CN106166616A - A kind of preparation method of 3D printing metal dust - Google Patents

A kind of preparation method of 3D printing metal dust Download PDF

Info

Publication number
CN106166616A
CN106166616A CN201610863066.2A CN201610863066A CN106166616A CN 106166616 A CN106166616 A CN 106166616A CN 201610863066 A CN201610863066 A CN 201610863066A CN 106166616 A CN106166616 A CN 106166616A
Authority
CN
China
Prior art keywords
metal dust
preparation
printing metal
alloy
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610863066.2A
Other languages
Chinese (zh)
Inventor
李祥明
田源
李贤良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mstar Technology Ltd Liuzhou
Original Assignee
Mstar Technology Ltd Liuzhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mstar Technology Ltd Liuzhou filed Critical Mstar Technology Ltd Liuzhou
Priority to CN201610863066.2A priority Critical patent/CN106166616A/en
Publication of CN106166616A publication Critical patent/CN106166616A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to the preparation method of a kind of 3D printing metal dust, it includes each metal simple-substance is carried out melting, until molten clear after drag for clean scum silica frost, obtain aluminium alloy;The red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, and cooling obtains alloy strip;Alloy strip is immersed in hydrochloric acid, is washed out, is dried;The dried alloy strip of cutting, then ball milling, obtain alloyed powder;By alloyed powder and liquid mixing, and add organic bond and stir, be configured to metal powder slurry;Again slurry is made spherical 3D printing metal dust by sponging granulator.Aluminium alloy is thrown away by the present invention by the red copper wheel rotated; aluminium alloy can be made quickly to cool down; ensure that metal is shorter in the hot stage time of staying; alloying element has little time diffusion; thus thinning microstructure; reduce segregation, then can be prepared by sponging granulator that particle diameter is little, the 3D printing metal dust of uniform particle sizes.

Description

A kind of preparation method of 3D printing metal dust
Technical field
The present invention relates to 3D printing metal dust, the preparation method of a kind of 3D printing metal dust.
Background technology
" 3D printing " technology, also referred to as increases material manufacturing technology, belongs to the one of rapid shaping technique.It is a kind of with number Based on word model file, the discrete and numerical control molding system by software hierarchy, utilize the mode such as laser beam, hot melt nozzle by powder Powder metal or plastics etc. can successively be piled up and cohere superposition molding by jointing material, finally produce the technology of entity products. The central principle that 3D prints is " Layered manufacturing, successively superposition ", and compared with the manufacturing technology of tradition " subtracting material manufacture ", 3D prints Technology by machinery, material, computer, communicate, the technological incorporation such as control technology and biomedicine through, have realize integrally manufactured Complex-shaped workpieces, it is greatly shortened life cycle of the product, saves lot of materials, improve the clear superiority such as production efficiency.Concrete next Saying: first, the application of 3D printing technique will constantly expand;Secondly, 3D printing technique is in the application of each application Aspect deepens continuously;Furthermore, the materialization form of 3D printing technique self will be abundanter.Thus, this technology is inevitable soon Rapid osmotic is to national defence, Aero-Space, electric power, automobile, biomedical mould, casting, electric power, agricultural, household electrical appliances, technique in the future The numerous areas such as the fine arts, animation, profound influence the design concept in above-mentioned field, and coordinates that other technologies are perfect, even updates Some quotidian fabrication scheme, makes manufacture the most intelligent, simple and direct, green, and properties of product more press close to perfect condition.Now 3D printing technique has become one of emerging technology of paying close attention to most in the whole world.This novel mode of production and other digital production moulds Formula will promote the realization of the third time industrial revolution together.The wherein big bottleneck that restriction 3D printing technique develops rapidly is to print material Material, particularly metallic print material.Research and development and the metal material that production performance is more preferable and versatility is higher are to carry 3D printing technique Key.Directly use 3D printing technique manufacture view at high-performance metal component, need that particle diameter is thin, uniform particle sizes, high spherical Degree, all kinds of metal dusts of low oxygen content.
Summary of the invention
For above-mentioned technical problem, the present invention provide one to prepare particle diameter is less, the more uniform 3D of particle diameter prints and uses The preparation method of metal dust.
The technical solution used in the present invention is: the preparation method of a kind of 3D printing metal dust, and it comprises the following steps:
(1) each metal simple-substance is carried out melting, until molten clear after drag for clean scum silica frost, obtain aluminium alloy;
(2) the red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, and cooling obtains alloy strip;
(3) alloy strip is immersed in hydrochloric acid, is washed out, is dried;
(4) the dried alloy strip of cutting, then ball milling, obtains alloyed powder;
(5) by alloyed powder and liquid mixing, and add organic bond and stir, be configured to metal powder slurry;
(6) again slurry is made spherical 3D printing metal dust by sponging granulator.
As preferably, described metal simple-substance uses aluminum shot, shot copper and nickel shot, and wherein the content of nickel is 10wt%, the content of aluminum Being 12 wt %, surplus is copper.
As preferably, described liquid uses distilled water or deionized water, and the mass ratio of alloyed powder and liquid is (2.5 3): 1.
As preferably, described organic bond uses metal granulating agent, and its addition is the 2 4% of alloyed powder quality.
As preferably, described sponging granulator uses centrifugal spraying granulator or press atomization comminutor.
As preferably, the rotating speed of described centrifugal spraying granulator is 5,000 8000 revs/min, the pressure of press atomization comminutor Power is 15 25kg/ cm 2
As preferably, the inlet temperature of described sponging granulator dry air is 250 350 DEG C, outlet temperature is 100 150℃;The flow of dry air is 100 200 Nm3 /h;Charging rate is 10 20 kg/h.
As can be known from the above technical solutions, aluminium alloy is thrown away by the present invention by the red copper wheel rotated, and aluminium alloy can be made quick Cooling, it is ensured that metal is shorter in the hot stage time of staying, alloying element has little time to spread, thus thinning microstructure, reduce segregation, Can be prepared that particle diameter is little, the 3D printing metal dust of uniform particle sizes again by sponging granulator.
Detailed description of the invention
The present invention is described more detail below, and illustrative examples and explanation in this present invention are used for explaining the present invention, But it is not as a limitation of the invention.
A kind of preparation method of 3D printing metal dust, it comprises the following steps:
With aluminum, copper, nickel shot as raw material, and by the content of nickel be 10wt%, the content of aluminum be 12 wt %, surplus be that copper is joined Material;Then being placed in induction heater by aluminum shot, aluminum shot adds shot copper and nickel shot after dissolving and carries out melting, until molten clear after drag for clean floating Slag, obtains aluminium alloy;The red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, and cooling obtains alloy strip;By alloy strip It is immersed in several minutes in the hydrochloric acid of 10%, to remove the oxide layer of alloy strip surface, and through the rinsing of repeatedly distilled water and dehydrated alcohol After cleaning, then dry in vacuum drying oven;The dried alloy strip of cutting, then ball milling, obtain alloyed powder;Ball-milling Time is 18 22h, ratio of grinding media to material is 4.5:1;Then by alloyed powder and liquid mixing, and add metal granulating agent and stir, be configured to Metal powder slurry;Again slurry is prepared spherical, that particle diameter is less, grain by centrifugal spraying granulator or press atomization comminutor The 3D printing metal dust that footpath is evenly distributed.
Embodiment 1
Being placed in induction heater by 1wt % aluminum shot, aluminum shot adds 89wt % shot copper after dissolving and 10wt% nickel shot carries out melting, Until molten clear after drag for clean scum silica frost, obtain aluminium alloy;The red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, and cooling is closed Gold ribbon;Alloy strip is immersed in several minutes in the hydrochloric acid of 10%, and after the rinsing of repeatedly distilled water and washes of absolute alcohol, then Dry in vacuum drying oven;Then the dried alloy strip of cutting, then use the ratio of grinding media to material ball milling 18h of 4.5:1, obtain alloy Powder;Then alloyed powder is mixed with distilled water, and the mass ratio of alloyed powder and distilled water is 2.5:1, and add alloyed powder quality 2% metal granulating agent stir, be configured to metal powder slurry;Again slurry is carried out pelletize by centrifugal spraying granulator, its The inlet temperature of middle sponging granulator dry air is 250 DEG C, outlet temperature is 100 DEG C, the flow of dry air is 100 Nm3 / h, charging rate are 10kg/h, and the rotating speed of centrifugal spraying granulator is 5,000 8000 revs/min, thus obtain spherical 3D and beat Print metal dust;The particle size distribution range of this metal dust is 52 75nm, and hardness is up to 38.3HRC.
Embodiment 2
Being placed in induction heater by 1.5 wt % aluminum shots, aluminum shot adds 88.5 wt % shot coppers after dissolving and 10wt% nickel shot is carried out Melting, until molten clear after drag for clean scum silica frost, obtain aluminium alloy;The red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, cooling Obtain alloy strip;Alloy strip is immersed in several minutes in the hydrochloric acid of 10%, and through the rinsing of repeatedly distilled water and washes of absolute alcohol After, then dry in vacuum drying oven;Then the dried alloy strip of cutting, then use the ratio of grinding media to material ball milling 18h of 4.5:1, To alloyed powder;Then alloyed powder is mixed with deionized water, and the mass ratio of alloyed powder and deionized water is 2.8:1, and add 3% metal granulating agent of alloyed powder quality stirs, and is configured to metal powder slurry;Again by slurry by press atomization comminutor Carry out pelletize, wherein the inlet temperature of sponging granulator dry air be 300 DEG C, outlet temperature be 130 DEG C, the stream of dry air Amount is 150 Nm3 / h, charging rate are 15 kg/h, and the pressure of press atomization comminutor is 25kg/ cm 2, thus obtain ball The 3D printing metal dust of shape;The particle size distribution range of this metal dust is 48 69nm, and hardness is up to 46.1HRC.
Embodiment 3
Being placed in induction heater by 2 wt % aluminum shots, aluminum shot adds 88wt % shot copper after dissolving and 10wt% nickel shot carries out melting, Until molten clear after drag for clean scum silica frost, obtain aluminium alloy;The red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, and cooling is closed Gold ribbon;Alloy strip is immersed in several minutes in the hydrochloric acid of 10%, and after the rinsing of repeatedly distilled water and washes of absolute alcohol, then Dry in vacuum drying oven;Then the dried alloy strip of cutting, then use the ratio of grinding media to material ball milling 18h of 4.5:1, obtain alloy Powder;Then alloyed powder is mixed with deionized water, and the mass ratio of alloyed powder and deionized water is 3:1, and add alloy opaque 4% metal granulating agent of amount stirs, and is configured to metal powder slurry;Again slurry is carried out pelletize by press atomization comminutor, Wherein the inlet temperature of sponging granulator dry air be 350 DEG C, outlet temperature be 150 DEG C, the flow of dry air be 200 Nm 3 / h, charging rate are 20 kg/h, and the pressure of press atomization comminutor is 15kg/ cm 2, thus obtain spherical 3D and beat Print metal dust;The particle size distribution range of this metal dust is 53 70nm, and hardness is up to 38.9HRC.
The technical scheme provided the embodiment of the present invention above is described in detail, specific case used herein Principle and embodiment to the embodiment of the present invention are set forth, and the explanation of above example is only applicable to help to understand this The principle of inventive embodiments;Simultaneously for one of ordinary skill in the art, according to the embodiment of the present invention, in specific embodiment party All will change in formula and range of application, in sum, this specification content should not be construed as limitation of the present invention.

Claims (7)

1. a preparation method for 3D printing metal dust, it comprises the following steps:
(1) each metal simple-substance is carried out melting, until molten clear after drag for clean scum silica frost, obtain aluminium alloy;
(2) the red copper wheel surface that alloy liquid droplet drops down onto high speed rotating throws away, and cooling obtains alloy strip;
(3) alloy strip is immersed in hydrochloric acid, is washed out, is dried;
(4) the dried alloy strip of cutting, then ball milling, obtains alloyed powder;
(5) by alloyed powder and liquid mixing, and add organic bond and stir, be configured to metal powder slurry;
(6) again slurry is made spherical 3D printing metal dust by sponging granulator.
The preparation method of 3D printing metal dust the most according to claim 1, it is characterised in that: described metal simple-substance uses Aluminum shot, shot copper and nickel shot, wherein the content of nickel is 10wt%, and the content of aluminum is 12 wt %, and surplus is copper.
3. the preparation method of 3D printing metal dust as claimed in claim 1, it is characterised in that: described liquid uses distilled water Or deionized water, and the mass ratio of alloyed powder and liquid is (2.5 3): 1.
4. the preparation method of 3D printing metal dust as claimed in claim 1, it is characterised in that: described organic bond uses Metal granulating agent, its addition is the 2 4% of alloyed powder quality.
5. the preparation method of 3D printing metal dust as claimed in claim 1, it is characterised in that: described sponging granulator uses Centrifugal spraying granulator or press atomization comminutor.
6. the preparation method of 3D printing metal dust as claimed in claim 5, it is characterised in that: described centrifugal spraying granulator Rotating speed be 5,000 8000 revs/min, the pressure of press atomization comminutor is 15 25kg/ cm 2
7. the preparation method of 3D printing metal dust as claimed in claim 5, it is characterised in that: described sponging granulator is dried The inlet temperature of air is 250 350 DEG C, outlet temperature is 100 150 DEG C;The flow of dry air is 100 200 Nm3 /h;Charging rate is 10 20 kg/h.
CN201610863066.2A 2016-09-29 2016-09-29 A kind of preparation method of 3D printing metal dust Pending CN106166616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610863066.2A CN106166616A (en) 2016-09-29 2016-09-29 A kind of preparation method of 3D printing metal dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610863066.2A CN106166616A (en) 2016-09-29 2016-09-29 A kind of preparation method of 3D printing metal dust

Publications (1)

Publication Number Publication Date
CN106166616A true CN106166616A (en) 2016-11-30

Family

ID=57377336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610863066.2A Pending CN106166616A (en) 2016-09-29 2016-09-29 A kind of preparation method of 3D printing metal dust

Country Status (1)

Country Link
CN (1) CN106166616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015271A (en) * 2017-12-12 2018-05-11 成都育芽科技有限公司 A kind of 3D printing high strength and modulus composite particulate material preparation method
CN109894609A (en) * 2019-03-19 2019-06-18 柳州增程材料科技有限公司 A kind of production technology of increasing material manufacturing material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1390964A (en) * 2002-07-19 2003-01-15 同济大学 Process for preparing alloy block from powdered Zn and Al
US20030183305A1 (en) * 2000-10-06 2003-10-02 Ryo Murakami Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US20030217788A1 (en) * 2000-04-12 2003-11-27 Akira Arai Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US20050207931A1 (en) * 2004-03-21 2005-09-22 Toyota Motorsport Gmbh unknown
US20070199410A1 (en) * 2003-07-11 2007-08-30 H.C. Starck Gmbh. Method For The Production Of Fine Metal Powder, Alloy Powder And Composite Powder
CN101710521A (en) * 2009-12-18 2010-05-19 浙江大学 Iron-based nanocrystalline soft magnetic alloy with electromagnetic interference resistance and preparation method thereof
CN102543340A (en) * 2011-12-30 2012-07-04 北矿磁材科技股份有限公司 High-performance samarium-cobalt magnetic powder and preparation method thereof
CN103785860A (en) * 2014-01-22 2014-05-14 宁波广博纳米新材料股份有限公司 Metal powder for 3D printer and preparing method thereof
CN104946915A (en) * 2015-07-03 2015-09-30 东北大学 Preparation method of fine-grained CuCr alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030217788A1 (en) * 2000-04-12 2003-11-27 Akira Arai Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets
US20030183305A1 (en) * 2000-10-06 2003-10-02 Ryo Murakami Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
CN1390964A (en) * 2002-07-19 2003-01-15 同济大学 Process for preparing alloy block from powdered Zn and Al
US20070199410A1 (en) * 2003-07-11 2007-08-30 H.C. Starck Gmbh. Method For The Production Of Fine Metal Powder, Alloy Powder And Composite Powder
US20050207931A1 (en) * 2004-03-21 2005-09-22 Toyota Motorsport Gmbh unknown
CN101710521A (en) * 2009-12-18 2010-05-19 浙江大学 Iron-based nanocrystalline soft magnetic alloy with electromagnetic interference resistance and preparation method thereof
CN102543340A (en) * 2011-12-30 2012-07-04 北矿磁材科技股份有限公司 High-performance samarium-cobalt magnetic powder and preparation method thereof
CN103785860A (en) * 2014-01-22 2014-05-14 宁波广博纳米新材料股份有限公司 Metal powder for 3D printer and preparing method thereof
CN104946915A (en) * 2015-07-03 2015-09-30 东北大学 Preparation method of fine-grained CuCr alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015271A (en) * 2017-12-12 2018-05-11 成都育芽科技有限公司 A kind of 3D printing high strength and modulus composite particulate material preparation method
CN109894609A (en) * 2019-03-19 2019-06-18 柳州增程材料科技有限公司 A kind of production technology of increasing material manufacturing material

Similar Documents

Publication Publication Date Title
CN106216698A (en) A kind of preparation technology of 3D printing alloy powder
CN108265216A (en) Cermet material based on (Ti, Me) CN-TiCN-MxC-Co and preparation method thereof
CN103643067B (en) A kind of nanometer silicon carbide strengthens metal-base composites and preparation method thereof
CN105945226B (en) A kind of method for making metal filigree
CN107096924A (en) The preparation method and product of a kind of spherical metal base rare earth nano composite powder available for 3 D-printing
CN106216699A (en) A kind of 3D prints and uses metal dust preparation technology
CN109692967A (en) A kind of 3D printing bulk powder and preparation method thereof and Method of printing
CN102806310B (en) Metal component casting process
WO2017114065A1 (en) Method for preparing environmentally friendly casting material
CN103924129B (en) A kind of rapid solidification aluminum alloy materials and preparation method thereof
CN107745068A (en) A kind of laser 3D printing precoated sand and preparation method thereof
CN106166616A (en) A kind of preparation method of 3D printing metal dust
CN105108134B (en) A kind of paste metallic composite for 3D printing and preparation method thereof
CN103042173A (en) Negative-pressure airflow expendable pattern based energy-saving and effect-enhancing casting process
CN110918867A (en) Special precoated sand for stainless steel and preparation process thereof
CN106424743A (en) Production method for high-strength and high-modulus additive manufacturing materials
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
CN106216697A (en) The preparation method of 3D printing alloy powder
CN106391993B (en) One kind printing rapid shaping precoated sand preparation method for 3DP
CN106346011A (en) Preparation method of composite metal for 3D printing
CN106350710A (en) Preparation method of aluminum-magnesium alloy applied to automobile engines
CN109943749B (en) Copper alloy spherical powder material applied to ornament 3D printing head die
CN106747468A (en) Drain tube material for aerosolization titanium or titanium alloy powder and preparation method thereof
CN108788003A (en) A kind of powdered mold release agents and preparation method thereof and application method
CN106270541A (en) High intensity increases the processing method that material manufactures material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161130