CN106169023B - 一种基于热传导理论的芯片温度预测方法 - Google Patents

一种基于热传导理论的芯片温度预测方法 Download PDF

Info

Publication number
CN106169023B
CN106169023B CN201610507640.0A CN201610507640A CN106169023B CN 106169023 B CN106169023 B CN 106169023B CN 201610507640 A CN201610507640 A CN 201610507640A CN 106169023 B CN106169023 B CN 106169023B
Authority
CN
China
Prior art keywords
temperature
processor
moment
heat transfer
numerical value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610507640.0A
Other languages
English (en)
Other versions
CN106169023A (zh
Inventor
彭元喜
海月
田甜
雷元武
李勇
万江华
王建之
贾宝东
舒雷志
张松松
张榜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201610507640.0A priority Critical patent/CN106169023B/zh
Publication of CN106169023A publication Critical patent/CN106169023A/zh
Application granted granted Critical
Publication of CN106169023B publication Critical patent/CN106169023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种基于热传导理论的芯片温度预测方法,其步骤为:S1:构建处理器的散热模型;采用一维稳态热传导的传热模型,将处理器于t时刻的温度变化率与t时刻的输入功率P(t)、t时刻的温度T(t)、处理器的热电阻R和热电容C关联,即形成温度变化的RC模型;S2:在散热模型中进行RC数值抽取,得到热电阻R和热电容C的数值;S3:利用热电阻R和热电容C的数值,构建温度预测表达式;S4:进行温度预测;输入处理器某时刻的输入功率P(t)以及该时刻的温度T(t),利用步骤S3中的温度预测表达式计算出处理器下一时刻的温度。本发明具有原理简单、操作简便、硬件开销小、处理速度快等优点。

Description

一种基于热传导理论的芯片温度预测方法
技术领域
本发明主要涉及到微处理器的设计领域,特指一种基于热传导理论的芯片温度预测方法。
背景技术
图像处理、现代通信和天气数据分析等应用领域,需要超高性能的处理器对大量数据进行处理。在这种需求的驱动下,处理器的设计、制造技术及其性能也在不断的提高,典型的特征就是处理器的晶体管集成度和工作频率的不断提升。但是高集成度和高工作频率导致了处理器的高功耗密度,进而使得处理器全速运行时会产生大量的热量,也就产生了处理器温度较高的问题。
目前,在处理器设计中,一般设置温度传感器或者程序计数器来感知运行中的处理器的温度,每当处理器的温度到达一个温度警戒值的时候,就被动的降低该处理器的工作电压和工作频率,以达到降低处理器温度的目的。
上述传统的降温措施是以被动的等待温度超过一个特定的预设值为前提的。这个特定的预设值如果设置较高,那么可能在实施降温措施的过程中,有部分电子线路因为降温措施的固有反应时间而遭到不可逆的破坏;如果设置较低,那么就牺牲了处理器的部分性能。
发明内容
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种原理简单、操作简便、硬件开销小、处理速度快的基于热传导理论的芯片温度预测方法。
为解决上述技术问题,本发明采用以下技术方案:
一种基于热传导理论的芯片温度预测方法,其步骤为:
S1:构建处理器的散热模型;采用一维稳态热传导的传热模型,将处理器于t时刻的温度变化率与t时刻的输入功率P(t)、t时刻的温度T(t)、处理器的热电阻R和热电容C关联,即形成温度变化的RC模型;
S2:在散热模型中进行RC数值抽取,得到热电阻R和热电容C的数值;
S3:利用热电阻R和热电容C的数值,构建温度预测表达式;
S4:进行温度预测;输入处理器某时刻的输入功率P(t)以及该时刻的温度T(t),利用步骤S3中的温度预测表达式计算出处理器下一时刻的温度。
作为本发明的进一步改进:所述传热模型为:
其中,就是t时刻的温度变化率,这个温度变化率由采集到的信息当中的温度值相减并除以采集间隔来获取。
作为本发明的进一步改进:所述温度预测表达式为:
其中,P(t)为t时刻的输入功率,T(t)为t时刻的温度,Δt为预测的时间,T(t+Δt)为预测的温度。
作为本发明的进一步改进:所述步骤S2的具体步骤为:
S201:采集处理器运行过程中的输入功率和当前的温度信息,表示为(Pi,Ti)的形式;其中,P代表输入处理器的功率,T代表当前处理器的温度,下标i代表采样的时刻,从而形成若干组组信息对;
S202:将采集到的信息对组合,形成若干个单个的温度变化的RC模型表达式;
S203:将上述若干个RC模型表达式组成若干二元一次方程组的形式,利用这些方程组进行求解,得到R和C的数值;
S204:将求取得到的数值求取平均值,得到最终的热电阻R和热电容C的数值。
作为本发明的进一步改进:所述步骤S2中,利用信息对中温度信息的部分相减,以求得采样间隔t内的温度变化值dT,从而计算得到多组温度变化率的数值;将前两步中采样得到的多组(Pi,Ti)功率-温度信息对以及对应求出的多组温度变化率带入散热模型组成一系列的方程组。
作为本发明的进一步改进:在进行温度预测时,预测时间选择与温度传感器采集处理器信息的时间间隔保持一致。
与现有技术相比,本发明的优点在于:
1、本发明的基于热传导理论的芯片温度预测方法,原理简单、操作简便,RC数值抽取仅仅需要在处理器运行过程中采集输入功率和温度信息,经过上述的方法计算就可得出,具有可执行性好的优点。
2、本发明的基于热传导理论的芯片温度预测方法,由于处理器的热电阻R和热电容C是属于处理器自身的固有特征,一旦确定就无需再次计算。另外在温度预测中,每次温度传感器采集数据时仅仅需要进行两次加法和一次乘法操作,不会大幅占用处理器的计算资源,因此本发明具有运算开销小,速度快的优点。
3、本发明的基于热传导理论的芯片温度预测方法,是随着处理器中温度传感器的工作而工作,执行预测算法的频率和温度传感器采集温度信息的频率保持一致,因而不会产生很大的偏差,具有温度预测精度高的优点。
4、本发明在应用后,能够克服传统被动降温措施所产生的问题,形成主动预测处理器温度的方法。该方法会预测出处理器下一时刻的温度,使得处理器可以主动的采取相应的措施来避免过高温度的产生而损害处理器中的电子线路,同时也最大限度的利用了处理器的高性能,避免了性能的过多流失。
附图说明
图1是在具体应用实例中处理器散热模型示意图。
图2是本发明在具体应用实例中RC抽取流程示意图。
图3是本发明在具体应用实例中进行温度预测的流程示意图。
图4是本发明方法的整体流程示意图。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
如图1所示,为在具体应用实例中一种处理器散热模型的原理示意图。独立的运算节点排列组成一层硅层101,下面设置有散热板102和散热片103,而相同的几个硅层组成整个处理器。由于硅层101和硅层101之间的接触面积要比一层之内运算节点间的接触面积大得多,所以处理器产生的热量大部分是按照从上到下的纵向来传递的,很小一部分热量是通过横向的运算节点传出系统的。因此,本发明的核心思想就是将处理器的散热模型进行化简,认为热流量是按照纵向传递的,横向的热流量忽略不计,靠近散热片的硅层温度较低,而远离散热片的温度较高。在这种情况的设定下,本发明运用一维稳态热传导的传热模型,来作为本发明整个技术方案的主要出发点。
如图4所示,本发明的基于热传导理论的芯片温度预测方法,其步骤为:
S1:构建处理器的散热模型;
采用一维稳态热传导的传热模型,将处理器于t时刻的温度变化率与t时刻的输入功率P(t)、t时刻的温度T(t)、处理器的热电阻R和热电容C关联,即形成温度变化的RC模型。
在具体应用实例中,上述传热模型可以为:
其中,就是t时刻的温度变化率,这个温度变化率可以由采集到的信息当中的温度值相减并除以采集间隔来获取。
S2:在散热模型中进行RC数值抽取,即得到热电阻R和热电容C的数值;
S3:利用热电阻R和热电容C的数值,构建温度预测表达式;
将散热模型进行变化,得到如下的温度预测表达式:
其中,P(t)为t时刻的输入功率,T(t)为t时刻的温度,Δt为预测的时间,T(t+Δt)为预测的温度。
S4:进行温度预测;
输入处理器某时刻的输入功率P(t)以及该时刻的温度T(t),利用步骤S3中的温度预测表达式计算出处理器下一时刻的温度,以供处理器进行相应的温控措施。
在具体应用实例中,所述步骤S2包括以下过程:
S201:采集处理器运行过程中的输入功率和当前的温度信息,表示为(Pi,Ti)的形式。其中,P代表输入处理器的功率,T代表当前处理器的温度,下标i代表采样的时刻。这样就能采集并表示出很多组信息对,如(P1,T1)、(P2,T2)、(P3,T3)等。
S202:将采集到的信息对组合,形成若干个单个的温度变化的RC模型表达式;
S203:将上述若干个RC模型表达式组成若干二元一次方程组的形式,利用这些方程组进行求解,得到R和C的数值;
S204:将求取得到的数值求取平均值,得到最终的热电阻R和热电容C的数值。
如图2所示,也就是说在具体应用实例中,首先采集多组处理器运行过程中的输入功率P和其相对应的处理器温度T,组成形如(P1,T1)、(P2,T2)、(P3,T3)、……、(Pn,Tn)的功率-温度信息对;然后,利用信息对中温度信息的部分相减,也即Tn-Tn-1、Tn-1-Tn-2、……、T2-T1求得采样间隔t内的温度变化值dT,这样就可以计算得到多组温度变化率的数值;将前两步中采样得到的多组(Pi,Ti)功率-温度信息对(i=1,2,3,…,n)以及对应求出的多组温度变化率带入传热模型(温度变化模型的表达式):
组成一系列的方程组;接下来求解这一系列的方程组,得到一系列的Ri和Ci的值;然后求取上一步中R1、R2、R3、……、Rn的平均值R和C1、C2、C3、……、Cn的平均值C,该求得的平均R和C值就是最终抽取得到的RC值,RC数值抽取的流程结束。
在具体应用实例中,上述步骤S3和步骤S4的具体操作为:
如图3所示,首先将抽取出来的R和C的数值带入到温度预测表达式:
形成该表达式的基本要素,等待输入功率P,相应的温度T以及采样间隔Δt的确定;然后采集处理器运行某时刻的输入功率P,该时刻对应的温度T以及温度传感器的采样间隔Δt的信息,将这些信息也带入到温度预测表达式中,这样一来预测表达式中的所有要素全部准备完成;最后一步是根据表达式计算得到预测的温度T(t+Δt),温度预测的流程结束。
在较佳实施例中,预测时间Δt可以选择与温度传感器采集处理器信息的时间间隔保持一致,这样能够最大可能的保证预测出来的温度有足够的精确度。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (5)

1.一种基于热传导理论的芯片温度预测方法,其特征在于,步骤为:
S1:构建处理器的散热模型;采用一维稳态热传导的传热模型,将处理器于t时刻的温度变化率与t时刻的输入功率P(t)、t时刻的温度T(t)、处理器的热电阻R和热电容C关联,即形成温度变化的RC模型;
S2:在散热模型中进行RC数值抽取,得到热电阻R和热电容C的数值;
S3:利用热电阻R和热电容C的数值,构建温度预测表达式;
S4:进行温度预测;输入处理器某时刻的输入功率P(t)以及该时刻的温度T(t),利用步骤S3中的温度预测表达式计算出处理器下一时刻的温度;
所述传热模型为:
其中,就是t时刻的温度变化率,这个温度变化率由采集到的信息当中的温度值相减并除以采集间隔来获取。
2.根据权利要求1所述的基于热传导理论的芯片温度预测方法,其特征在于,所述温度预测表达式为:
其中,P(t)为t时刻的输入功率,T(t)为t时刻的温度,Δt为预测的时间,T(t+Δt)为预测的温度。
3.根据权利要求1或2所述的基于热传导理论的芯片温度预测方法,其特征在于,所述步骤S2的具体步骤为:
S201:采集处理器运行过程中的输入功率和当前的温度信息,表示为(Pi,Ti)的形式;其中,P代表处理器的输入功率,T代表当前处理器的温度,下标i代表采样的时刻,从而形成若干组信息对;
S202:将采集到的信息对组合,形成若干个单个的温度变化的RC模型表达式;
S203:将上述若干个RC模型表达式组成若干二元一次方程组的形式,利用这些方程组进行求解,得到R和C的数值;
S204:将求取得到的数值求取平均值,得到最终的热电阻R和热电容C的数值。
4.根据权利要求3所述的基于热传导理论的芯片温度预测方法,其特征在于,所述步骤S2中,利用信息对中温度信息的部分相减,以求得采样间隔t内的温度变化值dT,从而计算得到多组温度变化率的数值;将步骤S201、S202中采样得到的多组(Pi,Ti)功率-温度信息对以及对应求出的多组温度变化率带入散热模型组成一系列的方程组。
5.根据权利要求1或2所述的基于热传导理论的芯片温度预测方法,其特征在于,在进行温度预测时,预测时间选择与温度传感器采集处理器信息的时间间隔保持一致。
CN201610507640.0A 2016-06-30 2016-06-30 一种基于热传导理论的芯片温度预测方法 Active CN106169023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610507640.0A CN106169023B (zh) 2016-06-30 2016-06-30 一种基于热传导理论的芯片温度预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610507640.0A CN106169023B (zh) 2016-06-30 2016-06-30 一种基于热传导理论的芯片温度预测方法

Publications (2)

Publication Number Publication Date
CN106169023A CN106169023A (zh) 2016-11-30
CN106169023B true CN106169023B (zh) 2019-01-22

Family

ID=58064668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610507640.0A Active CN106169023B (zh) 2016-06-30 2016-06-30 一种基于热传导理论的芯片温度预测方法

Country Status (1)

Country Link
CN (1) CN106169023B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752651B (zh) * 2017-11-03 2021-08-17 株洲中车时代电气股份有限公司 一种牵引电机超温故障预测的方法及系统
CN110134567B (zh) * 2019-04-30 2023-03-14 西北工业大学 基于卷积神经网络的微处理器非均匀采样热分布重构方法
CN110673015B (zh) * 2019-09-28 2021-09-03 西南电子技术研究所(中国电子科技集团公司第十研究所) 模拟芯片发热功率及表面温度的测试方法
TWI716240B (zh) * 2019-12-27 2021-01-11 長聖儀器股份有限公司 熱擴散性能量測系統與方法
CN111442855A (zh) * 2020-04-07 2020-07-24 珠海格力电器股份有限公司 一种温度检测装置、功率模块及其温度检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472088A (zh) * 2013-08-13 2013-12-25 杭州远方光电信息股份有限公司 一种热阻分析方法
CN104182568A (zh) * 2014-07-30 2014-12-03 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于ansys有限元热分析的芯片温度预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472088A (zh) * 2013-08-13 2013-12-25 杭州远方光电信息股份有限公司 一种热阻分析方法
CN104182568A (zh) * 2014-07-30 2014-12-03 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于ansys有限元热分析的芯片温度预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三维单芯片多处理器温度特性;王凤娟等;《计算物理》;20121130;第29卷(第6期);第938-942页
多芯片组件基板的热效应分析;张亚平等;《电力电子技术》;20090228;第43卷(第2期);第67-69页

Also Published As

Publication number Publication date
CN106169023A (zh) 2016-11-30

Similar Documents

Publication Publication Date Title
CN106169023B (zh) 一种基于热传导理论的芯片温度预测方法
US11215657B2 (en) Real-time online prediction method for dynamic junction temperature of semiconductor power device
CN106484928B (zh) 基于多软件联合的开关电源电热耦合仿真方法
US9601404B2 (en) Thermal resistance measuring method and thermal resistance measuring device
US10162394B2 (en) Systems and methods for sustainable self-cooling of central processing unit thermal hot spots using thermoelectric materials
US10163686B2 (en) Thermal sensor arrangement and method of making the same
US20150103866A1 (en) DIGITAL TEMPERATURE ESTIMATORS (DTEs) DISPOSED IN INTEGRATED CIRCUITS (ICs) FOR ESTIMATING TEMPERATURE WITHIN THE ICs, AND RELATED SYSTEMS AND METHODS
Wu et al. Optimal estimation of free energies and stationary densities from multiple biased simulations
Wang et al. An analytical thermal model for three-dimensional integrated circuits with integrated micro-channel cooling
Khan et al. Adaptive multi‐resolution framework for fast simulation of power electronic circuits
Chen et al. Design of thermal management unit with vertical throttling scheme for proactive thermal-aware 3D NoC systems
Yuan et al. Improved Cauer thermal network considering thermal coupling effects of multi‐chip modules
CN105653501B (zh) 一种加速克里金插值的方法
Zhang et al. Temperature-power consumption relationship and hot-spot migration for fpga-based system
Sun et al. Junction temperature estimation in IGBT power modules based on Kalman filter
Li et al. On an M/G/1 queue in random environment with Min (N, V) policy
Tang et al. Searching the Internet of Things using coding enabled index technology
Li et al. An update of non-iterative solutions for surface fluxes under unstable conditions
CN113190955A (zh) 一种用于测井仪器的温度预测模型生成方法
Guemo et al. Application of classic and T lumped parameter thermal models for Permanent Magnet Synchronous Machines
Zhou et al. Physics‐based spice model on the dynamic characteristics of silicon carbide Schottky barrier diode
Wang Research on moving objects trajectories collection based on data mining
Seetharaman et al. Analysis of reliability based on thermal cycle and aging effect in electron devices
Zhu et al. Analytical estimation of breakdown voltage in insulated-gate bipolar transistors
Shen et al. Transient simulations and theoretical modeling of near-junction heat conduction in GaN-on-diamond HEMT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant