CN106170531A - 碳质材料的处理方法 - Google Patents

碳质材料的处理方法 Download PDF

Info

Publication number
CN106170531A
CN106170531A CN201480073651.1A CN201480073651A CN106170531A CN 106170531 A CN106170531 A CN 106170531A CN 201480073651 A CN201480073651 A CN 201480073651A CN 106170531 A CN106170531 A CN 106170531A
Authority
CN
China
Prior art keywords
carbonaceous material
microalgae
coal
temperature
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480073651.1A
Other languages
English (en)
Other versions
CN106170531B (zh
Inventor
伯纳德·兹力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nelson Mandela Metropolitan University
Original Assignee
Nelson Mandela Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nelson Mandela Metropolitan University filed Critical Nelson Mandela Metropolitan University
Publication of CN106170531A publication Critical patent/CN106170531A/zh
Application granted granted Critical
Publication of CN106170531B publication Critical patent/CN106170531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/442Wood or forestry waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/445Agricultural waste, e.g. corn crops, grass clippings, nut shells or oil pressing residues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Agronomy & Crop Science (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供一种处理碳质粉形式的碳质材料的方法,其中利用微藻处理碳质材料使得微藻吸附到碳质材料上并且随后在热活化步骤中加热。该加热在从水开始蒸发的温度到碳质材料的挥发性组分开始挥发的温度之间的温度范围内进行。该加热的持续时间选择为使得在微藻和碳质材料之间发生化学相互作用以改变碳质材料的化学结构。所述微藻优选处于仍具有光合作用活性状态的基本完整细胞的形式。干碳质材料可与微藻水浆料混合或者微藻可加入已经置于水中的碳质材料中。

Description

碳质材料的处理方法
相关申请的交叉引用
本申请要求申请号为2013/08726的南非临时专利申请的优先权,该南非临时专利申请的全部内容在此引入本申请作为参考。
发明领域
本发明涉及碳质材料的处理方法,更具体涉及通过包括利用微藻处理碳质材料的过程对碳质材料进行热化学处理。在本说明书中,术语“热化学处理”意图包括但不限于诸如热解、蒸馏、气化、焦化、液化和燃烧等过程。
所述碳质材料可以是任何来源的,但最典型的是化石燃料,如煤、炭和原油。
发明背景
碳质材料转化为能量及其它产物的过程往往涉及热化学转化步骤。在产生能量的过程中,碳质材料例如可以燃烧以产生热量。
可选择地,碳质材料可通过热化学处理转化为其它产物。实例包括煤通过气化随后经包括一氧化碳和氢气的所得气体混合物的进一步化学反应转化为燃料。
可选择地,煤可通过在催化剂和氢转移溶剂的存在下,在高温高压下加热液化而直接生成液体产物。
焦煤是煤在惰性气体条件下或真空条件下进行热解产生的,得到的产物基本为三种:气体产物、液体产物(热解油)和固体产物(焦煤)。后一种方法(真空热解)一般是在非常高的温度(>1000℃)下进行。在后一种方法的一个变型中,可以在中等温度(~600℃)下进行热解,产生热解油和部分脱挥发的煤。
另一方面,原油一般经过初始高温蒸馏的过程,以便将石油分离成不同沸点的馏分。这样的蒸馏过程通常产生四种粗产物,即包含所有的最低沸点组分的顶馏分;含有中等沸点组分的中间馏分;重馏分(高沸点组分);和不能蒸馏的底馏分。
迄今为止,几乎不可能做到以改善诸如煤、炭和原油等材料的热化学处理来提高产量或改善产品性能的观点来改变这些材料如煤、炭和原油的特性。例如,在原油的蒸馏过程中,原油的性质通常决定了基础产物的相对比例。
我们在前的国际专利申请公开号WO 2012/025806公开了煤粉等碳质材料可以方便地利用微藻生物质作为粘合剂对于细碳颗粒的凝聚作用而成为可用产物。该项利用微藻和碳质材料的工作已导致开发出进一步的处理方法,如下文所进一步描述的。
在本说明书中,术语“煤”或“碳质粉”通常应被解释为是指粒径在250微米以下。然而,为了对本发明的操作更有效,优选的粒径实际上是150微米以下的,这将在下文中更清楚地说明。
发明内容
根据本发明,提供一种处理碳质粉形式的碳质材料的方法,包括利用微藻处理所述碳质材料,使得微藻吸附在所述碳质材料上,然后在热活化步骤中加热所述具有吸附微藻的碳质材料至一定温度,所述温度的范围为从水开始蒸发的温度到所述碳质材料的挥发性组分开始挥发的温度,该加热过程持续的时长选择为使得所述微藻与所述碳质材料之间发生化学相互作用并从而改变所述碳质材料的化学结构。
本发明的另一个技术特征在于,提供处于基本完整细胞形式的微藻,优选仍处于光合作用活性状态的细胞形式。因此,优选使用通过不导致细胞破裂的机制收获或浓缩的新鲜收获的微藻。为了利于微藻吸附在碳质材料上,微藻与碳质材料之间的接触方式可以是:将干碳质材料如煤或炭与微藻水浆料混合,或者在已置于水中的碳质材料例如离开煤加工厂的煤粉中加入微藻作为湿滤器或离心滤饼。当然,湿滤器或离心滤饼的微藻可以加入液体碳质材料例如原油或焦油中。优选的接触实施方式的目的在于使碳质材料均匀负载其上吸附的微藻,微藻的优选负载量为碳质材料的5-15wt%。
显然,在热活化步骤中发生的温度范围将取决于碳质材料的性质和组成,并可能会在不同的碳质材料间发生变化。
在一个实例中,在碳质材料为煤粉形式并处于环境条件的情况下,有效下限温度为约80℃,而挥发物开始挥发的温度为约150℃。在该实例中,优选的窄温度范围可以是约100℃至约130℃,其中指示的最佳温度为约110℃。
热活化步骤进行的持续时间取决于温度以及碳质材料及其上吸附的微藻的其它物理特性,通常较高的温度需要较短的时间,而较低的温度则需要较长的时间。在该特定实例中,热活化步骤的持续时间为0.5-3小时,有利的是1-2小时。在任何情况下,热活化步骤优选进行到碳质材料具有不超过约10wt%的水分含量为止。
当使用微藻的水浆料时,微藻可以任意浓度存在,只要能够实现后续的与碳质材料的混合即可。通常,如果直接从商业生长系统中获取的话,微藻浓度可以为约1克/升~10克/升。可选择地,可以使用通常含30至200g微藻/Kg的微藻湿滤饼与液体碳质材料或碳质材料浆料进行混合。
最典型地,微藻从商业栽培系统如光生物反应器、池塘或水沟系统中得到,在该例子中,接触构成了微藻的收获,其方式将使收获的微藻细胞保持完整性。为了使本发明达到最佳功能效果,优选微藻细胞在任何处理步骤如收获步骤中不被破坏,并且微藻细胞作为整体或完整的细胞与煤粉接触。
为了使本发明可以被更全面地理解,现在将参照附图描述其不同的实施例。
附图说明
在附图中:
图1示出微藻生物质的固态NMR谱(13C Onepulse);
图2示出煤和热活化后的煤-微藻复合物的固态NMR谱(13C CP-MAS)的比较;
图3表示煤、微藻和热活化后的煤-微藻复合物的导数热重燃烧曲线;
图4表示煤和热活化后的煤-微藻复合物的热解曲线;和
图5表示煤和煤-微藻复合物在相同条件下的燃烧曲线。
