabo-García et al. Anaerobic sequential batch reactor for CO-DIGESTION of slaughterhouse residues: Wastewater and activated sludge
Jiang et al. Improving acidogenic performance in anaerobic degradation of solid organic waste using a rotational drum fermentation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant