CN106170349B - 传声装置及其制作与使用工艺 - Google Patents

传声装置及其制作与使用工艺 Download PDF

Info

Publication number
CN106170349B
CN106170349B CN201480047931.5A CN201480047931A CN106170349B CN 106170349 B CN106170349 B CN 106170349B CN 201480047931 A CN201480047931 A CN 201480047931A CN 106170349 B CN106170349 B CN 106170349B
Authority
CN
China
Prior art keywords
pzt
piezoelectric transducer
label
acoustic
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480047931.5A
Other languages
English (en)
Other versions
CN106170349A (zh
Inventor
邓志群
米切尔·J·麦杰克
托马斯·J·卡尔森
肖婕
黎辉东
塞缪尔·S·卡特梅尔
卢鋆
陈鸿浩
M·布拉德福·爱帕德
马克·E·格罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
US Army Corps of Engineers
Original Assignee
Battelle Memorial Institute Inc
US Army Corps of Engineers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc, US Army Corps of Engineers filed Critical Battelle Memorial Institute Inc
Publication of CN106170349A publication Critical patent/CN106170349A/zh
Application granted granted Critical
Publication of CN106170349B publication Critical patent/CN106170349B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K11/00Marking of animals
    • A01K11/006Automatic identification systems for animals, e.g. electronic devices, transponders for animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/90Sorting, grading, counting or marking live aquatic animals, e.g. sex determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0655Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of cylindrical shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
    • G01S1/725Marker, boundary, call-sign or like beacons transmitting signals not carrying directional information
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Birds (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本申请描述了一种用于识别并跟踪包括多达三个维度内的无生命与有生命体的各种宿主的声学标签及其制造工艺。声学标签可由单一电源供电。在3秒传输速率下标签可具有长达90天或者更长的运行寿命。跟踪宿主时声学标签具有增强的信号范围提高检测概率。

Description

传声装置及其制作与使用工艺
相关申请的交叉引用
本申请为要求2013年8月29日申请的美国专利申请序列号No.14/014,035权益的部分继续申请。
关于基于联邦资助研发的发明的权利声明
本发明根据美国能源部颁发的DEAC05-76RLO1830协议下的政府支持开发。
技术领域
本发明大体涉及声学跟踪装置与系统。更具体地,本发明涉及可附的传声装置,其能够实时地或作为时间函数地检测并远程跟踪包括最多三个维度内的无生命体与生命体的各种宿主。
背景技术
声学遥测涉及被称为声学标签的声学装置,其通常用于监测鱼群的行为。声学标签发射声音信号或者称声学“Ping信号”,将被标记的鱼群的识别信息与位置信息发送至接收机。接收机将声音信号转换为数字数据。后处理软件处理该数字数据,并且当接收机检测到相同声音信号时提供标签的位置。通过确定声音到达水听器接收机的时间,可以确定标签的位置,能够跟踪宿主动物。此时,通过将从发射机接收到的声音标识与已编信号码相联系,可识别特定的动物。声学遥测已应用于观察存活的幼年奇努克鲑鱼的习性与数量,并了解对一岁及小于一岁的奇努克鲑鱼植入声学标签的生物影响。同时,也研究了部署在水坝以及河流其他位置的自治有线接收系统。接收系统检测声学标签发出的信号,处理如此检测到的数据以跟踪鱼群,并且提供必要数据以评估通过水坝及其他通道的存活者。同时,哥伦比亚河流系统中的声学标签及接收系统构成幼年鲑鱼声学遥测系统(JSATS)。虽然当前用于JSATS的声学标签满足大多数一岁奇努克鲑鱼的标签负担指南,但是对于更小的幼年奇努克鲑鱼,尤其是那些在哥伦比亚河流下游以及进入邦纳维尔坝河下游的河口发现的幼年奇努克鲑鱼而言,标签太大了。生物效应研究也表明植入现有声学标签的长度小于95mm(大概9g重)的幼年奇努克鲑鱼的存活和成长率已下降。因此,需要新标签设计降低整体的尺寸、重量与数量,提高范围与寿命,降低植入的不良效果,并且扩展潜在应用范围。本发明解决这些需求。
发明内容
本发明包括用于实时或作为时间函数在最多三个维度内识别及远程跟踪各种宿主的新型传声装置(声学标签),以及制造工艺。此处使用的“物理尺寸”指代声学标签以及包含装置组件的胶囊中电子组件的物理排列、构造、以及容积。声学标签可以在已编码的声学信号中发射位置、身份以及传感信息,该已编码的声学信号从标签传播至外部的接收机。此处使用的术语“宿主”指代无生命与有生命体二者。无生命宿主可以包括,但不限定于,例如自驱动式物体(例如,机器人)、固定物体、可移动物体、可运输物体、或者其他可通过各种方式(例如水流与潮汐)驱动的无生命物体。有生命宿主可以包括,但不限于,例如,人类、动物、水生生物包括,例如海洋与淡水动物(例如鳗鱼)、海洋与淡水鱼类、以及其他动物宿主。上述这些并非意在进行限定。例如,各种水生生物包括鱼类(例如,鲑鱼)、深水鱼类(例如,鲟鱼)、以及其他海洋与淡水环境中的可跟踪和/或识别的动物(例如,鳗鱼)。在一些应用中,已标记的宿主与外部接收机均可以设置在水生环境中,但于构造并不意在被限定。本发明的声学标签的应用可以包括,但不限定于,例如存活研究;监测迁移/通过/轨迹;在两个维度(2D)或三个维度(3D)内跟踪宿主行为;测量水坝与其他通道处的旁路效果;观察捕食性动物/猎物的相互作用;帮助公用事业机构、私人公司、以及州立与联邦机构符合渔业或者其他规定;以及其他应用。上述这些应用并非意在进行限定。
声学标签可以包括密闭壳或者结构,其封装声学标签的组件。声学标签可以包括用于与装置的电气组件耦合的刚性或者柔性印刷电路板。容纳结构可以由例如,热固(性)聚合物例如环氧热固性聚合物制成。容纳结构可以包括各种规定的形状。
在一些实施例中,容纳器可以包括大约115mm3或小于115mm3的内部容积并且包括选取的用以在选定构造中容纳装置组件的面积。
在一些实施方式中,容纳结构可以包括大约15.0mm或小于15.0mm的长度以及大约3.4mm或小于3.4mm的直径。
在一些应用中,容纳结构可以为注射型容纳结构,具有能够使标签注入宿主的直径与形状。在一些应用中,内部容积可以小于大约115mm3
本发明的声学标签可以以多种方式附于各种宿主。
在一些实施方式中,声学标签可以为注射型声学标签。可以注射注射型声学标签以将标签附在宿主动物上并提供对宿主的识别与跟踪。容纳器(容器)可以具有能够用注射器针头将声学标签注入宿主的尺寸与构造。不限定注射的位置。对于鱼类,例如,声学标签可以注入鱼类的体内,例如沿腹白线或其他位置。当注入宿主时,注射型声学标签减少被跟踪动物的生物反应,可提高动物的存活率。
本发明的声学标签具有缩小的尺寸、重量与数量,提供优于传统JSATS标签的强输出与寿命。小尺寸、重量与数量的标签令小得多的宿主包括那些尺寸比传统JSATS标签小得多的宿主得以被研究。本发明的标签因此扩展了应用的范围。此外,本发明声学标签的制造与附着更为便宜。在各种应用中,标签能够提供有助于动物友好系统例如水系统发展的数据与信息。
在一些实施方式中,声学标签可以具有大约220mg或更少的干重。
声学标签还可以包括为装置运行供电的电源。电源可以为单个定制电池,提供自约18.V至约3.0V的电压。在一些实施方式中,电源可以供应最低约2.5伏特的输出电压。在一些实施方式中,电源可以是锂/碳氟化物电池。电源可以包括多个层合板材料。每个层合板材料可以包括置于聚合物分隔装置之间的阳极与阴极。聚合物将测压材料中的阴极与阳极电气隔离。在一些实施方式中,分隔装置可以包括微孔聚丙烯。阴极可以包括,例如以选定厚度贴于集电器上的粘合剂中的碳氟化物以及导电碳,或者由其构成。粘合剂可以包括,例如聚四氟乙烯(PTFE)。在一些实施方式中,阴极可以包括85wt%碳氟化物、10wt%碳、以及5wt%聚四氟乙烯(PTFE)粘合剂。集电器可以包括金属网,由例如铝、含铝合金、或者其他金属及金属合金组成。阳极可以包括各种电极材料包括,例如锂金属(Li)、硅(Si)、锡(Sn)、锗(Ge)、含碳材料,例如,石墨、中位碳、微珠(MCMB)石墨粉、石墨烯、金属含氧化物材料包括,例如包括氧化钛(TiO2)、氧化锡(Sn O2)、氧化硅(Si Ox)、以及氧化锗(GeO)这些各种材料的混合物。阴极/阳极层合板材料可以封闭在电池壳或者容器中,其由具有选定厚度的高机械强度化学抗性聚合物构成。电池还可以填充电解液。电解液可以包括分散在碳酸次乙酯(EC)与碳酸二甲脂的选定体积比率中的选定浓度的六氟磷酸锂(LiPF6),使得运行时的电源电压下降最小。在一些实施方式中,电源可以具有大约75mg或者更小的质量。电源还可以具有至少大约230Wh/kg的能量密度。
声学标签可以包括红外(IR)传感器,其与控制器耦合并且向位于传声标签外部的主计算机提供光链路。红外传感器可以从主计算机接收编码配置信息,主计算机配置用于标签运行(例如,开始传输、设置传输频率、以及选取额外操作)的控制器。
声学标签包括谐振器、晶体振荡器、或者其他类型的用于向微控制器提供外部时钟信号的振荡器组件。在一些应用中,标签可以使用精确度大约0.5%谐振频率大约10MHz的陶瓷谐振器。
声学标签可以包括控制器,其与电源耦合并且控制声学标签中的各种电路及功能。在一些实施方式中,控制器可以为微控制器,其包含处理器核、存储器、内振荡器、时钟、以及可编程输入输出外设,执行定义标签操作的嵌入式固件(源代码)。微控制器可以使用外部时钟信号控制标签电路并且生成声学信号。微控制器还可以使用外部时钟信号校准内振荡器与时钟。控制器可以配置用以自动对取自电源的作为电源放电的能源进行调节,如此在声学标签运行寿命期间声源电平保持基本上恒定。控制器还可以供应一个或者更多个标签代码。
可对声学标签程序化,以经自计算机至标签的光链路运行。可对声学标签程序化以发射一个或者更多个已编码的识别码。每个标签码可以包括长达64二进制位的码。控制器可以协调每个标签ID的时钟与传输,使例如第一个标签ID与第二个标签ID交替传输。在一些应用中,可能仅需要单个标签码ID。标签码的格式是可选的。在一些应用中,标签ID中的一个可以配置为用以自纳入声学标签中的各种传感器发射数据。编码可以包括配置注射型声学传输装置发射的数据中每比特所需的周期数量。编码可以包括将注射型声学传输装置程序化,以将一个或者更多个识别码在声学信号中从注射型声学传输装置发射。
声学传输信号可编码具有一个或者更多个标签码以及各自的识别码。每个标签码可以具有可选码长。识别码可以具有可选位长。
本发明的声学标签结合了高级特征,包括发射编码具有一个或者更多个标签码的声学信号的能力。声学标签还可以存储不同的标签码。声学标签还可以包括一个或者更多个传感器(例如,来自温度传感器的问题),收集外部或内部环境的数据,可编入一个或者更多个标签码中。一个或者更多个标签码的传输增加了唯一标签标识(ID)的数量,当与现有接收机设备保持完全向后兼容时,可在声学信号中发射唯一标签标识。声学标签还可以交替传输两个标签码。每个标签码是完全可配置的,包括例如选择码长(即,比特长度)以及最大应用灵活性下每比特声学脉冲的数量。在一些应用中,码长可达64比特。在一些应用中,可对声学传输应用较短的标签码,例如临近水面以减少不良多径效应。在一些实施方式中,标签码可以是相同的或者包括相同的码长。每个标签码一般地,但是并非专门地,可以以规律化的时间间隔传输。但是,传输并非限制与此。声学信号可以包含编码具有相移键控(PSK)的二进制或衍生数据。二进制数据可以包含头位(例如“巴克”码)、标签ID、从一个或者更多个传感器收集的数据、误差校验位(例如,循环冗余校验),包括上述任一或者全部的各种组合。单个声学信号中的二进制数据可以包括一个标签码。
在一些实施方式中,声学标签可以包括与压电换能器相邻设置的声学反射器,例如,设置在压电换能器后面。声学反射器可以反射声波以增强自压电换能器发射的声学信号。例如,反射器可以通过反射压电换能器背部发出的声波获得所需的波束图形,否则其将向电子元件、电池、或者声学标签的其他元件传播,或者干扰它们。可以将声学反射器安置为与每单个压电换能器直接接触。在一些实施方式中,声学放射器可以由渗透性材料塑造而成,像闭孔发泡材料由譬如空气的气体填充。
声波标签中的传感器可以包括:加速度计、转速传感器、磁力计、压力传感器、温度传感器、其他传感器、以及这些各式传感器的组合。声学标签可以将传感数据嵌入标签码中的至少一个并且基于嵌入的传感数据或者数值将误差校验位添加至标签码。作为示例,从声学标签中的温度传感器收集的温度数据可以作为标签码的一部分发射。
压电换能器可以配置用于以选定的传输速度以选定的强度向位于声学传输装置外部的接收机发射声学信号。
声学标签可以包括压电换能器驱动电路,其将选定的驱动电压传送至至少一个压电换能器,生成声波传输信号。在一些实施方式中,声波标签可以包括压电转换电路,其包括升压转换器电路将从电源传送至至少一个压电换能器的电压进行升压(向上转换)。升压转换器电路可以与微控制器及电源耦合。升压转换器电路将电源(电池)电压升压(向上转换)直至大约3伏特形成驱动电压。升压转换器电路还令驱动电压可调节以改变压电换能器传送的声学信号的强度,例如在大约150dB至大约158dB之间调节标签寿命。对于每次传输升压转换器电路需要一些能量向上转换电压。信号强度为大约155dB时每次传输的能量消耗可为大约120μJ。压电换能器驱动电路中的驱动电路可以与升压转换器电路耦合以自升压转换器电路传送驱动电压,以驱动一个或者更多个在运行期间生成声波信号的压电换能器的振动模式,然后声波信号可自声波装置标签发射。升压转换器电路及驱动电路可以与微控制器及电源耦合。在一些实施方式中,升压转换器电路可以包括一个小型(2.00mm×1.25mm×1mm)电感(L2)(例如型号BRL2012T101M 100μH电感,太阳诱电株式会社,芝加哥,伊利诺伊州,美国)、晶体管(Q2)(例如,FET n-沟道MOSFET晶体管)以及二极管(D1)(例如,肖特基二极管),它们共同生成高电压(例如,6V)。电压可以存储在电容(C1)(例如,22μF的电容)中。另一个晶体管(Q3)(例如,FET n-沟道MOSFET晶体管)由微控制器(U1)切换通断以便压电换能器与另一个电感(L1)在所需共振频率,例如416.7KHz上振荡。另一个电容(C2)(例如,1μF电容)可以是旁路钽电容,其过滤电源(电池)上的电子噪声并且减少取自电源的最大峰值电流。配置升压电路的声学标签的运行寿命在3秒传输(发送)速度在155dB的平均声学信号强度上可以至少约20天。
在一些实施方式中,声学标签可以包括压电换能器驱动电路,其包括双模拟开关和高效电感,配置用以将高于电源电压最大约3伏特的驱动电压发送至至少一个压电换能器。与此前描述的升压转换器电路相比,高效电路可以需要更少的元件。更少的元件减少了运转标签所需的能量,这又可为更小的宿主与应用构造更小的声学标签。此外,高效电路可降低发射声学信号所需的能量,这改善了标签的能量效率。在一些应用中,标签寿命更长能够在更大的距离与有效期内跟踪被标记的鱼类和动物的习性。声学信号强度介于约155dB与约156dB之间的能量消耗可低于约35μJ。
在一些声学标签中,压电换能器驱动电路可以包括双模拟开关,其与选定尺寸(例如,2mm×2mm×0.6mm)的高效(例如,100μH)隔离电感器耦合,将电压从电源(电池)提高约3伏特之多以形成驱动电压。双模拟开关与隔离电感器可以与微控制器和电源耦合。在一些声学标签中,电容(例如,33μF,6.3V电容)与电阻(例如,470ohm电阻)可以与电源耦合以减少来自电源的瞬间峰值电流。在当前设计中,双模拟开关可以由微控制器开启关闭,以将高效电感的振荡与压电换能器的共振频率同步,例如416.7kHz。当前实施方式的能量转换效率高于具有升压转换器电路的标签。高效电路将声学标签的寿命提高长达三倍之久。传输(发送)速度为三秒声学信号强度约为155dB至约为156dB时,标签寿命可以至少约为90天。
声学标签可以包括一个或者更多个压电换能器。每个压电换能器可以在选定的共振频率上振动,向接收机传输编码的声学信号。在一些实施方式中,压电换能器可以具有球形壳或者管状外形。压电换能器可以是偏心压电陶瓷管状转换器或者球形壳转换器,其中转换器的外圆周与内圆周不是同心的内圆周可以包括一个偏离外圆周圆心一定距离的圆心,选取该距离以至少在正向传输方向上增强声学信号。偏移将所需传输方向上发出的声学能量最大化。压电换能器可以包括具有外圆周的外壁以及具有内圆周的内壁。压电换能器的外壁与内壁可以涂有电极,以使压电换能器与电路板耦合。在一些实施方式中,压电换能器可以包括所选金属的端盖,位于压电换能器各端部,压电换能器配置用于增强压电换能器端部发出的声学信号。在一些实施方式中,可沿壁厚方向电极化(触发)压电换能器以在选定共振频率上产生选定振动。例如,当AC电压激励时,压电换能器可以在放射方向上振动,与呼吸运动相类似,即所谓的“呼吸”振动模式。但振动模式不限于此。还可以与“呼吸模式”单独或组合使用使用长度模式与厚度模式。在一些应用中,振动模式可选定为比驱动转换器的驱动信号的频率高约10kHz至50kHz。更高的共振频率可以补偿转换器周围涂层造成的转换器频率的下频移。
本发明声学标签的另一个先进特征为具有配置声学信号强度(源电平)与声学传输频率的能力。此项特征能够使电池寿命为选定应用最优化。声学标签可以令声学标签输出的声学信号的强度在标签寿命期间内电池放电时维持在大致相同的水平,这有助于确保不同时间所选数据之间的连贯。在一些实施方式中,压电换能器可以配置用于在至少约153dB的强度上发送声学传输信号。
本发明声学标签的另一个先进特征为具有在开始声学信号传输之前配置延迟时间的能力。此项特征能够在宿主例如鱼类迁移期之前标记它们。在各应用中,延迟期间可以高达30天甚至更多。此外,声学标签还可以至于最小功率状态(休眠模式)以便标签能够在使用之前存放一年甚至更久。
当从声学传输装置接收声学信号时,可以对声学信号解码以实时或为时间函数在三个维度内识别并跟踪宿主。
在一些应用中,接收机可以是声学水听器。声学标签的压电换能器释放出的声学信号可以以一可程序化的信号强度发射,得到一可选择检测范围。
本发明还包括实时地或者作为时间函数地识别并跟踪选定宿主的方法。传输宿主识别与位置信息的方法可以包括在选定宿主的选定位置附上声学标签。声学标签可以从至少一个压电换能器以选定的声学强度与选定的频率在一选定距离上向位于宿主外部的接收机发射声学信号。声学信号可以以一个或者更多个具有选定码长的标签码编码。声学信号包含宿主的位置数据与识别数据和/或传感器数据,声学信号可以自声学标签向宿主外部的接收机发射。该方法还可以包括将从声学标签接收到的声学信号解码以实时或作为时间函数在三个维度识别并跟踪宿主。
可为各种应用及目的调整声学标签特征。例如,在一些应用中,可为位于湖泊、河流、支流、河口、以及海洋中的动物实施标签研究。例如,可以对海洋与淡水环境中的动物包括(例如,鲑鱼)、深水鱼类(例如,鲟)、以其他海洋与淡水动物(例如,鳗鱼)进行标识之后实时或者以时间为函数在最多三个维度(3D)(即,X-Y-Z坐标)上进行跟踪。本发明对声学标签的应用可以包括,但不限定于,例如,存活研究;监测迁移/通过/轨迹;在两个维度(2D)或三个维度(3D)内跟踪宿主行为;测量水坝与其他通道处的旁路效果;观察捕食性动物/猎物的相互作用;帮助公用事业机构、私人公司、以及州立与联邦机构符合渔业或者其他规定;以及其他应用。上述列出的应用不应该作为限定性的。
上述概述既无意对本发明申请进行定义,其由权利要求进行量度,也无意以任何方式对本发明的范围进行限定。
附图说明
图1A-1C示出本发明实施方式的不同视图。
图2A-2C示出本发明压电换能器的不同视图。
图3A-3C示出本发明实施方式的各个模块与电路图。
图3D-3F示出本发明另一实施方式的各个模块与电路图。
图4为本发明电源的剖视图。
图5将本发明电源电阻与传统电源相比较。
图6A-6B将本发明电源发射机脉冲电流与传统电源相比较。
图7将脉冲传输期间本发明电源压降与传统电源相比较。
图8将本发明偏移(非同心)压电换能器的波束图形与传统(同心)压电换能器相比较;
图9对本发明的声学标签的波束图形进行比较,作为压电换能器间隙间距的函数。
图10示出本发明声波标签的封装模。
具体实施例
包括注射型声波标签的新型声波传输装置及制造工艺在此详述。本发明的声学标签实时或作为函数在最多三个维度(3D)(即,X-Y-Z坐标)提供各种宿主的识别与远程跟踪。在下列描述中,通过对实施本发明的预先确定的最佳方式进行说明,示出并描述了本发明的实施方式。显而易见本发明适用于各种变形及结构变化。应该理解的是本文披露的具体形式并无意对本法民进行限制,而,相反的,本发明意欲覆盖所有落入如权利要求所定义的本发明范围的变形、结构变化以及等同物。因此此说明不应被视为具有解释性及限制性。
如图1A示出选定设计的声学传输装置(标签)100的俯视图,其示出示例性组件。本发明的声学标签可以包括各种的能够令标签附于选定宿主的尺寸与形状或者为选定的应用调整。在一些实施方式中,标签100可以具有一个大体上加长或者圆柱形形状,其令标签可注入宿主体内。但是,形状并非意在被限制。并且并不限定于将标签附着于可注射的宿主以及可注射的应用。虽然在此描述了多种组件,但是组件与构造为示例性的不限制与此。标签100的组件可以安装在电路板2上,电路板2由适合的或者选定的电路板材料构建而成。电路板2的材料可以包括,但不限定于,例如硬材料例如FR4板(~0.02cm厚)或者柔性材料例如挠性板(~0.01cm厚).在多种实施方式中,标签100的电路和/或装置组件可以位于电路板2顶面与底面二者。电路板2可以包括具有约0.01cm(0.003英寸)示例性间隔宽度与铜线宽度的电路。但是间隔宽与线宽不限于此。
标签100可以包括控制器(U1)6,其控制标签的组件与电路的运行。压电换能器8可以位于标签的正向端,如此声学信号可以从标签发射而不遭遇来自标签组件例如电感12或者标签其他组件的干扰。在图中,示出压电换能器8与电路板2电性耦合但不要求压电换能器8设在电路板2上。电源10可以与电路板2耦合为标签组件供电。在一些实施方式中,电源10可以位于压电换能器8的对端以令因电源10的物理尺寸造成的声学信号潜在妨碍最小化。但是对位置不进行限定。电容(C1)14(例如,22μF,10V电容)可以充当电源的解耦电容以助于平滑任何电噪声。第一MOSFET晶体管(Q2)16可以形成部分升压转换电路,本文对其将进一步描述。第二MOSFET晶体管(Q3)18与电感(L1)12(例如,47μH电感)可以形成驱动电路,本文对此其进一步描述。光电晶体管(Q1)20对红外辐射敏感,其可以向外部编程模块(图3B)提供光链路以接收配置微控制器6运行的指令。标签100的组件可以封装在涂层内定义为胶囊4。胶囊4可以由热固性聚合物例如环氧树脂(例如,301环氧树脂,环氧技术有限公司,贝尔里卡,马塞诸塞州,美国)或树脂(例如电气用树脂5,3M公司,圣保罗,明尼苏达州,美国)。胶囊4可以包括约15mm的示例性长度,但对长度不进行限定。在沿长度最宽点处胶囊4的直径可以约为3.4mm。最终干重可以为或者低于约228mg。
图1B表明声学传输标签100的仰视图,示出电路板2底面上的示例性组件。电容(C2)22(例如,1μF及4V的电容)、电感(L2)26(例如100μH电感)、以及二极管(D1)30(例如,肖特基二极管)一同形成部分升压转换器电路,本文对其将进一步描述。谐振器(Y1)24(例如,10MHz陶瓷谐振器)可以与微控制器(图1A)耦合以产生控制微控制器运行的时钟信号。电阻(R1)28(例如,1M-欧姆电阻)可以与谐振器耦合以助于稳定时钟信号。电源10可以向压电换能器8以及标签的其他组件的运行供电。
图1C示出具有“棒球棒”胶囊设计的声学传输标签200。在当前的实施方式中,标签的组件封装在具有棒球棒外形的胶囊4中,胶囊4具有狭窄的前端(“球棒”的“手柄”),以及电源10位于胶囊的后端(“球棒”的“打击端”),电源10将能源传送至压电换能器8以及标签的其他组件。标签前端处狭窄的直径减少了用作注射型标签的声学传输标签200的重量与体积。但是并不限定将这些标签附于宿主。在当前的实施方式中,胶囊4可以具有约15mm的示例性长度,但是无意对尺寸予以限定。在沿胶囊长度最宽点(例如电源10所在位置),标签200的直径大约为3.4mm。当EPO-TEK 301环氧树脂或3M电气用树脂5用作涂层材料时,平均重量可以介于约216mg至约218mg之间。
图2A示出偏移内圆周(IC)设计的压电管状换能器8的俯视图。压电换能器8将电能从电源转换为声学(例如,超声波)信号,发射至接收机(未示出)。压电换能器8可以由任何适合的压电陶瓷材料构建而成,材料包括,例如,锆钛酸铅(PZT)、铌镁酸铅钛酸铅(PMN-PT)、或者无铅陶瓷材料例如铌酸钾钠(KNN)以及钛酸铋钠(NBT)。IC-偏移压电换能器8可以包括不同心的内壁32与表(外)壁34。内壁32的圆周可以偏移表壁34的中心位置。当组装到可注射标签中时,IC-偏移压电换能器8可以朝向换能器壁的最薄部分面向标签的前面。偏移将从压电换能器发送的能源在偏移方向上最大化。压电换能器8的尺寸可以调整以提供选定的操作频率。对频率不进行限定。在一些实施方式中,可以将共振频率选取为大约416.7kHz。在当前的实施方式中,IC-偏移压电换能器8可以包括具有约2.4mm至约2.6mmO.D.的表(外)壁34、具有约1.7mm至约1.9mm I.D.的内壁32、以及偏移方向上约±0.05mm的厚度。在一些实施方式中,压电换能器8可以具有高于驱动压电换能器8的驱动信号的频率约10kHz至50kHz的共振频率。压电换能器上的环氧树脂或者树脂涂层可以造成对频率下频移更高的频率补偿。
图2B为示出装配形式中的声学传输装置100的图表,声学传输装置100配置有位于装置前端的内圆周(IC)-偏移压电换能器8、位于装置后端的电源(电池)10、以及中部的电路板2。IC-偏移压电换能器8可以包括具有内圆周(IC)的内壁32以及表(外)壁34,其在正传输方向上偏移。当压电换能器沿壁厚方向分极化时,偏移可以增强声学信号的源电平。闭孔发泡材料9由例如,三元乙丙橡胶(M-类)橡胶(EPDM)橡胶或者类似人造橡胶构成,可以安置闭孔发泡材料9以使其囿于压电换能器8的内壁32中。发泡材料9可以增强压电换能器8的声学性能。选择IC-偏移压电换能器8的尺寸将声学信号的传输方位最大化。较好地定位IC-偏移压电换能器8以使IC-偏移的方向指向接收机(例如,水听器,未示出),该接收机检测压电换能器8发出的声学信号,但对方向不进行限定。
图2C示出具有棒球棒设计的声学传输装置200的图表。在此图中,压电换能器8可以包括内壁32与表(外)壁34,其为同心的或者如本文此前所述为偏心的。标签200还可以包括声学反射器36,位于压电换能器8的后面在电源(电池)10与电路板2的前面。声学反射器36反射压电换能器8发出的声学信号,并例如,在正方向上增强来自声学(标签)200的传输,如本文将进一步描述的。在一些实施方式中,声学反射器36可以包括具有例如~0.3mm厚度的超低密度材料例如EPDM闭环发泡材料,或者由其构成,其可附于压电换能器8的后面位于电路板2的前面。发泡材料可以引入一个具有大声学阻抗失配的接口,大于20×106kg/(m2·s),将声学能量重新定向为可注射标签200的前端。此外,声学反射器36将压电换能器8沿正向180度波正面输出的声学能量的源电平提高平均至少约0.5dB至约1dB倍,但无意将声能值进行限定。在多个实施方式中,声学反射器36可以包括各种选定的厚度。在一些实施方式中,声学反射器36的宽度可以在约1.5mm以下,以避免妨碍从压电换能器8的两面(即,左与右)发出的声学信号。压电反射器36的厚度部分依赖于闭孔发泡材料中气孔的大小。厚度较佳地位发射器材料中气孔大小的2至3倍,以确保声波在反射发泡材料中与EPDM/空中接口至少相遇一次,以便令反射器效果最大化。
如此前所讨论的,闭孔发泡材料9由例如,EPDM橡胶或者类似的人造橡胶组成,安置闭孔发泡材料9以使其囿于压电换能器8的内壁32中,增强压电换能器8的声特性。在一些实施方式中,压电换能器8可以还包括具有选定厚度(例如,~0.2mm)的端盖38,位于换能器8各平直端。端帽38可以包括选定的金属例如铜金属,或由其组成。利用例如,非传导性环氧树脂,将端帽38与压电换能器8相连。端帽38可以服务于增强从换能器8的平直端发出的声学信号的源电平。
图3A为示出声学标签100各组件的方块图。虽然声学标签设计为注射型特别适合通过注射附着于宿主,但标签不限定于此类应用。对附着也不进行限定。标签100可以包括控制器6(例如,6管脚微控制器)。属于“微控制器”并不暗示或限定此组件所选定的尺寸。陶瓷谐振器24可以与微控制器6耦合并且用于生成时钟信号协调各种电路的操作。红外传感器20可以提供光链路接收并自红外配置指令编程模块(图3B)向控制器6发送配置指令。配置指令可以详述用于微控制器运行的各种参数,包括但不限定于,例如,标签码、传输间的周期、以及其他运行参数。压电换能器驱动电路包括升压转换电路40,其提高电源10释放的电压,得到驱动电压,并且驱动电路42随后将驱动电压发送至压电换能器8。驱动电压驱动换能器如本文进一步详细说明的以指定频率发射已编码的声学信号。
图3B为示出图3A实施方式的示例性电路以及相关设备组件的电路图。虽然声学标签为一种注射型设计,具有特别适合通过注射附着于宿主的尺寸,但标签不限定于此类应用。此后描述的组件为标签提供缩减的物理尺寸及重量并且使电路能够在其较小尺寸下相对高效率的运行。但是,并无意对组件进行限定。本领域普通技术人员基于说明所选的组件全部落入本发明的范围之中。并无意进行限定。
当前实施方式的声学传输装置(标签)可以包括控制器(U1)6(例如,型号PIC16F1823T/CL 8位,8K闪存,芯片规模封装的可编程微控制器,微芯片科技,钱德勒,亚利桑那州,美国)具有低电流消耗(例如,在休眠模式为20nA,或者在监视时钟活跃的休眠模式为300nA)。控制器6较佳地是一种可编程组件,其控制声学标签100内的电子组件与电路的运行。控制器6可以在介于约1.8V至约3.6V的输入电压上运行。所选电压与电源(电池)10兼容。控制器6可以包括模块或者组件譬如,例如,内部振荡器;休眠模式;变化中断性能;固定的参考电压;温度传感器;时钟;脉冲宽度调制器;以及通用异步接收器/发射器(UART)。控制器6生成升压转换器电路40与驱动电路42二者的控制信号。
电源(电池)10可以在装配期间于电路板2每面的任意一面与端子(J4)46与(J5)48连接。压电换能器8可以在电源10的对向端于电路板2的对向面与端子(J3)50与(J1)52连接。旁路(或者解耦)电容(C2)14(例如,1-μF 4V X5R 20%钽电容,太阳诱电株式会社,绍姆堡,伊利诺伊州,美国)可以用于当控制器6或者升压转换器电路40取电时,有助于过滤电源10上的任何电噪声并且降低取自电源10的最大峰值电流
谐振器(Y1)24(例如,10.0MHz SMD陶瓷谐振器,村田制作所,长冈京市,京都府,日本)可以耦合在控制器6的输入侧以生成具有选定精确度的精确时钟信号(例如,±0.5%精确度),控制控制器6的运行。电阻(R1)28(例如,1.0MOhm,1/20W,5%SMD电阻,威世科技有限公司,莫尔文,宾夕法尼亚州,美国)可以与谐振器24并联设置以降低启动时间并且提高生成的时钟信号的稳定性。控制器6可以使用时钟信号生成升压转换器电路40与驱动电路42的控制信号。来自控制器6的控制信号令驱动电路42在压电换能器8于所需调制频率上生成声学信号,例如416.7kHz。时钟信号控制并且调制(调制)频率。
光电晶体管(Q1)20(例如,扁平黑色小型(3-mm)SMD光电晶体管,亿光电子工业股份有限公司,台北,台湾)或者对红外光敏感的单向红外传感器,当为红外光触发时,其通过光链路接收配置指令,光链路将指令传入控制器6。指令对标签的各个参数进行配置,包括,例如标签码、传输期间、以及其他在标签附着于宿主之前或之后的操作的参数。红外链路可信、简单、需要最小数量组件、且避免误触发问题。光电晶体管(Q1)20利用输入管脚例如UART管脚(未示出)可以与控制器6耦合,输入管脚配置具有产生中断的“变化中断”性能,例如基于逻辑电平的正向和/或负变化。对管脚的选择并不限定。光电晶体管20的光链路可以用以将注射型标签与外部红外集成电路串行程序设计(ICSP)模块(程序设计器)56(例如,MPLAB 1CD 3程序设计器,微芯片科技,钱德勒,亚利桑那州,美国)衔接。程序设计器模块56可以将配置与编程信息包括固件码加载到控制器6。程序设计器56可以连接主计算机(未示出)的RS-232串行端口(未示出)。外部红外程序设计器模块可以包括红外LED(未示出),在程序设计器“开”或者“关”时进行标示。例如,当发射线为逻辑0(正电压)时LED为“开”,以及当发射线为逻辑1(负电压)时为“关”。将字节写入主计算机的串行端口,在红外链路20上将那些字节(即,从红外LED至光电晶体管20)发射至标签控制器6中。红外链路20不向主计算机提供直接反馈。红外链路20上的数据传输协议可以由后接字节流的2秒串行中断组成。串行中断开启红外程序设计器模块56上的红外LED一段延长时期,以便微控制器6可以感觉到红外光并且准备配置参数。字节流可以由初始校验字节、一个标示传输中数据字节总数的字节、以及选定数据字节组成。数据字节可以以预先定义的规则指定内部微控制器参数的值。主计算机可以运行示例性MATLAB(迈斯沃克有限公司,内迪克,马塞诸塞州,美国)软件程序,通过串行端口将配置信息发送至红外程序设计器。虽然对MATLAB进行描述,但是可以应用其他计算机编程语言。无意进行限制。
在一些实施方式中,光电晶体管20提供大约300baud传输速率。但是无意对参数传输速度进行限定。光电晶体管20通常作为红外光触发的简单下拉晶体管运行。在光电晶体管20未触发时,控制器6可以实现弱内部上拉电阻在输入管脚生成逻辑高输入(例如,UART管脚)。控制器6可以通过将输入管脚接地令光电晶体管20失能以节能。
在一些实施方式中,压电换能器驱动电路可以包括升压转换器电路40,其提高电源(电池)10的电压至更高电压成为驱动电压。驱动电路42可以与升压转换器电路40耦合以将驱动电压发送至压电换能器8然后驱动压电换能器8。升压转换器电路40可以包括电感(L1)12(例如,47μH,35mA 20%电感,TDK公司,纽约,纽约州,美国),其将磁能存储为电子流、MOSFET晶体管(Q2)16(例如,FET n-沟道型30V,1.78A MOSFET,仙童半导体,圣何塞,加利福尼亚州,美国)重复接通关闭,二极管(D1)30(例如,30V二极管,美台有限公司,普莱诺,德克萨斯州)将电流主要向着输出单方向传导,并且电容(C1)22(例如,22μF 10V20%钽电容,威世思碧,莫尔文,宾夕法尼亚州,美国)存储从升压转换电路40发送的提升后的电压。MOSFET晶体管(Q2)16与控制器6的输出耦合。当控制器6将晶体管(Q2)16切换为“开”时,电感(L2)26中的电流开始增加。当微控制器6将晶体管(Q2)16切换为“关”时,电感(L1)12中的电流通过二极管(D1)30传送至电容(C1)22为电容充电。控制器6可以将晶体管(Q2)16切换“开”与“关”选定次数以将电容(C1)22充电至所需值。电容(C1)22可以具有约10V的最小值以及至少大约22μF的电容量以在驱动电路42下拉电流时将电压下降最小。升压转换器电路40将合适的驱动电压(HVDD)58作为输入发送至驱动电路42。
驱动电路42可以与微控制器6的输出侧耦合以传送升压转换器电路40释放的驱动电压,驱动声学信号从压电转换器8传输。驱动电路42可以定义信号电平与注射型声学标签的信号途径。驱动电路42可以包括电感(L2)26(例如,100μH 85mA 20%SMD电感,太阳诱电株式会社,绍姆堡,伊利诺伊州,美国)其将磁能存储为点子流、以及MOSFET晶体管(Q3)18(例如,n-沟道型30V,1.78A SOT-883MOSFET,仙童半导体,圣何塞,加利福尼亚州,美国),其开启闭合。晶体管(Q3)18可以与控制器6的输出管脚耦合.驱动电路42可以贴附于电路板2的端子(J1)50与(J3)52。连接器52的电压系于提升的电压(HVDD)58。
当微控制器6将晶体管(Q3)18切换为“开”时,电感(L2)26中的电流开始增加。连接器52的电压可以设置为接地。当微控制器6将晶体管(Q3)18切换为“关”时,电感(L2)26与压电换能器8观念上形成一个谐振LC电路。压电换能器8的连接器52的电压可以在由电感(L2)26的感应系数以及压电换能器8的特征电容确定的频率上共振。共振频率可以比所需的声波信号调制频率更大。连接器52上的电压可以高于驱动电压(HVDD)58并且之后回归为接近接地。控制器6可以将晶体管(Q3)18切换回“开”以防止压电换能器8中发生更多振动。端子50与端子52之间连接的压电换能器8上的电压差可以因此在负值与正值之间变化。
控制器6可以在特定模式下切换晶体管(Q3)18的“开”与“关”,生成所需的或者选定的共振频率,驱动电路42可以适用于压电换能器以在所选频率上生成正确的声学波形。为了发射代表标签码一比特的一系列声学脉冲,微控制器6可以将方波应用于具有所需调制频率(例如,416.7kHz)的晶体管(Q3)18。方波的责任周期一般为33%以便晶体管(Q3)18可以在每个调制周期的三分之一时间内切换为“开“,且可以使电感(L2)26与压电换能器8在每个调制周期的三分之二时间内共振。当从逻辑“0”比特变为逻辑“1”比特时,或者相反,微控制器6可以延迟下一次脉冲一个时间周期,即半个调制周期。此程序从压电换能器8产生声学信号,压电换能器包括通过例如相移键控(PSK)实现的编码的二进制数据,
在多个实施方式中,可以使用独立的MOSFET晶体管(Q2)16与(Q3)18而不使用单个双沟道MOSFET晶体管以使电路板2上的布局与设计便利,但是无意将构造限定于此。进一步地,本文所描述的电路板2上的组件可以设置得十分临近以降标签长度最小化。例如,由于谐振器24周围为绝缘材料所包围,因此谐振器24与电感(L2)26可以在板子装配后相接触而没有问题。
图3C表明了示例性电路板设计,示出之前参考图3A描述的声学标签的代表组件。
图3D为示出本发明另一声学传输装置(标签)300各个组件的方框图。在图中,标签300可以包括电感电路,电感电路包括一个双(例如,2合1)模拟开关44,双模拟开关44与高效电感13(例如,100μH电感)电耦合,该高效电感13代替了此前结合图3B描述的升压转换电路。开关44中每个模拟开关配置用于发送在两个模拟开关之间更替的0或3V差分电压。双模拟开关44在电感13与压电换能器8子电路上发送6V的网电压。标签300的电感电路为高效电路,其将从PZT 8传输声学信号所需能量降低3倍或更多倍(例如,从之前描述的升压电路设计的120μJ降至35μJ),这将标签的寿命提高至少3至4倍,例如在传输速率为3秒时从20天提高至90天或者更久。
在当前设计中,当前实施方式的谐振电感电路将6V驱动电压(VRMS)发送至PZT 8,其高于电源10福特至少大约3伏特。当前设计在维持xiang’tongyuan提高了能源转换效率,降低专用组件的数量,同时维持原有源电平的表现。当前实施方式的标签可以特别适用于例如深水宿主应用、或者需要更长生命周期的应用、或涉及更长距离的应用。但是,无意进行限定。双模拟开关44与电感13可以如本文此前描述由微控制器支配。标签300还可以包括本文此前描述的其他组件,包括,但不限定于,例如红外传感器20与谐振器24。无意进行限定。
图3E表明此前结合图3D描述的声学标签的电路图。压电换能器驱动电路可以包括双模拟开关(U2)44,其与高效屏蔽电感(L1)13(例如,100μH电感耦合)。电感13可以包括选定的尺寸(例如,2mm×2mm×0.6mm)。双模拟开关44与屏蔽电感13可以与微控制器(U1)6及本文此前描述的电源10耦合。电源(电池)10可以与端子(J4)46及(J2)48在封装时于电路板2每一面的任一面上连接。控制器6可以以一模式切换双模拟开关44的各模拟开关的“开”与“关”,该模式生成所需或者选定的共振频率,然后可以将共振频率发送至压电换能器以在选定的频率上生成正确的声学波形。例如,控制器6生成压电换能器驱动电路的控制信号。压电换能器驱动电路配置有双模拟开关44与高效电感13,将来自电源(电池)10的电压提高至约3伏特以生成驱动电压,可以发送该驱动电压以驱动压电换能器(图3D)。时钟信号控制并调制(调制)频率。在当前设计中,微控制器6可以开启关闭双模拟开关44并将高效电感(L1)的振动与压电换能器的谐振频率同步。该压电换能器在所需调制频率,例如,416.7kHz生成声学信号。压电换能器驱动电路包括双模拟开关(U2)44与高效电感(L1)13可以附着于电路板的端子(J1)50与(J3)52。连接器52上的电压可以在高效电感(L1)13生成的感应系数确定的频率上振动。端子50与端子52之间的电压差可变化并且可以在负值与正值之间变动。
在当前实施方式中,电容(C1)15(例如,33μF,6.3V电容)以及电阻(例如,470ohm电阻)(R2)29可以与电源10耦合减少取自电源的瞬时峰值电流。谐振器(Y1)24(例如,10MHz陶瓷谐振器,村田制作所,长冈京市,京都府,日本)可以耦合控制器6的输入侧以生成选定精确度(例如,±0.5%精确度)的精确时钟信号,控制控制器(U1)6的运行。电阻(R1)28(例如,1.0MOhm电阻)可以与谐振器24并联设置以降低启动时间并且提高生成的时钟信号的稳定性。可以安装光电晶体管(Q1)20或者单向红外传感器以自主计算机通过光链路接收配置指令,光链路将指令传至控制器6。指令配置标签的各个参数包括,例如标签码、传输周期、以及标签附着于宿主之前或者之后的操作的其他参数。如本文此前所述,光电晶体管20光链路可以将声学标签与红外集成电路串行程序设计(ICSP)模块(程序设计器)56衔接,程序设计器模块56可以将配置与编程信息加载到控制器6。红外链路20上的数据传输还可以依此前所描述的实施。
当前实施方式的能源转换效率高于配置有升压转换器电路(图3A)的标签。高效压电换能器驱动电路可以相较于升压转换器电路以更少的组件操作。更少的组件减少了运转标签所需的能源,又令声学标签为更加小的宿主与应用构造得更小。此外,高效电路可以降低发射声学信号所需能源,提高标签的能源效率。在一些实施方式中,在声学信号强度大约为155dB至大约156dB时,能源消耗可以低于大约35μJ。相较于升压电路设计,高效电路将声学标签的服务寿命提高达3倍或者更久。传输(传送)速度为三秒声学信号强度为大约155dB至大约156dB,标签寿命可以至少为90天。
图3F表明配置有此前结合图3D所述的声学标签的代表组件的示例性电路板设计。
图4示出定制电源(电池)10(此后称为MB306)的剖视图,其向本发明的声学发射机(标签)(图1a-1c)与电组件供电。电池10可以包括阴极62,其包括氟化石墨混合物,作为活性阴极材料在粘合剂例如聚四氟乙烯(PTFE)中与导电碳混合,形成独立电极。在示例性实施方式中,混合阴极62可以包括85wt%活性阴极材料、10wt%导电碳(例如导电碳,特米高有限公司,博迪奥,瑞士),以及5wt%PTFE。干燥时,混合阴极材料引入(例如紧贴)在集电器支撑物64上,集电器支撑物64由铝(或其他金属)网构成以形成混合阴极电极62。集电器64提供电池10中各阴极62与阳极72电极之间的电子转移。金属连接线66[例如,正(+)连接线]由例如,铜漆包线62(具有或者没有铜线连接线66)可分为具有选定尺寸的节。单个阴极节62可以引入分隔装置70的两层之间,分割装置70金属由例如,微孔聚丙烯(例如分隔装置2500,Celgard有限责任公司,夏洛特,北卡罗来纳州,美国)组成,其将阴极62与阳极72在单独的阴极/阳极层合板(对)74电气隔离。阳极72可以包括或者由选定厚度的锂金属[FMC锂,夏洛特,北卡罗来纳州,美国)组成。在一些实施方式中,阳极72的厚度可以是大约0.15mm,但是不进行限定。阳极连接线68(例如,0.13mm O.D.)可以由例如,铜构成,并且通过直接在锂金属上压连接线68与阳极72耦合。
多个独立电气化学阴极/阳极对(压层)74每个包括阴极62与阳极72,可以捆绑在一起并且引入容器76内。在多个实施方式中层合板74可以包括约0.21mm至约0.24mm之间的厚度,但无意对尺寸进行限定。容器76可以为大致圆柱型并且由高强度材料譬如氟聚化物,例如,乙烯四氟乙烯(ETFE)构成以商号名称(杜邦,威尔明顿,特拉华州,美国)商业销售或者铝。聚合物包括解链温度、高流速、以及卓越的化学与电气电阻特性。容器76具有引入容器76的压层74,容器可以填充电解液78(平均至35mg)以将传统CF电化电池的时间延迟特征最小化。在多个实施方式中,电解液78可以包括或者由例如,1M六氟磷酸锂(LiPF6)构成,其拨入至碳酸二甲脂(DMC)中碳酸次乙酯(EC)1∶1体积率[EC∶DMC]。容器76然后可以在通过引入盖中的孔(未示出)插入引线66与68之后,由聚合物盖80覆盖。电池10在装配时可以密封,例如通过环氧树脂或者其他热固性聚合物。表1示出与传统(SR416)氧化银(Qyt=2堆叠)电池相比,本发明定制电源(MB306)的物理特性。
表1比较本发明定制电池(MB306)的物理特性与传统氧化银(SR416)电池。
如表中所示,电池10可以具有3.0mm的外径以及6.0mm的长度(公差±0.2mm)。电池10胶囊壁和盖的壁厚约0.15mm,但不进行限定。电池具有低质量[大致0.075g(±0.02g)]以及低体积[大致0.042cm3]。电池的当前重量相较于在先设计意味着对被标记的动物减少71%的重量负担。表2将本发明电源的性能属性与商业氧化银电池相比较。
图2列出本发明电源(电池)典型运行与性能参数。
电池10可以包括室温(例如,23℃)下放电率为约86mA/g(1mA/cm2)。截止电压可以为月1.5V。电池10还可以实现231Wh/kg的重力比重(408Wh/L的体积比重),在传统SR 416电池之上增大133%。操作中,电池10还可以在从0℃至25℃的大温度范围上实现至少2.85伏特的稳定输出电压以及稳定脉冲电流。此输出电压比商业氧化银(例如,SR 416)电池高近1V,其去除了类似在先JSATS发射器对电池组的需求或者为实现3V输出对额外电子器件的需求。相较于现有JSATS发射器中使用的氧化银电池,电池10还可以具有固有的低阻抗。图5将本发明的电池阻抗与传统氧化银电池相比较。数据示出在自约-5℃至约25℃及之外的大温度范围上,本发明的电池性能优于氧化银电池。电池10较本领域公知的使用氧化银电池的传统发射器,可以为激活声学传输装置提供长久的服务寿命以及稳定的电压性能。电源10的寿命基于对脉冲(传输)速率间隙(PRI)的选取而可选择。不对脉冲(传输)速率间隙进行限制。
标签寿命
表3列出示例性实验结果示出本发明声学标签的寿命。
表3列出示例性实验结果示出本发明声学标签的寿命。
*不确定。
在一些实施方式中,声学装置配置有升压转换器电路,可以在传输速率约3秒约20天的活跃寿命上传送声学信号。在一些实施方式中,声学传输装置可以在传输速率约5秒至少30天的活跃寿命上发送声学信号。可以选取更长的标签寿命:7秒:40天;以及10秒:60天。
在一些实施方式中,声学传输装置配置有高效电感及上模拟开关,可以在传输速度为3秒时在约90天或更久的活跃寿命上提供声学信号。在传输速率为5秒甚至更大时,寿命可以为约150天或者更久。但是,无意进行限定。
图6A与6B将本发明电源(即,MB306电池)在25℃与0℃生成的脉冲电流(mA)与传统氧化银电池相比较。结果示出电池脉冲电流展示出更大振幅相较于氧化银电池得到的脉冲电流传输更迅速。
图7将本发明电源(MB 306)的电池电压在0℃脉冲传输期间与传统氧化银电池相比较。数据示出在低温下氧化银电池的压降较MB 306电池有约两倍的更大压降。当处于未激活状态时,本发明的注射型声学标签在装配之后在存储在室温(23℃)时维持电池容量大于85%12个月。
控制器固件
源代码加载到控制器(图3A)存储器中,可用于控制注射型声学标签的功能与操作。可在主计算机上以装配语言(例如,PIC装配语言)或者更高级的语言(例如,C编程语言)编制(例如,使用集成MPLAB开发环境或者类似的软件工具)源代码。主计算机上的软件工具创建固件,例如以二进制或者衍生代码(例如,十六进位或者十六进制),其可编制到电路板(图1)上的控制器中。源代码可被划分为多个示例模块包括,但不限定于:主:指定配置位、声明变量、以及在控制器重置后执行初始指令;初始化;清除所有工作变量;校验;校验时钟(例如监视时钟)用于设置传输频率;等待;周期性检查红外传感器直至配置了标签;存储;保持红外传感器活跃直至配置了标签;休眠;在开始声学传输之前等待指定时间(例如,30天);运行;在声学传输之间等待指定期间(例如,3秒);发射;激活升压转换电路(图3a)与驱动电路(图3a)以在压电转换器(图1)上生成所需声学信号;编程;读取来自红外链路的配置数据并且设置操作模式及其他参数;调试;获取改进意图码;以及表格;获取查找表以实施计算操作,用于计算温度或者其他传感器数据。控制器固件可以获取一个或者更多个参数,其控制标签的功能与操作。这些参数可以在微控制器首次上电时被初始化为缺省值,并且此后经由红外链路配置为新的值。表4列出可存储在控制器存储器中用于控制注射型声学传输装置(标签)的操作的示例性参数。
图4列出控制器存储器中注射型声学传输装置(标签)操作的示例性参数,其具有相关存储条件,
传感数据
控制器(图3A)可以包含内部温度传感器。控制器可以在一个或者更多个标签码中嵌入5比特温度值(或者是可能的不同长度的其他传感器值),标签码由压电换能器发射至接收机。由于电池电压中的控制器补偿变化的方式,温度传感器输出可以输出从0至31的数值,其随温度变化但其不是摄氏度的实际温度。每个标签的休眠可以外置实现以确定数值与实际温度之间的关系,例如通过记录数个不同温度下的数值。控制器源代码可以实现所需的内置计算以去除温度数据上的电池电压的影响。可以运行此步骤,例如自本文此前所描述的运行模块。为提高性能,源代码可以实施数个计算操作如表格查找,但不限定于此。
传输探测范围
本发明标签发射的声学信号可以包括淡水中高达1km(3,280ft)的探测范围。但是,无意进行限定。例如,在具有相对大量背景噪声的位置,例如水坝溢口的正下游,可将信号发射约100米。在其他具有相对小背景噪声的位置,例如湖中央,可将信号发射高达约500米。但是无意对距离进行限定。可对标签信号进行最大长度的编码以提高范围及清晰度。
波束传输图形
图8将用于与本发明配合的集成电路偏移(非同心)压电管状换能器(例如,型号#610HD的PZT管状换能器,TRS技术有限公司,斯泰特克里奇,宾夕法尼亚州,美国)的波束图形与传统(同心的)压电管状换能器相比较。在测试配置中,集成电路偏移压电管状换能器的内圆周偏离管中心0.15mm。结果示出在向注射型标签的前180°传送(例如从0°至90°以及从270°至0°)声能(源电平输出)被增强。声能(源电平输出)从压电管状换能器的前面发送,提供波束图形,其较佳地为全方向的至少在波阵面的前180°。向后180°的声源被降低了。可以调整集成电路偏移以增强向标签前发出的声学信号直至压电材料的机械限制。波束图形还可以为压电换能器上的环氧树脂涂层的形状、位于压电换能器后的电气组件的尺寸、以及压电换能器与其他电气组件后面或者之间的间隙或者空间所影响。测试示出位于压电换能器后面的电气组件所具有的高度尺寸大于1时可以生成的波束图形所具有的声学输出,比位于标签两侧或者更多侧的更低。因此,为实现全方向的波束图形,管状压电换能器上的环氧树脂涂层应该纤薄(<0.2mm)。涂层还应该顺应压电换能器的外表面以将涂层中的不规则最小化,不规则可造成源电平的波动指示不规则波束图形。波阵面效果源于发出的与反射的声波之间的相互影响,可通过如本文所述的在压电换能器后面插入反射器使之最小化。
图9示出示例性的本发明注射型声波标签的波束图形。分割间隙54直接位于压电换能器的后面,分割间隙54与(例如,1.6mm长)电感(图1A)可以包括各种选定的宽度或者空间尺寸(例如,0.23mm与0.57mm)。在一些实施方式中,标签可以配备有由例如,EPDM闭孔发泡材料组成的声学反射器36,可以置于间隙54中以改善标签的波束图形。在示例性实施方式中,标签配备有置于间隙54中的声学反射器36,标签示出具有180°波阵面的波束图形(即,从0°至90°以及从270°至0°),当压电换能器与电感12(或者另一个组件)之间的间隙空间增大时,波束图形变得更一致。结果可归因于通过声学反射器从邻近的电气组件回到压电换能器的声波反射。反射器还抑制间隙54中的声波。测试示出从压电换能器后(即,面向电路板)发出的声能由于与压电换能器相关的水听器的位置不太可能被探测到。通过声学反射器将声能的方向改变为朝向压电换能器的前端,提高探测的可能性。
标签组件的封装
图10示出示例性标签模90用以封装装配后的声学标签。标签模90可以包括顶部82与底部84,由例如,未填充的聚醚酰亚胺塑料(例如,树脂1000,沙基工业公司,利雅得,沙特阿拉伯)构成,在各自的半部分中具有孔86,半部分为另一半部分的镜像,装配的标签可以置于其中。在示例性实施方式中,模90可以包括至少一个进口88以及两个出口92。环氧树脂可以利用譬如真空成型工艺或者注射成型工艺的工艺经模90流过。释放剂(例如,DC 20,道康宁,米德兰,密歇根州,美国)为大约1份DC 205份二甲苯的稀释浓度),其可以施于标签模90的孔86的表面以令封装的标签在环氧树脂已经消除后易于释放。在一些实施方式中,可以应用真空成型工艺。可以从模90的出口92抽真空以制造压差使得环氧树脂流动。通过经过所有孔86的真空可以对环氧树脂的流动进行指引。对模90密封以防止气窝引入标签组件周围的涂层。配置模90以便环氧树脂从标签的压电换能器端(见图1A)流入每个孔96并在标签的电池端(见图1A)流出模90以使压电换能器与电子装置全覆盖。微电池,最大的组件周围的流可以象征环氧树脂流最大的阻力并且因此象征最大的压降。O-ring(ID=146mm)可以应用在模中提供密封。各孔84的环氧树脂入口管94可以位于压电管状换能器的两个平直开口端中的一个(并非直接位于压电换能器的曲表面)以避免在完成的标签的压电换能器图层中引入不光滑表面,其可低于声学信号的源电平。
在一些实施方式中,可以应用注射成型。环氧树脂可以用例如注射器针头活塞(未示出)机械推动通过模90。环氧树脂可以通过进口88,通过模90的所有孔86引入.,并且在流经模90的每侧孔86之后通过出口92流出模92。可通过流动的环氧树脂将空气推出模90,其还可以防止空气倒引回模90中。可通过模的设计指引流。为达成统一,模90的每个孔86较佳地填充有待封装的标签组件或譬如用于空孔的塑性黏土的填充剂。填充空孔避免环氧树脂先流进空孔中且避免促使在标签位于其他孔中形成气窝。环氧树脂注入的最佳速度部分取决于所应用的环氧树脂的类型。适宜使用的树脂包括热固性环氧树脂譬如,例如,EPO-TEK301或者电气用树脂5。两种树脂均可用于在选择的适宜注入速率封装标签。最小注入速率约为10mL/min,提供对标签组件有效封装的流。将模90设置在垂直位置还可以有助于移除模内的气窝。
编码与激活
注射型标签可以以可选码长的一个或者更多个标签码进行编程。每个标签码可以配置具有相同或者不同的标签标识(ID)码。每个ID码可以包括一个(n)比特的标签ID长度。在本文所述的示例性实施方式中,一个或者更多个标签码的每一个具有31二进制比特的长度,并且由7比特(即,长度)的“巴克”码、16比特标签ID码、以及8比特的循环冗余校验(CRC)。CRC为误差检测码,作为标签码的一部分发射,通常用于检测原始数据的变化。所发射的数据可以添加有固定(例如,3比特至8比特)长度的短CRC(即,数据验证)值。当取回数据时,可重复CRC计算确保数据没有破坏。一个或者更多个标签码的格式是可配置的。可配置格式使得每个标签可以具有多种且不同的用户定义编码配置适用于各种应用。例如,标签码的数量与长度是可配置的。在多个实施方式中,本发明的注射型声学标签可以每个包括一个或者更多个每个具有可选择的最多达64比特码长的标签码。在一些实施方式中,控制器可以在两个标签码之间交替,在第一周期为第一码而在第二周期为第二码,每个具有它们各自的ID码。在两个标签码之间交替在维持与现有接收机设备的向后兼容的同时增加可能唯一的二进制标签识别(ID)的数量。如果每个标签码包含一个16比特的标签ID码、两个标签码,提供总共216次的216,或者超过4百万个唯一ID。本发明的标签还可以在每个周期发射相似或者相同的码从而与现有的JSATS标签向后兼容。例如,在需要单一标签ID码的应用中,两个ID码可以相同值编码。可以应用其他数量的标签码而不进行限制。可以通过将红外线编码设计器(图3B)连接至计算机(未示出)上的串行端口、将IR LED设置在IR编码设计器上距标签光电晶体管(图3B)1cm距离并且为IR编码设计器供电,以所有需要的操作参数配置并且激活标签。可以运行主计算机上的编程脚本,其通过控制器的串行端口将指令连续发送至IR编程设计器,配置标签。编程时间为平均约10秒或者更少。当配置完成时IR编码设计器上的LED可以关闭。可将标签设置在存储模式并且存储在黑匣子内直至准备注射。当使用时,标签可被再次配置以在发射或者休眠模式设置微控制器。
本发明的标签码还可以发射来自标签所包括的各种传感器的数据。在多个实施方式中,例如,微控制器或者标签可以包含内部温度传感器或者其他传感器。在一些实施方式中,微控制器可以包含内部温度传感器。在一些实施方式中,部分码可以用于将温度和/或其他传感器测量嵌入传输码中。例如,当使用温度传感器时,温度数据可以在宿主动物中收集并且编码为部分组件(例如,为5比特温度值),其可以并作全(例如,第二)标签码的组成部分,然后可以对其编码并且在声学信号中从标签发射至接收机。作为示例,当对温度测量编码时,第一主码可以包括,例如7比特的巴克码、16比特的ID码(具有唯一ID)、以及8比特的CRC。主码可以后接含有部分ID码的具有温度数据的第二码,例如,7比特“巴克”码、11比特的第二标签ID、5比特的温度码、以及9比特CRC。
在一些实施方式中,温度传感器可以提供依赖于电池电压的模拟输出[例如,数值从0至31(并非实际℃温度),其随温度增大]。在此类应用中,微控制器可以同时测量温度值与电池电压值二者并且然后实施内置计算以补偿测量与实际的温度值及电池电压之间的任何偏差。由于CRC可以作为更新的温度比特的结果而改变,可以配置微控制器以指定32CRC码,每个8比特长,以与温度特征配合使用。标签可以在ID码的传输最后发送适当的CRC码。
声学标签的附着
本发明的声学标签可以以多种方式附着于宿主。在一些实施方式中,声学标签可以为注射型声学标签配置有能够使其注入宿主动物的尺寸。注射可以将标记个体动物的时间最小化或者将与手术植入宿主动物的相关不良生物反应最小化。在一些实施方式中,注射型声学标签可以通过8-gauge注射器针头注入宿主。在一些应用中,注射标签的注射器可以包括活塞,其为弹簧加载以注射标签。在一些应用中,可将气体用于注射标签,应用于注射声学标签。对将注射型标签注射到宿主的首选位置不进行限定。对于鱼类,例如,可以将注射型标签在贴着身体的胸鳍的末梢处注射,例如距白线背大约2mm至3mm,纤维缔结组织其低于腹部中线,其不包含主要神经或者血管。但是,对注射位置无意进行限定。在一些应用中,声学标签可以附于,例如人类宿主的衣服、无生命体、或者自驱动式物体譬如机器人。对声学标签附着方法不进行限定。
虽然以当前认为最实际且首选的实施方式已对本发明进行描述,但是在不偏离本发明的真正范围以及更广泛的方面下,可以进行许多改变、修改、以及等同设置。因此,应该对范围给与关于所附权利要求的最广的解释。所附权利要求因此旨在覆盖所有此类变化、修改、等同设置,以及落入本发明范围的产品。无意进行限定。

Claims (29)

1.一种用于识别并且跟踪所选宿主的声学传输装置,该装置包括:
密闭壳,其定义了一个小于115mm3的具有选定尺寸的内体积用于以选定布局容纳该装置的组件;
电源,被配置用于为该装置操作供电;
控制器,被配置用于供给一个或者更多个标签码,每个所述标签码具有可选的码长以及其中的可选的比特长的识别码;
至少一个压电换能器,被设置在该密闭壳中;以及
压电换能器驱动电路,其将选定的驱动电压发送到所述至少一个压电换能器,所述至少一个压电换能器生成的声学传输信号包括已编码的标签码与其中包含的各自的识别码,该至少一个压电换能器被配置用以选定发射速率在选定的声学传输信号强度上,将声学传输信号发射至设置在声学传输装置外部的接收机;以及
其中所述至少一个压电换能器包括具有内圆周的内壁和具有外圆周的外壁;所述内壁和所述外壁中每一个壁都包括表面电极;并且其中所述内壁相对于所述外壁而言在朝向所述声学传输装置的传输方向上偏离一距离;该距离被选择为在所述传输方向上增强所述声学传输信号。
2.如权利要求1所述的装置,其中所述密闭壳具有使所述装置能够以注射器针头注入所述宿主的尺寸与构造。
3.如权利要求1所述的装置,其中所述密闭壳的长度等于或者小于15mm,以及直径等于或者小于3.4mm。
4.如权利要求1所述的装置,还包括被配置为将电能量传输给电容的第一电感器,并且其中所述压电换能器驱动电路包括第二电感器,该第二电感器耦合到所述电容以及所述至少一个压电换能器的多个电极。
5.如权利要求4所述的装置,其中所述电源在传输速率为3秒、声学信号强度为155dB至156dB的条件下,向所述装置供电的生命周期为至少20天。
6.如权利要求1所述的装置,其中所述压电换能器驱动电路包括双模拟开关以及高效电感,被配置用于将驱动电压发送至所述至少一个压电换能器。
7.如权利要求6所述的装置,其中所述装置包括电源,该电源被配置为在传输速率为3秒、在声学信号强度为156dB的条件下,向所述装置供电的生命周期为至少90天。
8.如权利要求6所述的装置,其中所述至少一个压电换能器在声学信号强度为155dB至156dB时,每次的传输耗费能源等于或低于35μJ。
9.如权利要求1所述的装置,其中所述至少一个压电换能器被朝向为使得该压电换能器的最薄部分面向所述声学传输装置的前面。
10.如权利要求1所述的装置,其中所述至少一个压电换能器包括由选定金属组成的端帽,该端帽被设置在该至少一个压电换能器的各自的端部,并被配置用于增强从该至少一个压电换能器的端部发出的声学传输信号。
11.如权利要求1所述的装置,进一步地包括置于所述至少一个压电换能器的后面的声学反射器,该声学反射器至少在所述传输方向上相较于不具备该声学反射器的装置相比增强该声学信号强度至少0.5dB。
12.如权利要求11所述的装置,其中所述声学反射器包括闭孔发泡材料,该闭孔发泡材料至少在所述传输方向上增强从所述至少一个压电换能器发出的该声学传输信号。
13.如权利要求11所述的装置,其中所述声学反射器令来自该至少一个压电换能器的声学传输信号具有实质上一致的波束图形,该波束图形在至少所述传输方向上包括180°的传输波阵面。
14.如权利要求1所述的装置,其中该装置具有小于220mg的干重。
15.如权利要求11所述的装置,其中所述电源为锂/碳氟化物电池,被配置用于供应至少2.5伏特的输出电压。
16.如权利要求15所述的装置,其中所述电源包括多个层合板,每个层合板包括被设置在聚合物分隔装置之间的阳极与阴极,该聚合物分隔装置将阴极与阳极在层合板与电解液中电气隔离。
17.如权利要求1所述的装置,其中所述控制器被配置为用于自动将取自电源的能源调节为电源放电,以便该电源电平在该装置的操作寿命期间保持实质恒定。
18.如权利要求11所述的装置,其中所述至少一个压电换能器被配置用于以声学信号强度为155dB至156dB发送该声学传输信号。
19.一种识别并跟踪所选宿主的方法,该方法包括:
将权利要求1所述的声学传输装置于选定位置上附着于该所选宿主;
在选定的声学强度上,以选定的频率在选定的距离上将声学信号从该声学传输装置的至少一个压电换能器发射至设置于该宿主外部的接收机,该声学信号编码具有一个或者更多个选定码长的标签码,该标签码至少包含置于其中的该宿主的位置数据以及识别数据;以及
解码从该声学传输装置接收的该声学信号,以实时地或者作为时间函数地在最多三个维度上识别并跟踪该宿主。
20.如权利要求19所述的方法,其中附着所述声学传输装置包括将该装置注入该宿主。
21.如权利要求20所述的方法,其中注射所述声学传输装置包括通过注射器针头注射该装置。
22.如权利要求19所述的方法,其中所述发射包括在至少20天的操作寿命上以3秒传输速率从所述至少一个压电换能器发射所述声学信号。
23.如权利要求19所述的方法,其中所述发射包括在至少90天的操作寿命上以3秒传输速率从所述至少一个压电换能器发射所述声学信号。
24.如权利要求19所述的方法,其中发射所述声学信号包括将电源电压通过将该电压向上转换形成驱动电压的所述装置的升压电路而发送,以及将该驱动电压发送至该至少一个压电换能器。
25.如权利要求19所述的方法,其中在所述选定的谐振频率上发射该声学信号包括从谐振电感电路发送高于该电源电压的驱动电压至所述至少一个在其处产生所述谐振频率的压电换能器。
26.如权利要求19所述的方法,其中所述发射所述声学信号包括发射从所述声学传输装置中的一个或者更多个传感器收集的传感数据,该传感数据被编码成为从该声学传输装置发射的一个或者更多个标签码中的至少一个。
27.如权利要求19所述的方法,其中发射所述声学信号包括在声学信号密度为155dB至156dB时,从所述至少一个压电换能器发射该声学信号。
28.如权利要求19所述的方法,其中发射所述声学信号包括自动地将取自所述电源的能源调节为电源放电,以便所述声学信号强度在所述声学传输装置操作寿命期间保持实质恒定。
29.如权利要求19所述的方法,其中发射所述声学信号包括每次的传输能源耗费小于或者等于35μJ。
CN201480047931.5A 2013-08-29 2014-08-29 传声装置及其制作与使用工艺 Expired - Fee Related CN106170349B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/014,035 2013-08-29
US14/014,035 US10033469B2 (en) 2013-08-29 2013-08-29 Injectable acoustic transmission devices and process for making and using same
PCT/US2014/053578 WO2015031853A2 (en) 2013-08-29 2014-08-29 Acoustic transmission devices and process for making and using same

Publications (2)

Publication Number Publication Date
CN106170349A CN106170349A (zh) 2016-11-30
CN106170349B true CN106170349B (zh) 2019-07-23

Family

ID=51582501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480047931.5A Expired - Fee Related CN106170349B (zh) 2013-08-29 2014-08-29 传声装置及其制作与使用工艺

Country Status (4)

Country Link
US (1) US10033469B2 (zh)
CN (1) CN106170349B (zh)
CA (1) CA2922360A1 (zh)
WO (1) WO2015031853A2 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033470B2 (en) 2013-08-29 2018-07-24 Battelle Memorial Institute Acoustic transmission devices and process for making and using same
US9301512B2 (en) * 2013-12-30 2016-04-05 Taref Moneif ALSHAMMARI Fishing capsules
US9526228B2 (en) * 2014-03-07 2016-12-27 Amirix Systems Inc. Predation detection fish tracking tag
CA2903243C (en) 2014-11-19 2021-06-01 Amirix Systems Inc. Predation detection animal tracking tag
US10101429B2 (en) 2015-02-25 2018-10-16 Battelle Memorial Institute Acoustic transmission device and process for tracking selected hosts
WO2016209119A1 (ru) * 2015-06-26 2016-12-29 Общество С Ограниченной Ответственностью "Лаборатория Подводной Связи И Навигации" (Ru) Гидроакустическое устройство
US10067112B2 (en) 2015-09-30 2018-09-04 Battelle Memorial Institute Autonomous sensor fish to support advanced hydropower development
US11278004B2 (en) * 2015-12-15 2022-03-22 Battelle Memorial Institute Transmitters for animals and methods for transmitting from animals
US10236920B2 (en) * 2015-12-15 2019-03-19 Battelle Memorial Institute Signal transmitter and methods for transmitting signals from animals
US11134864B2 (en) 2016-07-13 2021-10-05 Alexei L. Vyssotski Tracking method and system for small animal research
JP7150698B2 (ja) * 2016-07-18 2022-10-11 ニューヴェイジヴ,インコーポレイテッド 通信装置および方法
US10531639B2 (en) * 2016-08-25 2020-01-14 Battelle Memorial Institute Systems and methods for monitoring organisms within an aquatic environment
CN107818683B (zh) * 2017-11-28 2024-03-26 广东工业大学 一种无线控制开关装置及系统
DE102018200379B4 (de) * 2018-01-11 2020-06-18 Robert Bosch Gmbh Sensoranordnung und Verfahren zum Betreiben einer Sensoranordnung
JP7205163B2 (ja) * 2018-10-30 2023-01-17 セイコーエプソン株式会社 圧電駆動装置の制御方法、圧電駆動装置、ロボットおよびプリンター
US11533818B2 (en) 2019-03-12 2022-12-20 Battelle Memorial Institute Sensor assemblies and methods for emulating interaction of entities within water systems
US11355005B2 (en) * 2019-07-22 2022-06-07 Battelle Memorial Institute Aquatic organism tracking devices, systems and associated methods
WO2021062083A1 (en) * 2019-09-25 2021-04-01 Bionet Sonar Systems and methods for using ultrasonic waves for wireless powering and communication of a cardiac assist device
US20210148881A1 (en) * 2019-11-19 2021-05-20 Battelle Memorial Institute Aquatic Organism Monitoring Devices and Aquatic Organism Monitoring Methods
WO2023137378A1 (en) * 2022-01-14 2023-07-20 The Board Of Trustees Of The University Of Illinois Radiological clips having ultrasound identification
CN114868667A (zh) * 2022-05-30 2022-08-09 无锡富华物联科技有限公司 传感器耳标及其制作工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576732A (en) * 1967-02-18 1971-04-27 Varta Ag Cast electrical batteries and process for their production
US4042845A (en) * 1976-03-25 1977-08-16 Sontrix Division Of Pittway Corporation Transducer assembly and method for radiating and detecting energy over controlled beam width
CN1424592A (zh) * 2001-12-10 2003-06-18 法国石油研究所 应用海底采集站的地震数据采集系统
EP1705500B1 (en) * 2005-03-24 2010-06-16 Sap Ag Electronic location code
CN102568463A (zh) * 2011-12-31 2012-07-11 中国船舶重工集团公司第七一五研究所 一种耐深水宽带水声换能器
CN102598716A (zh) * 2009-10-30 2012-07-18 维布兰特美迪医疗电子听觉技术有限公司 可植入的信号传送系统
CN202414143U (zh) * 2011-12-27 2012-09-05 中国船舶重工集团公司第七一五研究所 用于声学探测的自动变深拖体
CN102754249A (zh) * 2009-12-04 2012-10-24 伊格皮切尔科技有限责任公司 具有氟化碳阴极材料的混合物的非水电池

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100866A (en) 1959-07-27 1963-08-13 Socony Mobil Oil Co Inc Nuclear magnetic resonance in thin films
US3262093A (en) 1961-11-14 1966-07-19 Miguel C Junger Pressure compensated sonic transducer
US3311830A (en) 1965-08-26 1967-03-28 Microdat Inc Am and fm transmitter
US3713086A (en) 1969-09-25 1973-01-23 W Trott Hydrophone
JPS5539146A (en) 1978-09-14 1980-03-18 Hitachi Ltd Primary cell
JPS55154090U (zh) 1979-02-01 1980-11-06
DE3003317C2 (de) 1980-01-30 1984-08-23 Siemens AG, 1000 Berlin und 8000 München Schaltung zum wechselweisen Aussenden und Empfangen mit ein und demselben Schallwandler
JPS6256849A (ja) 1985-09-06 1987-03-12 Snow Brand Milk Prod Co Ltd 通電加熱法に用いられるセンサ−
US5211129A (en) 1986-02-25 1993-05-18 Destron/Idi, Inc. Syringe-implantable identification transponder
GB2188028A (en) 1986-03-17 1987-09-23 Brien Hugh O Electronic identification ear implant
US4986276A (en) 1989-05-22 1991-01-22 Terry Wright Flow detector
US5177891A (en) 1990-07-17 1993-01-12 Holt Steven P Game fish attracting device
CA2091043A1 (en) 1993-03-04 1994-09-05 John Guzzwell Acoustic net alarm
JP3020376B2 (ja) 1993-03-26 2000-03-15 サージミヤワキ株式会社 動物用体内型個体識別器具
US5344357A (en) 1993-10-04 1994-09-06 Lyczek Edmund K Controllable aquatic toy with oscillating and steerable tail
US5517465A (en) 1994-12-28 1996-05-14 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Multiple sensor fish surrogate for acoustic and hydraulic data collection
US5675555A (en) 1995-07-13 1997-10-07 The United States Of America As Represented By The Secretary Of The Army Multiple sensor fish surrogate for acoustic and hydraulic data collection
US5995451A (en) 1996-01-04 1999-11-30 The United States Of America As Represented By The U.S. Army Corps Of Engineers As Represented By Secretary Of The Army Multiple sensor fish surrogate interface system for acoustic and hydraulic data collection and analysis
DE29716442U1 (de) 1997-09-12 1997-12-04 Chen Jinsaun Sende/Empfangssystem für Radiowellen
US6201766B1 (en) 1998-08-10 2001-03-13 Thomas James Carlson Multiple pressure gradient sensor
US6661897B2 (en) 1999-10-28 2003-12-09 Clive Smith Transducer for sensing body sounds
GB2359049A (en) 2000-02-10 2001-08-15 H2Eye Remote operated vehicle
US6712772B2 (en) 2001-11-29 2004-03-30 Biocontrol Medical Ltd. Low power consumption implantable pressure sensor
US20110163857A1 (en) 2003-04-09 2011-07-07 Visible Assets, Inc. Energy Harvesting for Low Frequency Inductive Tagging
US8032429B2 (en) * 2004-03-10 2011-10-04 Microsoft Corporation Method and identification tag for asset management
US20070103314A1 (en) 2004-11-17 2007-05-10 Geissler Randolph K Radio frequency animal tracking system
US8033890B2 (en) 2005-05-18 2011-10-11 Warner Jon A Self-propelled hydrodynamic underwater toy
US20070088194A1 (en) 2005-05-19 2007-04-19 Eliav Tahar Bolus, method and system for monitoring health condition of ruminant animals
DE102005050278A1 (de) 2005-10-05 2007-04-12 Vorwerk & Co. Interholding Gmbh Elektronische Gleichspannungs-Zwischenschaltung
GB2440555A (en) 2006-07-31 2008-02-06 Quetra Ltd Acoustic testing of wooden elements
ES2357439T3 (es) 2007-09-12 2011-04-26 Datamars Sa Procedimiento de montaje de un transpondedor en miniatura implantable.
RU2539991C2 (ru) 2009-12-16 2015-01-27 Кронтек Фарма Аб Впрыскивающие игла и устройство
AT509255B1 (de) 2009-12-30 2012-03-15 Smaxtec Animal Care Sales Gmbh Vorrichtung zur messung von einzeltierdaten
US20110181399A1 (en) 2010-01-28 2011-07-28 Dvm Systems, Llc Energy harvesting with rfid tags
EP2378648A1 (en) 2010-04-19 2011-10-19 Nxp B.V. Charge pump circuit with current peak noise reduction
US20120134239A1 (en) * 2010-11-28 2012-05-31 Struthers Sheldon L Micro sonic transmitter
CN102267552A (zh) 2011-07-11 2011-12-07 卢小平 一种仿生鱼的驱动与控制方法及仿生鱼
US20130181839A1 (en) 2012-01-12 2013-07-18 Zhiheng Cao Method and Apparatus for Energy Efficient and Low Maintenance Cost Wireless Monitoring of Physical Items and Animals from the Internet
US20130324059A1 (en) 2012-06-01 2013-12-05 Petari USA, Inc. Wireless device with hybrid energy charging
US9095122B2 (en) 2013-01-28 2015-08-04 Hydroacoustic Technology Inc. Acoustic tag having a digestible fuse
US20150289479A1 (en) 2013-01-28 2015-10-15 Hydroacoustic Technology Inc. Acoustic tag having a digestible fuse
US10033470B2 (en) * 2013-08-29 2018-07-24 Battelle Memorial Institute Acoustic transmission devices and process for making and using same
US9523775B2 (en) 2014-02-26 2016-12-20 Senaya, Inc. System to extend battery power in remote tracking devices
US10101429B2 (en) 2015-02-25 2018-10-16 Battelle Memorial Institute Acoustic transmission device and process for tracking selected hosts
US10067112B2 (en) 2015-09-30 2018-09-04 Battelle Memorial Institute Autonomous sensor fish to support advanced hydropower development
US11278004B2 (en) 2015-12-15 2022-03-22 Battelle Memorial Institute Transmitters for animals and methods for transmitting from animals
US10236920B2 (en) 2015-12-15 2019-03-19 Battelle Memorial Institute Signal transmitter and methods for transmitting signals from animals
US10531639B2 (en) 2016-08-25 2020-01-14 Battelle Memorial Institute Systems and methods for monitoring organisms within an aquatic environment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576732A (en) * 1967-02-18 1971-04-27 Varta Ag Cast electrical batteries and process for their production
US4042845A (en) * 1976-03-25 1977-08-16 Sontrix Division Of Pittway Corporation Transducer assembly and method for radiating and detecting energy over controlled beam width
CN1424592A (zh) * 2001-12-10 2003-06-18 法国石油研究所 应用海底采集站的地震数据采集系统
EP1705500B1 (en) * 2005-03-24 2010-06-16 Sap Ag Electronic location code
CN102598716A (zh) * 2009-10-30 2012-07-18 维布兰特美迪医疗电子听觉技术有限公司 可植入的信号传送系统
CN102754249A (zh) * 2009-12-04 2012-10-24 伊格皮切尔科技有限责任公司 具有氟化碳阴极材料的混合物的非水电池
CN202414143U (zh) * 2011-12-27 2012-09-05 中国船舶重工集团公司第七一五研究所 用于声学探测的自动变深拖体
CN102568463A (zh) * 2011-12-31 2012-07-11 中国船舶重工集团公司第七一五研究所 一种耐深水宽带水声换能器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Acoustic concentration of particles in piezoelectric tubes: Theoretical modeling of the effect of cavity shape and symmetry breaking;Shulim Kogan, Gregory Kaduchak, Dipen N. Sinha;《Acoustical Society of America》;20041001;1967-1974
The Effects of Material Selection for Backing and Wear ProtectiodQuarter-Wave Matching of Piezoelectric Polymer Ultrasound Transducers;L.F. Brown;《2000 IEEE ULTRASONICS SYMPOSIUM》;20001231;1029-1032

Also Published As

Publication number Publication date
US20150063072A1 (en) 2015-03-05
CN106170349A (zh) 2016-11-30
WO2015031853A3 (en) 2015-04-23
WO2015031853A2 (en) 2015-03-05
US10033469B2 (en) 2018-07-24
CA2922360A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
CN106170349B (zh) 传声装置及其制作与使用工艺
US10033470B2 (en) Acoustic transmission devices and process for making and using same
CA2976765C (en) Acoustic transmission device and process for tracking selected hosts
US11793165B2 (en) Systems and methods for monitoring organisms within an aquatic environment
US10662759B2 (en) Data logger, manufacturing method thereof and pressure sensor thereof
US20170328197A1 (en) Data Logger, Manufacturing Method Thereof and Real-time Measurement System Thereof
US20220079116A1 (en) Transmitters for Animals and Methods for Transmitting from Animals
CN102105650B (zh) 用于井下发电的装置和方法
US20170350241A1 (en) Data Logger and Charger Thereof
AU2018204527A1 (en) Animal monitoring system
US20120134239A1 (en) Micro sonic transmitter
US10915714B2 (en) Active RFID tag arrangements for actuation of downhole equipment in well fluids
EP0258415A1 (en) IMPLANTABLE IDENTIFICATION ANSWERING DEVICE USING A SYRINGE.
CN1447951A (zh) 存储设备
CN110085010A (zh) 电缆沟异常检测装置和无线接收报警装置
KR20190047241A (ko) 인체 삽입형 모듈
Vellaluru Microsystem Design and Package Integration Concepts for Pipeline and Downhole Monitoring
CN105137466A (zh) 动物跟踪设备及动物跟踪方法
CN205595076U (zh) 一种红外线定位自动语音播报系统
CN107847170A (zh) 分析物传感器
Vesanen Wireless, hermitically sealed actuator and sensor platform with reconfigurable hardware
Obara Development of an acoustic data storage tag for long range fish tracking in the ocean

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190723

Termination date: 20210829