具体实施方式
对接收到的形式的颗粒煤样品以及通过吸附10wt%(干重)微藻并随后在105℃加热2小时改性的相同的煤进行固态NMR研究。这两种不同材料的固态NMR示于图1和图2,其中煤的谱图在图2中标记为附图标记1,煤-微藻凝聚物的谱图标记为附图标记2。后续的结构参数计算汇总在下表1中(具体参考Mark S.Solum,Ronald J.Pugmire,and DavidM.Grant,13C Solid-state NMR of Argonne Premium Coals,Energy&Fuels 1989,3,187-193),清楚表明在微细分散的煤颗粒上吸附微藻并随后在105℃下加热导致在煤样品中产生显著的结构变化。
在表1中,第1列列出煤的不同结构参数,这可以从13C固态NMR(第2列的符号)获得的信息中得到。第3列列出煤样品的这些参数的数值。第4列列出煤-微藻凝聚物的数值。第5列给出对该估算中存在的实验误差的量级的估计,可用于判断煤和煤-微藻的参数值之间的具体差异是否是真实的或只是误差;如果具体差异是真实的,则两个参数值之差必须超过估计的实验误差。第6列和第7列列出两种典型类型的煤的参数值,用以示出煤-微藻凝聚物与一般的煤之间的主要差异。
根据表1所列的比较,可以观察到微藻导致#8、9、10、13、14、15和16行中的参数出现最大的变化。本领域普通技术人员可发现这些结果明显指出与微细煤颗粒结合的微藻的作用导致煤结构变得简单化,因为发现煤结构内的大的芳环簇被以某种方式分裂,使得在芳环簇之间出现具有更少链接的更多且更小的簇。此外,芳环的质子化程度增加。
表1
上述观察和推论得到的意见是在微细煤颗粒上吸附微藻随后在不会驱出可燃性挥发物的相对低温(一般为105-150℃)下加热导致形成煤-微藻凝聚物,其化学结构不同于煤组分和微藻组分二者的化学结构。此外,认为该凝聚物在热化学处理条件如燃烧条件下表现为单一物质,而不是如煤和生物质的混合物所通常观察到的那样(例如M.V.Gil,D.Cascal,C.Previda,J.J.Pis,and F.Rubiera,“Thermal behaviour and kinetics ofcoal/biomass blends during co-combustion”,Bioresource Technology,101(2010),5601–5608;and C.Wang,F.Wang,Q.Yang,and R.Liang,“Thermogravimetric studies ofthe behaviour of wheat straw with added coal during combustion”,Biomass andBioenergy,33(2009),50–56中所述),其中煤和生物质组分产生可追踪至生物质或煤组分的热事件。
为了测试关于煤-微藻凝聚物或复合物在热化学处理条件下的热解行为,对煤和煤-微藻复合物进行氧气氛下加热的燃烧条件和惰性气氛下加热的热解条件的测试。这些测试的结果分别示于图3和图4。图3示出微藻、煤和含有10wt%(基于干重)微藻的煤-微藻凝聚物/复合物的导数热重行为。可见,微藻生物质的燃烧曲线明显比煤的燃烧曲线要复杂得多。两种物质表现出初始湿失重(<~150℃),随后是四个(微藻)或两个(煤)燃烧事件。该行为差异可直接归因于微藻生物质含有显著高于煤的挥发物含量以及由此而来的较低含量的固定碳。煤-微藻凝聚物/复合物的行为类似于煤的燃烧行为,没有证据显示存在由于微藻的高挥发物含量导致的不同燃烧事件。此外,整个燃烧过程移动至低峰值燃烧温度,但是由于复合物的燃烧速率增加导致燃烧强度明显增加。
图4中的由相同的煤并且采用10wt%微藻负载量(基于干重)的煤和微藻复合物的热解曲线示出纯煤在900℃的总失重为约28wt%,基本对应于根据标准测试ASTM方法D_3172–D_3175确定的煤的挥发物含量。然而,对于煤-微藻凝聚物/复合物,总失重增加至约50wt%,明显高于根据初始煤的挥发物含量(27.56%)和微藻生物质的挥发物含量(75.59%)的线性和(32.36%)所预期的总失重。
煤和用10wt%微藻处理的相同煤之间的差异进一步在温和热解条件下测试,但是煤和煤-微藻复合物在惰性气氛下于450℃温度进行热解。这些测试的结果汇总在下表2中。这些结果清楚地表明在真实生活热解条件下,如果在热解步骤之前利用微藻进行改性,则挥发产物的量(气体和液体)显著增加。
表2
根据燃烧和热解实验得到的这些结果强烈表明微藻改变煤的化学结构的假设以及该改变会改变在热化学处理条件下的行为的假设是正确的。
这些假设进一步通过首先比较煤的燃烧与由同样的煤制备的煤-微藻凝聚物/复合物的燃烧进行验证。图5示出利用天然气流过燃烧床燃烧等量的煤和煤-微藻凝聚物/复合物时在燃烧床上方固定距离处测量到的温度变化。煤-微藻凝聚物/复合物燃烧期间记录的峰值燃烧温度显著高于煤燃烧时的峰值燃烧温度(约70℃)。此外,在煤达到峰值温度之前,其燃尽速度也明显快于煤-微藻凝聚物/复合物。
预期本发明可应用于多种碳质材料并取得良好的效果。

Claims (14)

1.一种处理碳质材料的方法,包括:利用微藻处理碳质粉形式的碳质材料,使得所述微藻吸附在所述碳质材料上;在热活化步骤中加热吸附有微藻的碳质材料至一定温度,所述温度范围为从水开始蒸发的温度到所述碳质材料的挥发性组分开始气化的温度,所述加热的持续时间选择为使得在所述微藻与所述碳质材料之间发生化学相互作用以改变所述碳质材料的化学结构。
2.根据权利要求1所述的处理碳质材料的方法,其中所述微藻处于基本完整细胞的形式。
3.根据权利要求2所述的处理碳质材料的方法,其中所述微藻处于光合作用活性状态。
4.根据前述权利要求中任一项所述的处理碳质材料的方法,其中利用不导致细胞破裂的机制收获或浓缩所述微藻。
5.根据前述权利要求中任一项所述的处理碳质材料的方法,其中所述微藻与所述碳质材料之间的接触方式为:将干的碳质材料与微藻浆料在水中混合,或者在已置于水中的碳质材料中加入微藻作为湿滤器或离心滤饼。
6.根据前述权利要求中任一项所述的处理碳质材料的方法,其中所述接触的实施方式为使所述碳质材料均匀负载其上吸附的微藻,所述微藻的优选负载量为所述碳质材料的5-15wt%。
7.根据前述权利要求中任一项所述的处理碳质材料的方法,其中在环境条件下,有效的下限温度为约80℃,而挥发物开始气化的温度为约150℃。
8.根据权利要求7所述的处理碳质材料的方法,其中温度范围是约100℃至约130℃。
9.根据前述权利要求中任一项所述的处理碳质材料的方法,其中所述热活化步骤的持续时间为0.5-3小时。
10.根据权利要求9所述的处理碳质材料的方法,其中所述热活化步骤的持续时间为1-2小时。
11.根据前述权利要求中任一项所述的处理碳质材料的方法,其中所述热活化步骤进行到所述碳质材料具有不超过约10wt%的水分含量为止。
12.根据前述权利要求中任一项所述的处理碳质材料的方法,其中所述微藻的浓度为约1克/升-10克/升。
13.根据权利要求1-11中任一项所述的处理碳质材料的方法,其中使用含有300-700g微藻/Kg的微藻湿滤饼与液体碳质材料或碳质材料浆料混合。
14.根据前述权利要求中任一项所述的处理碳质材料的方法,其中所述碳质粉的粒径小于150微米。
CN201480073651.1A 2013-11-20 2014-11-19 碳质材料的处理方法 Active CN106170531B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ZA2013/08726 2013-11-20
ZA201308726 2013-11-20
PCT/IB2014/066151 WO2015075639A1 (en) 2013-11-20 2014-11-19 Processing carbonaceous materials

Publications (2)

Publication Number Publication Date
CN106170531A true CN106170531A (zh) 2016-11-30
CN106170531B CN106170531B (zh) 2018-09-21

Family

ID=53179047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480073651.1A Active CN106170531B (zh) 2013-11-20 2014-11-19 碳质材料的处理方法

Country Status (6)

Country Link
US (1) US10465121B2 (zh)
EP (1) EP3071672A4 (zh)
CN (1) CN106170531B (zh)
AU (1) AU2014351387B2 (zh)
WO (1) WO2015075639A1 (zh)
ZA (1) ZA201603215B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518262B (zh) * 2019-08-13 2020-05-26 武汉长海电力推进和化学电源有限公司 一种微生物燃料电池阳极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099550A1 (en) * 2009-02-27 2010-09-02 Zuvachem, Inc. Photobiosynthetic production, separation and saturation of carbonaceous chemicals and fuels
CN102191072A (zh) * 2010-03-18 2011-09-21 Ifp新能源公司 包含固定床氢化裂解阶段和两个直接沸腾床液化阶段的煤转化方法和产品
JP2011251782A (ja) * 2010-05-31 2011-12-15 Kyushu Electric Power Co Inc 貯炭場の石炭パイルの自然発火・発塵の防止方法及び石炭混合燃料
CN103118754A (zh) * 2010-08-23 2013-05-22 纳尔逊曼德拉都市大学 利用微藻的碳质粉富集及相关方法
WO2013142619A1 (en) * 2012-03-20 2013-09-26 Luca Technologies, Inc. Dispersion of compounds for the stimulation of biogenic gas generation in deposits of carbonaceous material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028498B2 (ja) 1994-10-21 2000-04-04 三井造船株式会社 成形体燃料、その製造法および製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099550A1 (en) * 2009-02-27 2010-09-02 Zuvachem, Inc. Photobiosynthetic production, separation and saturation of carbonaceous chemicals and fuels
CN102191072A (zh) * 2010-03-18 2011-09-21 Ifp新能源公司 包含固定床氢化裂解阶段和两个直接沸腾床液化阶段的煤转化方法和产品
JP2011251782A (ja) * 2010-05-31 2011-12-15 Kyushu Electric Power Co Inc 貯炭場の石炭パイルの自然発火・発塵の防止方法及び石炭混合燃料
CN103118754A (zh) * 2010-08-23 2013-05-22 纳尔逊曼德拉都市大学 利用微藻的碳质粉富集及相关方法
WO2013142619A1 (en) * 2012-03-20 2013-09-26 Luca Technologies, Inc. Dispersion of compounds for the stimulation of biogenic gas generation in deposits of carbonaceous material

Also Published As

Publication number Publication date
AU2014351387A1 (en) 2016-06-30
AU2014351387A8 (en) 2016-07-07
ZA201603215B (en) 2017-07-26
US20160289567A1 (en) 2016-10-06
US10465121B2 (en) 2019-11-05
EP3071672A4 (en) 2017-07-05
WO2015075639A1 (en) 2015-05-28
CN106170531B (zh) 2018-09-21
EP3071672A1 (en) 2016-09-28
AU2014351387B2 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
Mehmood et al. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study
Liu et al. Thermogravimetric investigation of hydrochar-lignite co-combustion
Chen et al. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover—Biochar, syngas and bio-oil
Saba et al. Co-Hydrothermal Carbonization of coal-biomass blend: Influence of temperature on solid fuel properties
Osman et al. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications
Alhumade et al. Investigation of pyrolysis kinetics and thermal behavior of Invasive Reed Canary (Phalaris arundinacea) for bioenergy potential
Chen et al. Biomass pyrolytic polygeneration of tobacco waste: product characteristics and nitrogen transformation
Nan et al. Nitrogen transformation during pyrolysis of various N-containing biowastes with participation of mineral calcium
Gunarathne et al. Gasification characteristics of hydrothermal carbonized biomass in an updraft pilot-scale gasifier
EP2673338A2 (en) Renewable heating oil
US20140075833A1 (en) Compositions and methods for composite fuels
Guo et al. Pyrolysis characteristics of corn stalk with solid heat carrier
Wauton et al. Characterization of water hyacinth (Eichhornia crassipes) for the production of thermochemical fuels
CN106170531B (zh) 碳质材料的处理方法
Islam et al. Preparation and characterization of activated carbon from bio-diesel by-products (Jatropha seedcake) by steam activation
KR101308399B1 (ko) 고발열량 목질계 고형연료의 제조방법
Burra et al. Characteristics of char from co-pyrolysis of biomass and plastic waste
Bich et al. The Composition of Syngas and Biochar Produced by Gasifier from Viet Nam Rice Husk
Sharara et al. Gasification of phycoremediation algal biomass
Krishnan et al. Production and characterisation of biodiesel extracted from Indian bamboos
KR101461283B1 (ko) 초임계 또는 아임계 용매에서의 바이오매스의 분해 방법
Yao et al. Pressurized In Situ CO2 Capture from Biomass Combustion via the Calcium Looping Process in a Spout-Fluidized-Bed Reactor
MUTHUKUMARAPPAN et al. Characterisation of Biochar and Biooil Produced from Different Feedstocks
Zailani et al. Effect of oxygen on biochar yield and properties
Celaya et al. Models and mechanisms to explore the global oxidation kinetics of blends of feed corn stover and Illinois No. 6 coal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant