CN106159981A - A kind of mixed energy storage system and micro-grid system - Google Patents

A kind of mixed energy storage system and micro-grid system Download PDF

Info

Publication number
CN106159981A
CN106159981A CN201510178136.6A CN201510178136A CN106159981A CN 106159981 A CN106159981 A CN 106159981A CN 201510178136 A CN201510178136 A CN 201510178136A CN 106159981 A CN106159981 A CN 106159981A
Authority
CN
China
Prior art keywords
type
parameter value
energy storage
storage device
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510178136.6A
Other languages
Chinese (zh)
Other versions
CN106159981B (en
Inventor
雷彪
张强
朱春辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertiv Tech Co Ltd
Original Assignee
Emerson Network Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Network Power Co Ltd filed Critical Emerson Network Power Co Ltd
Priority to CN201510178136.6A priority Critical patent/CN106159981B/en
Publication of CN106159981A publication Critical patent/CN106159981A/en
Application granted granted Critical
Publication of CN106159981B publication Critical patent/CN106159981B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明实施例提供了一种混合储能系统和微电网系统,用以解决在现有的混合储能系统中,由于需要由能量管理单元来确定蓄电池充放电功率和超级电容的充放电功率,从而导致的系统实现较复杂的问题。该系统中的第一类双向功率变换器,在母线上的物理参数的参数值发生变化时,按照预设的充放电速度的变化率改变对第一类储能器件进行充放电时的充放电速度;直至物理参数的参数值等于第一参数值或者等于第二参数值时,对第一类储能器件进行充放电时的充放电速度不再改变;第二类双向功率变换器,用于在参数值到达预设范围的边界值时,对第二类储能器件进行充放电,使得参数值维持在预设范围的边界值,第一参数值和第二参数值均位于所述预设范围内。

The embodiment of the present invention provides a hybrid energy storage system and a microgrid system to solve the problem that in the existing hybrid energy storage system, the energy management unit needs to determine the charging and discharging power of the storage battery and the charging and discharging power of the supercapacitor. The resulting system implementation is more complicated. The first type of bidirectional power converter in the system, when the parameter value of the physical parameter on the bus changes, changes the charge and discharge rate when charging and discharging the first type of energy storage device according to the change rate of the preset charge and discharge speed Speed; until the parameter value of the physical parameter is equal to the first parameter value or equal to the second parameter value, the charging and discharging speed of the first type of energy storage device will not change; the second type of bidirectional power converter is used for When the parameter value reaches the boundary value of the preset range, the second type of energy storage device is charged and discharged, so that the parameter value is maintained at the boundary value of the preset range, and both the first parameter value and the second parameter value are within the preset range within range.

Description

一种混合储能系统和微电网系统A hybrid energy storage system and microgrid system

技术领域technical field

本发明涉及电力电子技术领域,尤其涉及一种混合储能系统和微电网系统。The invention relates to the technical field of power electronics, in particular to a hybrid energy storage system and a microgrid system.

背景技术Background technique

目前在海岛及偏远地区,一般采用微电网供电,即主要依靠光伏发电、风力发电、潮汐发电等新型能源发电。因为这些新能源的间歇性,这些新能源并不能提供持续可靠的电源,因此,微电网系统中需要储能系统以维持电能的稳定。At present, in islands and remote areas, micro-grids are generally used for power supply, that is, they mainly rely on new energy sources such as photovoltaic power generation, wind power generation, and tidal power generation. Because of the intermittent nature of these new energy sources, these new energy sources cannot provide continuous and reliable power supply. Therefore, an energy storage system is needed in the microgrid system to maintain the stability of electric energy.

目前,一般采用蓄电池和超级电容组成混合储能系统,蓄电池能量密度高,但频繁地大电流充放电会缩短其寿命,而超级电容充放电功率大,循环寿命长,但能量密度小。采用蓄电池和超级电容组成混合储能系统可以充分利用蓄电池和超At present, batteries and supercapacitors are generally used to form a hybrid energy storage system. Batteries have high energy density, but frequent high-current charging and discharging will shorten their life, while supercapacitors have high charging and discharging power and long cycle life, but low energy density. A hybrid energy storage system composed of batteries and supercapacitors can make full use of batteries and supercapacitors.

图1所示的微电网系统包括混合储能系统11、负载12、光伏发电系统13、风力发电系统14,其中,混合储能系统11包括蓄电池、超级电容、能量管理单元15、与蓄电池和直流/交流母线相连的双向功率变换器1、与超级电容和直流/交流母线相连的双向功率变换器2,其中,能量管理单元15分别获取风力发电系统输出到直流/交流母线的功率Pw,光伏发电系统13输出到直流/交流母线的功率Pv,负载12消耗的功率Pl,从而确定储能系统11的充放电功率Pw+Pv-Pl(当Pw+Pv-Pl大于0时,确定储能系统11的充电功率;当Pw+Pv-Pl小于0时,确定储能系统11的放电功率);并将确定的充放电功率进行低通滤波,得到蓄电池充放电功率,然后将确定的充放电功率与蓄电池的充放电功率之差作为超级电容的充放电功率;双向功率变换器1根据蓄电池的充放电功率对蓄电池进行充放电,双向功率变换器2根据超级电容的充放电功率对超级电容进行充放电。也就是说,在确定充放电功率之后,确定的充放电功率中的高频部分作为蓄电池充放电功率,确定的充放电功率中的低频部分作为超级电容的充放电功率。The microgrid system shown in Figure 1 includes a hybrid energy storage system 11, a load 12, a photovoltaic power generation system 13, and a wind power generation system 14, wherein the hybrid energy storage system 11 includes a battery, a supercapacitor, an energy management unit 15, and a A bidirectional power converter 1 connected to the DC/AC bus, a bidirectional power converter 2 connected to the supercapacitor and the DC/AC bus, wherein the energy management unit 15 obtains the power Pw output from the wind power generation system to the DC/AC bus, and the photovoltaic power generation The power Pv output by the system 13 to the DC/AC bus and the power Pl consumed by the load 12 determine the charging and discharging power Pw+Pv-Pl of the energy storage system 11 (when Pw+Pv-Pl is greater than 0, determine the power of the energy storage system 11 charging power; when Pw+Pv-Pl is less than 0, determine the discharge power of the energy storage system 11); and perform low-pass filtering on the determined charging and discharging power to obtain the battery charging and discharging power, and then combine the determined charging and discharging power with The difference between the charging and discharging power of the battery is used as the charging and discharging power of the super capacitor; the bidirectional power converter 1 charges and discharges the battery according to the charging and discharging power of the battery, and the bidirectional power converter 2 charges and discharges the super capacitor according to the charging and discharging power of the super capacitor . That is to say, after the charging and discharging power is determined, the high-frequency part of the determined charging and discharging power is used as the charging and discharging power of the storage battery, and the low-frequency part of the determined charging and discharging power is used as the charging and discharging power of the super capacitor.

能量管理单元需要采集各输入源和负载的电流、电压,计算出各种源和负载的功率,再经过滤波才能得到蓄电池和超级电容的功率给定。这就需要增加电流、电压采样电路或在输入源、负载和能量管理单元间增加高速通讯线才能实现,而且能量管理单元和双向功率变换器1、双向功率变换器2之间也需要有高速的通信线。系统实现较复杂,硬件成本高,而且通信线易受干扰,可靠性较差。此外,由于各单元电路之间需要有信号线连接,摆放位置受限,不利于在应用于分布式发电场合的应用。The energy management unit needs to collect the current and voltage of each input source and load, calculate the power of each source and load, and then filter to obtain the power reference of the battery and supercapacitor. This requires adding current and voltage sampling circuits or adding high-speed communication lines between the input source, load, and energy management unit, and high-speed communication between the energy management unit and bidirectional power converter 1 and bidirectional power converter 2 is also required. communication line. The system implementation is more complicated, the hardware cost is high, and the communication line is easily disturbed, and the reliability is poor. In addition, since signal wires are required to connect each unit circuit, the placing position is limited, which is not conducive to the application in distributed power generation occasions.

综上所述,在现有的混合储能系统中,需要由能量管理单元来确定蓄电池充放电功率和超级电容的充放电功率,这会导致系统实现较复杂,通信线易受干扰,可靠性较差,并限制采用混合储能系统的电网系统应用场合。To sum up, in the existing hybrid energy storage system, the energy management unit needs to determine the charging and discharging power of the battery and the charging and discharging power of the supercapacitor, which will make the system implementation more complex, the communication line is susceptible to interference, and the reliability Poor, and limit the application of grid system using hybrid energy storage system.

发明内容Contents of the invention

本发明实施例提供了一种混合储能系统和微电网系统,用以解决在现有的混合储能系统中,由于需要由能量管理单元来确定蓄电池充放电功率和超级电容的充放电功率,这会导致系统实现较复杂,限制了采用混合储能系统的电网系统应用场合。The embodiment of the present invention provides a hybrid energy storage system and a microgrid system to solve the problem that in the existing hybrid energy storage system, the energy management unit needs to determine the charging and discharging power of the storage battery and the charging and discharging power of the supercapacitor. This will lead to more complex system implementation, which limits the application of grid systems using hybrid energy storage systems.

基于上述问题,本发明实施例提供的一种混合储能系统,包括第一类双向功率变换器、第一类储能器件、第二类双向功率变换器和第二类储能器件;所述第一类双向功率变换器,用于获取母线上的物理参数的参数值,并在所述参数值发生变化时,按照预设的充放电速度的变化率改变对第一类储能器件进行充放电时的充放电速度;直至所述物理参数的参数值等于第一参数值或者等于第二参数值时,对第一类储能器件进行充放电时的充放电速度不再改变;所述第二类双向功率变换器,用于获取所述物理参数的参数值,并在所述参数值到达预设范围的边界值时,对第二类储能器件进行充放电,使得所述参数值维持在预设范围的边界值,所述第一参数值和所述第二参数值均位于所述预设范围内。Based on the above problems, a hybrid energy storage system provided by an embodiment of the present invention includes a first-type bidirectional power converter, a first-type energy storage device, a second-type bidirectional power converter, and a second-type energy storage device; The first type of bidirectional power converter is used to obtain the parameter value of the physical parameter on the bus, and when the parameter value changes, the first type of energy storage device is charged according to the change rate of the preset charging and discharging speed. The charging and discharging speed during discharge; until the parameter value of the physical parameter is equal to the first parameter value or equal to the second parameter value, the charging and discharging speed when charging and discharging the first type of energy storage device will not change; the second The second-type bidirectional power converter is used to obtain the parameter value of the physical parameter, and when the parameter value reaches the boundary value of the preset range, charge and discharge the second-type energy storage device, so that the parameter value maintains At the boundary value of the preset range, both the first parameter value and the second parameter value are within the preset range.

本发明实施例提供的一种微电网系统,包括本发明实施例提供的混合储能系统。A microgrid system provided by an embodiment of the present invention includes the hybrid energy storage system provided by the embodiment of the present invention.

本发明实施例的有益效果包括:The beneficial effects of the embodiments of the present invention include:

本发明实施例提供的混合储能系统中的第一类双向功率变换器在母线上的物理参数的参数值发生变化时控制第一类储能器件对母线上的物理参数的参数值的变化进行慢速响应,从而避免第一类储能器件的充放电电流变化速度过快,第二类双向功率变换器在所述参数的参数值达到预设范围的边界值时控制第二类储能器件对所述物理参数的参数值的变化进行快速响应,从而确保所述参数值不会超出预设范围,由于该混合储能系统中不需要能量管理单元,因此简化了系统的结构,提高了系统的抗干扰性和可靠性,扩展了采用混合储能系统的电网系统应用场合。The first type of bidirectional power converter in the hybrid energy storage system provided by the embodiment of the present invention controls the first type of energy storage device to change the parameter value of the physical parameter on the bus when the parameter value of the physical parameter on the bus changes. Slow response, so as to avoid the charging and discharging current of the first type of energy storage device changing too fast, the second type of bidirectional power converter controls the second type of energy storage device when the parameter value of the parameter reaches the boundary value of the preset range Quickly respond to changes in the parameter values of the physical parameters, thereby ensuring that the parameter values will not exceed the preset range. Since the hybrid energy storage system does not require an energy management unit, the structure of the system is simplified and the system is improved. The anti-interference and reliability of the hybrid energy storage system have expanded the application occasions of the power grid system.

附图说明Description of drawings

图1为现有技术中的微电网系统的结构示意图;FIG. 1 is a schematic structural diagram of a microgrid system in the prior art;

图2为本发明实施例提供的混合储能系统的结构示意图;Fig. 2 is a schematic structural diagram of a hybrid energy storage system provided by an embodiment of the present invention;

图3为本发明实施例提供的混合储能系统应用在实际中时,随着负载消耗的功率与发电系统输出的功率的变化,直流母线上的电压的变化,第一类双向功率变换器的电流的变化以及第二类双向功率变换器的电流的变化的示意图。Fig. 3 shows that when the hybrid energy storage system provided by the embodiment of the present invention is applied in practice, as the power consumed by the load and the output power of the power generation system change, the voltage on the DC bus changes, and the first type of bidirectional power converter The schematic diagram of the change of the current and the change of the current of the second type of bidirectional power converter.

具体实施方式detailed description

本发明实施例提供的混合储能系统中的第一类双向功率变换器在母线上的物理参数的参数值发生变化时控制第一类储能器件对母线上的物理参数的参数值的变化进行慢速响应,第二类双向功率变换器在所述参数的参数值达到预设范围的边界值时控制第二类储能器件对所述物理参数的参数值的变化进行快速响应,这样既可以避免第一类储能器件的充放电电流变化速度过快,又可以确保所述参数值不会超出预设范围,并且还不需要能量管理单元,从而在系统性能不变的情况下简化了系统的结构。The first type of bidirectional power converter in the hybrid energy storage system provided by the embodiment of the present invention controls the first type of energy storage device to change the parameter value of the physical parameter on the bus when the parameter value of the physical parameter on the bus changes. Slow response, the second type of bidirectional power converter controls the second type of energy storage device to respond quickly to the change of the parameter value of the physical parameter when the parameter value of the parameter reaches the boundary value of the preset range, so that both Avoiding the rapid change of the charging and discharging current of the first type of energy storage device, and ensuring that the parameter value will not exceed the preset range, and also does not require an energy management unit, thus simplifying the system without changing the system performance Structure.

下面结合说明书附图,对本发明实施例提供的一种混合储能系统和微电网系统的具体实施方式进行说明。The specific implementation manners of a hybrid energy storage system and a microgrid system provided by an embodiment of the present invention will be described below with reference to the drawings in the description.

本发明实施例提供的一种混合储能系统,如图2所示,包括第一类双向功率变换器21、第一类储能器件22、第二类双向功率变换器23和第二类储能器件24;A hybrid energy storage system provided by an embodiment of the present invention, as shown in FIG. 2 , includes a first-type bidirectional power converter 21, a first-type energy storage device 22, a second-type bidirectional power Energy device 24;

第一类双向功率变换器21,用于获取母线25上的物理参数的参数值,并在所述参数值发生变化时,按照预设的充放电速度的变化率改变对第一类储能器件22进行充放电时的充放电速度;直至所述物理参数的参数值等于第一参数值或者等于第二参数值时,对第一类储能器件22进行充放电时的充放电速度不再改变;The first type of bidirectional power converter 21 is used to obtain the parameter value of the physical parameter on the bus bar 25, and when the parameter value changes, change the first type of energy storage device according to the change rate of the preset charging and discharging speed. 22 the charging and discharging speed when charging and discharging; until the parameter value of the physical parameter is equal to the first parameter value or equal to the second parameter value, the charging and discharging speed when charging and discharging the first type of energy storage device 22 will not change ;

第二类双向功率变换器23,用于获取所述物理参数的参数值,并在所述参数值到达预设范围的边界值时,对第二类储能器件24进行充放电,使得所述参数值维持在预设范围的边界值,所述第一参数值和所述第二参数值均位于所述预设范围内。The second type of bidirectional power converter 23 is used to obtain the parameter value of the physical parameter, and when the parameter value reaches the boundary value of the preset range, charge and discharge the second type of energy storage device 24, so that the The parameter value is maintained at a boundary value of a preset range, and both the first parameter value and the second parameter value are within the preset range.

其中,按照预设的充放电速度的变化率改变对第一类储能器件22进行充放电时的充放电速度包括两种情况,第一种情况是:按照预设的充电速度的变化率改变对第一类储能器件22进行充电时的充电速度;第二种情况是:按照预设的放电速度的变化率改变对第一类储能器件22进行放电时的放电速度。Wherein, changing the charging and discharging speed when charging and discharging the first type energy storage device 22 according to the change rate of the preset charging and discharging speed includes two cases, the first case is: changing according to the changing rate of the preset charging and discharging speed The charging speed when charging the first type of energy storage device 22; the second case is: changing the discharge speed when discharging the first type of energy storage device 22 according to the change rate of the preset discharge speed.

图2中还包括发电系统26和负载27,其中发电系统26可以是风电系统,也可以是太阳能发电系统,还可以是其它的能够把其它能量转换为电能的系统。Fig. 2 also includes a power generation system 26 and a load 27, wherein the power generation system 26 may be a wind power system, a solar power generation system, or other systems capable of converting other energies into electrical energy.

在本发明实施例提供的储能系统中,当所述第一类储能器件向所述母线上输出的功率与发电系统输出到所述母线上的功率之和等于所述负载消耗的功率时,所述母线上的物理参数的参数值为第二参数值;当所述第一类储能器件从所述母线上吸收的功率与所述负载消耗的功率之和等于发电系统输出到所述母线上的功率时,所述物理参数的参数值为第一参数值。其中,第一参数值大于第二参数值,且第一参数值和第二此参数值均在预设范围内。In the energy storage system provided by the embodiment of the present invention, when the sum of the power output by the first type of energy storage device to the bus and the power output by the power generation system to the bus is equal to the power consumed by the load , the parameter value of the physical parameter on the bus is the second parameter value; when the sum of the power absorbed by the first type of energy storage device from the bus and the power consumed by the load is equal to the output of the power generation system to the When the power on the bus is used, the parameter value of the physical parameter is the first parameter value. Wherein, the first parameter value is greater than the second parameter value, and both the first parameter value and the second parameter value are within a preset range.

其中,第一类储能器件的能量密度高于第二类储能器件的能量密度。在实际中,第一类储能器件可以为蓄电池,如铅酸蓄电池、锂电池等,第一类储能器件的特点是能量密度高,但是频繁地大电流充电、放电会缩短其寿命,充电、放电速度变化率太大也会缩短其寿命;第二类储能器件可以为超级电容,飞轮电池等,第二类储能器件的特点是能量密度低,充电、放电功率大、循环寿命长。Wherein, the energy density of the first type of energy storage device is higher than the energy density of the second type of energy storage device. In practice, the first type of energy storage device can be a storage battery, such as lead-acid battery, lithium battery, etc. The first type of energy storage device is characterized by high energy density, but frequent high-current charging and discharging will shorten its life. , If the change rate of discharge speed is too large, its life will be shortened; the second type of energy storage device can be super capacitor, flywheel battery, etc. The second type of energy storage device is characterized by low energy density, high charging and discharging power, and long cycle life .

本发明实施例提供的储能系统中的第一类储能器件可以有多个,并且多个第一类储能器件可以是不同的,例如,第一类储能器件包括一个铅酸蓄电池,一个锂电池,或者包括两个铅酸蓄电池,相应地,第一类双向功率变换器也可以有多个,并且每个第一类双向功率变换器可以设置不同的充放电速度的变化率、第一参数值、第二参数值,从而控制不同的第二类储能器件充放能量。本发明实施例提供的储能系统中的第二类储能器件可以有多个,并且多个第二类储能器件可以是不同的,例如,第二类储能器件包括一个超级电容,一个飞轮电池,或者包括两个超级电容,相应地,第二类双向功率变换器也可以有多个,并且每个第二类双向功率变换器可以设置不同的预设范围的边界值,从而控制不同的第二类储能器件充放能量。There may be multiple first-type energy storage devices in the energy storage system provided by the embodiments of the present invention, and the multiple first-type energy storage devices may be different. For example, the first-type energy storage device includes a lead-acid battery, A lithium battery, or two lead-acid batteries, correspondingly, there may be multiple first-type bidirectional power converters, and each first-type bidirectional power converter can be set with a different rate of change of charging and discharging speed, the second The first parameter value and the second parameter value, so as to control the charging and discharging energy of different second types of energy storage devices. There may be multiple second-type energy storage devices in the energy storage system provided by the embodiments of the present invention, and the multiple second-type energy storage devices may be different. For example, the second-type energy storage devices include a supercapacitor, a Flywheel batteries, or include two supercapacitors, correspondingly, there can be multiple second-type bidirectional power converters, and each second-type bidirectional power converter can be set with different preset range boundary values, so as to control different The second type of energy storage device charge and discharge energy.

图2所示的混合储能系统仅以一个第一类双向功率变换器、一个第一类储能器件、一个第二类双向功率变换器和一个第二类储能器件为例进行说明。The hybrid energy storage system shown in FIG. 2 is only illustrated by taking a first-type bidirectional power converter, a first-type energy storage device, a second-type bidirectional power converter, and a second-type energy storage device as examples.

在图2所示的混合储能系统中,连接母线和第一类储能器件的第一类双向功率变换器,在母线上的物理参数的参数值发生变化时,按照预设的充放电速度的变化率改变对第一类储能器件进行充放电时的充放电速度,从而响应母线上的电压的特征值的变化,并避免第一类储能器件的充放电电流变化速度过快;而由于第一类储能器件的充放电电流变化速度较慢,因此,所述物理参数的参数值会变化到预设范围的边界值,此时,连接母线和第二类储能器件的第二类双向功率变换器对第二类储能器件进行充放电,使得所述物理参数的参数值维持在预设范围的边界值;直至所述物理参数的参数值等于第一参数值或者等于第二参数值时,对第一类储能器件进行充放电时的充放电速度不再改变。In the hybrid energy storage system shown in Figure 2, the first type of bidirectional power converter connected to the busbar and the first type of energy storage device, when the parameter value of the physical parameter of the busbar changes, the charging and discharging speed The rate of change changes the charging and discharging speed when charging and discharging the first type of energy storage device, so as to respond to the change of the characteristic value of the voltage on the bus, and avoid the charging and discharging current of the first type of energy storage device from changing too fast; and Since the charging and discharging current of the first type of energy storage device changes slowly, the parameter value of the physical parameter will change to the boundary value of the preset range. At this time, the second The similar bidirectional power converter charges and discharges the second type of energy storage device, so that the parameter value of the physical parameter is maintained at the boundary value of the preset range; until the parameter value of the physical parameter is equal to the first parameter value or equal to the second When the parameter value is changed, the charging and discharging speed of the first type of energy storage device will not change.

第一类双向功率变换器的电流(或功率)变化率,也就是对第一类储能器件进行充放电时的充放电速度的变化率,可以根据第一类储能器件的容量进行设定,同时也需要考虑母线上的物理参数的参数值对负载消耗的功率(发电系统输出的功率)的变化的灵敏度。第一类双向功率变换器的电流(或功率)变化率越小,当负载消耗的功率或发电系统输出的功率变化时,母线上的物理参数的参数值越容易变动,母线上的物理参数的参数值对负载消耗的功率(或发电系统输出的功率)的变化的灵敏度越高;反之,第一类双向功率变换器的电流(或功率)变化率大,母线上的物理参数的参数值对负载消耗的功率(或发电系统输出的功率)的变化的灵敏度越低。The current (or power) change rate of the first type of bidirectional power converter, that is, the change rate of the charge and discharge speed when charging and discharging the first type of energy storage device, can be set according to the capacity of the first type of energy storage device At the same time, it is also necessary to consider the sensitivity of the parameter values of the physical parameters on the bus to the change of the power consumed by the load (the output power of the power generation system). The smaller the rate of change of the current (or power) of the first type of bidirectional power converter, when the power consumed by the load or the output power of the power generation system changes, the parameter values of the physical parameters on the bus are more likely to change, and the physical parameters on the bus The higher the sensitivity of the parameter value to the change of the power consumed by the load (or the output power of the power generation system); on the contrary, the current (or power) change rate of the first type of bidirectional power converter is large, and the parameter value of the physical parameter on the bus is relatively The lower the sensitivity to changes in the power consumed by the load (or the power output by the power generation system) is.

当母线25为直流母线时,母线25上的物理参数可以为母线25上的电压;当母线25为交流母线时,母线25上的物理参数可以为母线25上的电压的有效值,也可以为母线25上的电压的峰值,还可以为母线25上的电压的频率。When the bus 25 is a DC bus, the physical parameter on the bus 25 can be the voltage on the bus 25; when the bus 25 is an AC bus, the physical parameter on the bus 25 can be the effective value of the voltage on the bus 25, and can also be The peak value of the voltage on the bus 25 may also be the frequency of the voltage on the bus 25 .

可选地,第一类双向功率变换器具体用于:获取母线上的物理参数的参数值;在所述物理参数的参数值大于第一参数值、且对第一类储能器件充电时,按照预设的充电速度的变化率增大对第一类储能器件充电的充电速度,直至所述物理参数的参数值等于第一参数值时,对第一类储能器件进行充电时的充电速度不再改变。Optionally, the first type of bidirectional power converter is specifically configured to: acquire a parameter value of a physical parameter on the bus; when the parameter value of the physical parameter is greater than the first parameter value and the first type of energy storage device is charged, Increase the charging speed for charging the first type of energy storage device according to the change rate of the preset charging speed, until the parameter value of the physical parameter is equal to the first parameter value, when charging the first type of energy storage device The speed no longer changes.

可选地,所述第一类双向功率变换器具体用于:获取母线上的物理参数的参数值;在所述物理参数的参数值小于第一参数值、且对第一类储能器件充电时,按照预设的充电速度的变化率减小对第一类储能器件充电的充电速度,直至所述物理参数的参数值等于第一参数值时,对第一类储能器件进行充电时的充电速度不再改变。Optionally, the first type of bidirectional power converter is specifically configured to: acquire a parameter value of a physical parameter on the bus; when the parameter value of the physical parameter is less than the first parameter value, and charge the first type of energy storage device When the charging speed of the first type of energy storage device is reduced according to the preset rate of change of the charging speed until the parameter value of the physical parameter is equal to the first parameter value, when charging the first type of energy storage device The charging speed of is no longer changed.

如果第一类储能器件充电的充电速度减小为零时,所述物理参数的参数值还小于所述第一参数值,那么第一类双向功率变换器按照预设的放电速度的变化率增大对第一类储能器件放电的放电速度(此时,第一类储能器件放电的初始放电速度为零),直至所述物理参数的参数值等于所述第二参数值。If the charging speed of the first type of energy storage device is reduced to zero, and the parameter value of the physical parameter is still smaller than the first parameter value, then the rate of change of the first type of bidirectional power converter according to the preset discharge speed Increase the discharge rate of the first type of energy storage device (at this time, the initial discharge rate of the first type of energy storage device is zero), until the parameter value of the physical parameter is equal to the second parameter value.

可选地,所述第一类双向功率变换器具体用于:获取母线上的物理参数的参数值;在所述物理参数的参数值小于第二参数值、且对第一类储能器件放电时,按照预设的放电速度的变化率增大对第一类储能器件放电的放电速度,直至所述物理参数的参数值等于所述第二参数值时,对第一类储能器件进行放电时的放电速度不再改变。Optionally, the first type of bidirectional power converter is specifically configured to: acquire a parameter value of a physical parameter on the bus; discharge the first type of energy storage device when the parameter value of the physical parameter is less than a second parameter value , increase the discharge rate of the first type of energy storage device according to the preset rate of change of the discharge rate, until the parameter value of the physical parameter is equal to the second parameter value, the first type of energy storage device is discharged The discharge rate no longer changes when discharging.

可选地,所述第一类双向功率变换器具体用于:获取母线上的物理参数的参数值;在所述物理参数的参数值大于第二参数值、且对第一类储能器件放电时,按照预设的放电速度的变化率减小对第一类储能器件放电的放电速度,直至所述物理参数的参数值等于所述第二参数值时,对第一类储能器件进行放电时的放电速度不再改变。Optionally, the first type of bidirectional power converter is specifically configured to: acquire a parameter value of a physical parameter on the bus; when the parameter value of the physical parameter is greater than a second parameter value, and discharge the first type of energy storage device , the discharge rate of the first type of energy storage device is reduced according to the preset rate of change of the discharge rate until the parameter value of the physical parameter is equal to the second parameter value, and the first type of energy storage device is discharged. The discharge rate no longer changes when discharging.

如果第一类储能器件放电的放电速度减小为零时,所述物理参数的参数值还大于所述第二参数值,那么,第一类双向功率变换器按照预设的充电速度的变化率增大对第一类储能器件充电的充电速度(此时,第一类储能器件充电的初始充电速度为零),直至所述物理参数的参数值等于所述第一参数值。If the discharge rate of the first type of energy storage device is reduced to zero, and the parameter value of the physical parameter is still greater than the second parameter value, then the change of the first type of bidirectional power converter according to the preset charging rate The rate increases the charging speed of the first type of energy storage device (at this time, the initial charging speed of the first type of energy storage device is zero), until the parameter value of the physical parameter is equal to the first parameter value.

因此,与第一类储能器件相连的第一类双向功率变换器工作在电流源模式,它输出(或吸收)的电流(或功率)会根据母线上的物理参数的参数值的变化进行缓慢的调节,这样,一方面可以避免第一类储能器件的充放电电流快速变化,同时,在发电系统输出的功率或负载消耗的功率发生变化时,所属物理参数的参数值会有明显的变化,以便于通过所述物理参数的参数值的变化检测到应用本发明实施例提供的混合储能系统的电网的功率的变化情况。Therefore, the first type of bidirectional power converter connected to the first type of energy storage device works in the current source mode, and the current (or power) it outputs (or absorbs) will slowly change according to the parameter value of the physical parameter on the bus. In this way, on the one hand, the rapid change of the charge and discharge current of the first type of energy storage device can be avoided, and at the same time, when the output power of the power generation system or the power consumed by the load changes, the parameter values of the physical parameters will change significantly , so as to detect the change of the power of the grid to which the hybrid energy storage system provided by the embodiment of the present invention is applied through the change of the parameter value of the physical parameter.

第一类储能器件充电时的充电速度的变化率与第一类储能器件放电时的放电速度的变化率可以相等,也可以不相等。The rate of change of the charging speed when the first type of energy storage device is charged and the rate of change of the discharge rate when the first type of energy storage device is discharged may or may not be equal.

可选地,所述第二类双向功率变换器具体用于:获取所述物理参数的参数值;在所述参数值到达预设范围的最大值时,对第二类储能器件进行充电,使得所述参数值维持在预设范围的最大值;在所述参数值到达预设范围的最小值时,对第二类储能器件进行放电,使得所述参数值维持在预设范围的最小值。Optionally, the second type of bidirectional power converter is specifically configured to: obtain a parameter value of the physical parameter; when the parameter value reaches a maximum value in a preset range, charge the second type of energy storage device, maintaining the parameter value at the maximum value of the preset range; when the parameter value reaches the minimum value of the preset range, discharging the second type of energy storage device so that the parameter value is maintained at the minimum value of the preset range value.

因此,与第二类储能器件相连的第二类双向功率变换器工作在电压源模式,当所述物理参数的参数值达到预设范围的最大值时,能控制第二类储能器件吸收瞬态功率,当所述物理参数的参数值达到预设范围的最小值时,能控制第二类储能器件输出瞬态功率,从而使所述物理参数的参数值在预设范围内。Therefore, the second type of bidirectional power converter connected to the second type of energy storage device works in the voltage source mode, and when the parameter value of the physical parameter reaches the maximum value of the preset range, it can control the second type of energy storage device to absorb Transient power, when the parameter value of the physical parameter reaches the minimum value of the preset range, the second type of energy storage device can be controlled to output the transient power, so that the parameter value of the physical parameter is within the preset range.

本发明实施例提供的混合储能系统中的第一类双向功率变换器和第一类储能器件构成的电池储能单元,与第二类双向功率变换器和第二类储能器件构成的电容储能单元之间相互独立,电池储能单元和电容储能单元之间无需连线,因此,这二者的摆放位置很灵活;并且,电池储能单元和电容储能单元与发电系统之间均无需连线,电池储能单元和电容储能单元与负载之间均无需连线。本发明实施例提供的混合储能系统中的第一类储能器件的数量和第二类储能器件的数量可以根据需要自由配置。In the hybrid energy storage system provided by the embodiment of the present invention, the battery energy storage unit composed of the first type of bidirectional power converter and the first type of energy storage device, and the second type of bidirectional power converter and the second type of energy storage device The capacitive energy storage units are independent of each other, and there is no need for connection between the battery energy storage unit and the capacitive energy storage unit, so the placement of the two is very flexible; There is no need for connection between the battery energy storage unit and the capacitor energy storage unit and the load. The number of the first type of energy storage devices and the number of the second type of energy storage devices in the hybrid energy storage system provided by the embodiments of the present invention can be freely configured as required.

下面以连接直流母线的负载消耗的功率发生变化,发电系统输出到直流母线上的功率的不变的应用场景为例,进一步说明本发明实施例提供的混合储能系统,在该应用场景中母线上的物理参数为母线上的电压。Taking the application scenario where the power consumed by the load connected to the DC bus changes and the power output by the power generation system to the DC bus remains unchanged as an example, the hybrid energy storage system provided by the embodiment of the present invention is further described. In this application scenario, the bus The physical parameter above is the voltage on the bus.

在该应用场景中,初始时,发电系统向直流母线上输出的功率大于负载消耗的功率,因此,初始时直流母线上的电压为VBH。图3中的B部分为负载消耗的功率与发电系统输出的功率随时间变化的示意图,其中,实线表示负载消耗的功率随时间变化的曲线,虚线表示发电系统输出的功率随时间变化的曲线。图3中的A部分为随着负载消耗的功率与发电系统输出的功率的变化,直流母线上的电压的变化的示意图,其中,预设范围的最小值为VCL,预设范围的最大值为VCH,第一参数值为VBH,第二参数值为VBL。图3中的C部分为第二类双向功率变换器的电流随着直流母线上的电压变化的示意图,图3中的D部分为第一类双向功率变换器的电流随着直流母线上的电压变化的示意图。In this application scenario, initially, the power output by the power generation system to the DC bus is greater than the power consumed by the load, therefore, the voltage on the DC bus is initially V BH . Part B in Figure 3 is a schematic diagram of the power consumed by the load and the power output by the power generation system changing with time, where the solid line represents the curve of the power consumed by the load changing with time, and the dotted line represents the curve of the power output by the power generation system changing with time . Part A in Figure 3 is a schematic diagram of the change of the voltage on the DC bus with the change of the power consumed by the load and the output power of the power generation system, wherein the minimum value of the preset range is V CL , and the maximum value of the preset range is is V CH , the first parameter value is V BH , and the second parameter value is V BL . Part C in Figure 3 is a schematic diagram of the current of the second type of bidirectional power converter changing with the voltage on the DC bus, and part D in Figure 3 is the current of the first type of bidirectional power converter changing with the voltage on the DC bus Schematic diagram of changes.

如图3所示,在t1时刻,负载消耗的功率增加,此时发电系统向直流母线输出的功率小于负载消耗的功率。由于第一类双向功率变换器充电的电流值(即第一类储能器件的充电速度)变化缓慢,因此直流母线的电压会迅速降低至预设范围的最小值,即VCL时,第二类双向功率变换器快速响应,输出电流使得直流母线的电压稳定在VCL。在t1时刻到t2时刻之间的时间段内,第一类双向功率变换器充电的电流值持续减小(即第一类储能器件的充电速度降低),当减小为0后开始给第一类储能器件放电,并且放电的电流值持续缓慢变大;在t1时刻,第二类双向功率变换器放电的电流值迅速增大至一定值,使得直流母线的电压稳定在VCL,在t1时刻到t2时刻之间的时间段内第二类双向功率变换器放电的电流值从t1时刻的电流值开始逐渐减小(即第二类储能器件的放电速度降低)。在t2时刻,第一双向功率变换放电的电流值增大到等于负载所需值,直流母线的电压回升到VBL,由于VCL<VBL<VCH,第二类双向功率变换器工作在空载状态,输出电流为0。As shown in Figure 3, at time t1, the power consumed by the load increases, and at this time the power output by the power generation system to the DC bus is less than the power consumed by the load. Since the charging current value of the first type of bidirectional power converter (that is, the charging speed of the first type of energy storage device) changes slowly, the voltage of the DC bus will quickly drop to the minimum value of the preset range, that is, V CL , the second The quasi-bidirectional power converter responds quickly, and the output current makes the voltage of the DC bus stable at V CL . During the period between time t1 and time t2, the charging current value of the first type of bidirectional power converter continues to decrease (that is, the charging speed of the first type of energy storage device decreases), and when it decreases to 0, it starts to charge the first type of bidirectional power converter. A type of energy storage device discharges, and the discharge current value continues to increase slowly; at time t1, the discharge current value of the second type of bidirectional power converter rapidly increases to a certain value, making the voltage of the DC bus stable at V CL , at During the time period between time t1 and time t2, the discharge current value of the second type of bidirectional power converter gradually decreases from the current value at time t1 (that is, the discharge speed of the second type of energy storage device decreases). At time t2, the discharge current value of the first bidirectional power converter increases to the value required by the load, and the voltage of the DC bus returns to V BL . Since V CL <V BL <V CH , the second type of bidirectional power converter works at In no-load state, the output current is 0.

在t3时刻,负载消耗的功率进一步增加,第一类双向功率变换器充电的电流值(即第一类储能器件的充电速度)变化缓慢,因此直流母线的电压会迅速降低至预设范围的最小值,即VCL时,第二类双向功率变换器快速响应,输出电流使得直流母线的电压稳定在VCL。在t3时刻到t4时刻之间的时间段内,第一类双向功率变换器放电的电流值持续增大(即第一类储能器件的放电速度提高);在t3时刻,第二类双向功率变换器放电的电流值迅速增大至一定值,使得直流母线的电压稳定在VCL,在t3时刻到t4时刻之间的时间段内第二类双向功率变换器放电的电流值从t3时刻的电流值开始逐渐减小(即第二类储能器件的放电速度降低)。在t4时刻,第一双向功率变换放电的电流值增大到等于负载所需值,直流母线的电压回升到VBL,由于VCL<VBL<VCH,第二类双向功率变换器工作在空载状态,输出电流为0。At time t3, the power consumed by the load further increases, and the charging current value of the first-type bidirectional power converter (that is, the charging speed of the first-type energy storage device) changes slowly, so the voltage of the DC bus will quickly drop to the preset range When the minimum value is V CL , the second type of bidirectional power converter responds quickly, and the output current makes the voltage of the DC bus stable at V CL . During the period between time t3 and time t4, the discharge current value of the first type of bidirectional power converter continues to increase (that is, the discharge speed of the first type of energy storage device increases); at time t3, the second type of bidirectional power converter The discharge current value of the converter rapidly increases to a certain value, so that the voltage of the DC bus is stable at V CL , and the discharge current value of the second type of bidirectional power converter changes from t3 to The current value begins to gradually decrease (ie, the discharge rate of the second type energy storage device decreases). At time t4, the discharge current value of the first bidirectional power converter increases to the value required by the load, and the voltage of the DC bus returns to V BL . Since V CL <V BL <V CH , the second type of bidirectional power converter works at In no-load state, the output current is 0.

在t5时刻,负载消耗的功率减小,由于第一类双向功率变换器放电的电流值(即第一类储能器件的放电速度)变化缓慢,因此直流母线的电压会迅速升高到预设范围的最达值,即VCH,此时,第二类双向功率变换器快速响应,从直流母线吸收电流,使直流母线的电压稳定在VCH。在t5时刻到t6时刻之间的时间段内,第一类双向功率变换器放电的电流值持续减小(即第一类储能器件的放电速度降低);在t5时刻,第二类双向功率变换器充电的电流值迅速增大至一定值,使得直流母线的电压稳定在VCH,在t5时刻到t6时刻之间的时间段内第二类双向功率变换器充电的电流值从t5时刻的电流值开始逐渐减小(即第二类储能器件的充电速度降低)。在t6时刻,第一双向功率变换充电的电流值减小到等于负载所需值,直流母线的电压回落到VBL,由于VBL>VCL,第二类双向功率变换器工作在空载状态,输出电流为0。在t6时刻,双向变换器1输出电流减小到等于负载所需值,母线电压回落到VBL,由于VCL<VBL<VCH,第二类双向功率变换器工作在空载状态,输出电流为0。At time t5, the power consumed by the load decreases, and since the discharge current value of the first type of bidirectional power converter (that is, the discharge speed of the first type of energy storage device) changes slowly, the voltage of the DC bus will quickly rise to the preset value The maximum value of the range is V CH . At this time, the second type of bidirectional power converter responds quickly and absorbs current from the DC bus to stabilize the voltage of the DC bus at V CH . During the time period between t5 and t6, the discharge current value of the first type of bidirectional power converter continues to decrease (that is, the discharge speed of the first type of energy storage device decreases); at t5, the second type of bidirectional power converter The current value charged by the converter rapidly increases to a certain value, so that the voltage of the DC bus is stabilized at V CH , and the current value charged by the second-type bidirectional power converter changes from the current value at time t5 to The current value starts to decrease gradually (ie, the charging speed of the second type energy storage device decreases). At time t6, the charging current value of the first bidirectional power converter is reduced to the value required by the load, and the voltage of the DC bus drops back to V BL . Since V BL >V CL , the second type of bidirectional power converter works in the no-load state , the output current is 0. At time t6, the output current of bidirectional converter 1 decreases to the value required by the load, and the bus voltage falls back to V BL . Since V CL <V BL <V CH , the second type of bidirectional power converter works in a no-load state, outputting Current is 0.

在t7时刻,负载消耗的功率进一步减小,此时发电系统输出的功率大于负载消耗的功率。由于第一类双向功率变换器放电的电流值(即第一类储能器件的放电速度)变化缓慢,因此直流母线的电压会迅速升高到预设范围的最达值,即VCH,此时,第二类双向功率变换器快速响应,从直流母线吸收电流,使直流母线的电压稳定在VCH。在t7时刻到t8时刻之间的时间段内,第一类双向功率变换器放电的电流值持续减小(即第一类储能器件的放电速度降低),当减小为0后开始给第一类储能器件充电,并且充电的电流值持续缓慢变大;在t7时刻,第二类双向功率变换器充电的电流值迅速增大至一定值,使得直流母线的电压稳定在VCH,在t7时刻到t8时刻之间的时间段内第二类双向功率变换器充电的电流值从t7时刻的电流值开始逐渐减小(即第二类储能器件的充电速度降低)。在t8时刻,第一双向功率变换充电的电流值增大能够吸收掉发电系统输出的能量中未被负载消耗掉的能量,直流母线的电压回落到VBH,由于VCL<VBH<VCH,第二类双向功率变换器工作在空载状态,输出电流为0。At time t7, the power consumed by the load further decreases, and at this time the output power of the power generation system is greater than the power consumed by the load. Since the discharge current value of the first type of bidirectional power converter (that is, the discharge speed of the first type of energy storage device) changes slowly, the voltage of the DC bus will quickly rise to the maximum value of the preset range, that is, V CH . When , the second type of bidirectional power converter responds quickly and absorbs current from the DC bus to stabilize the voltage of the DC bus at V CH . During the time period between time t7 and time t8, the discharge current value of the first type of bidirectional power converter continues to decrease (that is, the discharge speed of the first type of energy storage device decreases). A type of energy storage device is charged, and the charging current value continues to increase slowly; at time t7, the charging current value of the second type of bidirectional power converter rapidly increases to a certain value, so that the voltage of the DC bus is stabilized at V CH , at During the period between time t7 and time t8, the charging current value of the second-type bidirectional power converter gradually decreases from the current value at time t7 (that is, the charging speed of the second-type energy storage device decreases). At time t8, the increase in the current value of the first bidirectional power conversion charging can absorb the energy output by the power generation system that is not consumed by the load, and the voltage of the DC bus drops back to V BH , because V CL <V BH <V CH , the second type of bidirectional power converter works in a no-load state, and the output current is 0.

本发明实施例提供的一种微电网系统,包括本发明实施例提供的混合储能系统。A microgrid system provided by an embodiment of the present invention includes the hybrid energy storage system provided by the embodiment of the present invention.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。Through the above description of the implementation manners, those skilled in the art can clearly understand that the embodiments of the present invention can be implemented by hardware, or by means of software plus a necessary general hardware platform. Based on such understanding, the technical solutions of the embodiments of the present invention can be embodied in the form of software products, which can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.), Several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in various embodiments of the present invention.

本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。Those skilled in the art can understand that the drawing is only a schematic diagram of a preferred embodiment, and the modules or processes in the drawing are not necessarily necessary for implementing the present invention.

本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。Those skilled in the art can understand that the modules in the device in the embodiment can be distributed in the device in the embodiment according to the description in the embodiment, or can be located in one or more devices different from the embodiment according to corresponding changes. The modules in the above embodiments can be combined into one module, and can also be further split into multiple sub-modules.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.

Claims (11)

1.一种混合储能系统,其特征在于,包括第一类双向功率变换器、第一类储能器件、第二类双向功率变换器和第二类储能器件;1. A hybrid energy storage system, characterized in that it includes a first-type bidirectional power converter, a first-type energy storage device, a second-type bidirectional power converter, and a second-type energy storage device; 所述第一类双向功率变换器,用于获取母线上的物理参数的参数值,并在所述参数值发生变化时,按照预设的充放电速度的变化率改变对第一类储能器件进行充放电时的充放电速度;直至所述物理参数的参数值等于第一参数值或者等于第二参数值时,对第一类储能器件进行充放电时的充放电速度不再改变;The first type of bidirectional power converter is used to obtain the parameter value of the physical parameter on the bus, and when the parameter value changes, change the first type of energy storage device according to the change rate of the preset charging and discharging speed. The charging and discharging speed when charging and discharging; until the parameter value of the physical parameter is equal to the first parameter value or equal to the second parameter value, the charging and discharging speed when charging and discharging the first type of energy storage device will not change; 所述第二类双向功率变换器,用于获取所述物理参数的参数值,并在所述参数值到达预设范围的边界值时,对第二类储能器件进行充放电,使得所述参数值维持在预设范围的边界值,所述第一参数值和所述第二参数值均位于所述预设范围内。The second type of bidirectional power converter is used to obtain the parameter value of the physical parameter, and when the parameter value reaches the boundary value of the preset range, charge and discharge the second type of energy storage device, so that the The parameter value is maintained at a boundary value of a preset range, and both the first parameter value and the second parameter value are within the preset range. 2.如权利要求1所述的系统,其特征在于,所述第一类双向功率变换器具体用于:2. The system according to claim 1, wherein the first type of bidirectional power converter is specifically used for: 获取母线上的物理参数的参数值;Obtain the parameter value of the physical parameter on the bus; 在所述物理参数的参数值大于第一参数值、且对第一类储能器件充电时,按照预设的充电速度的变化率增大对第一类储能器件充电的充电速度,直至所述物理参数的参数值等于第一参数值时,对第一类储能器件进行充电时的充电速度不再改变。When the parameter value of the physical parameter is greater than the first parameter value and the first type of energy storage device is charged, the charging speed of the first type of energy storage device is increased according to the preset rate of change of the charging speed until the When the parameter value of the above physical parameter is equal to the first parameter value, the charging speed when charging the first type of energy storage device will not change. 3.如权利要求1所述的系统,其特征在于,所述第一类双向功率变换器具体用于:3. The system according to claim 1, wherein the first type of bidirectional power converter is specifically used for: 获取母线上的物理参数的参数值;Obtain the parameter value of the physical parameter on the bus; 在所述物理参数的参数值小于第一参数值、且对第一类储能器件充电时,按照预设的充电速度的变化率减小对第一类储能器件充电的充电速度,直至所述物理参数的参数值等于第一参数值时,对第一类储能器件进行充电时的充电速度不再改变。When the parameter value of the physical parameter is less than the first parameter value and the first type of energy storage device is charged, the charging speed of the first type of energy storage device is reduced according to the preset change rate of the charging speed until the When the parameter value of the above physical parameter is equal to the first parameter value, the charging speed when charging the first type of energy storage device will not change. 4.如权利要求3所述的系统,其特征在于,所述第一类双向功率变换器还用于:4. The system according to claim 3, wherein the first type bidirectional power converter is further used for: 若第一类储能器件充电的充电速度减小为零时,所述物理参数的参数值还小于所述第一参数值,则按照预设的放电速度的变化率增大对第一类储能器件放电的放电速度,直至所述物理参数的参数值等于所述第二参数值。If the charging speed of the first type of energy storage device is reduced to zero, and the parameter value of the physical parameter is still smaller than the first parameter value, then the first type of energy storage device is increased according to the preset rate of change of the discharge speed. The discharge rate of the energy device is discharged until the parameter value of the physical parameter is equal to the second parameter value. 5.如权利要求1所述的系统,其特征在于,所述第一类双向功率变换器具体用于:5. The system according to claim 1, wherein the first type of bidirectional power converter is specifically used for: 获取母线上的物理参数的参数值;Obtain the parameter value of the physical parameter on the bus; 在所述物理参数的参数值小于所述第二参数值、且对第一类储能器件放电时,按照预设的放电速度的变化率增大对第一类储能器件放电的放电速度,直至所述物理参数的参数值等于所述第二参数值时,对第一类储能器件进行放电时的放电速度不再改变。When the parameter value of the physical parameter is less than the second parameter value and the first type of energy storage device is discharged, the discharge rate of the first type of energy storage device is increased according to the preset rate of change of the discharge rate, Until the parameter value of the physical parameter is equal to the second parameter value, the discharge rate of the first type of energy storage device will not change any more. 6.如权利要求1所述的系统,其特征在于,所述第一类双向功率变换器具体用于:6. The system according to claim 1, wherein the first type of bidirectional power converter is specifically used for: 获取母线上的物理参数的参数值;Obtain the parameter value of the physical parameter on the bus; 在所述物理参数的参数值大于第二参数值、且对第一类储能器件放电时,按照预设的放电速度的变化率减小对第一类储能器件放电的放电速度,直至所述物理参数的参数值等于所述第二参数值时,对第一类储能器件进行放电时的放电速度不再改变。When the parameter value of the physical parameter is greater than the second parameter value and the first type of energy storage device is discharged, the discharge rate of the first type of energy storage device is reduced according to the preset rate of change of the discharge rate until the When the parameter value of the physical parameter is equal to the second parameter value, the discharge rate of the first type of energy storage device will not change any more. 7.如权利要求6所述的系统,其特征在于,所述第一类双向功率变换器还用于:7. The system according to claim 6, wherein the first type of bidirectional power converter is further used for: 若第一类储能器件放电的放电速度减小为零时,所述物理参数的参数值还大于所述第二参数值,则按照预设的充电速度的变化率增大对第一类储能器件充电的充电速度,直至所述物理参数的参数值等于所述第一参数值。If the discharge rate of the first type of energy storage device is reduced to zero, and the parameter value of the physical parameter is still greater than the second parameter value, then the first type of energy storage device is increased according to the preset rate of change of the charging rate. The charging speed of the energy device is charged until the parameter value of the physical parameter is equal to the first parameter value. 8.如权利要求1所述的系统,其特征在于,所述第二类双向功率变换器具体用于:8. The system according to claim 1, wherein the second type of bidirectional power converter is specifically used for: 获取所述物理参数的参数值;obtaining a parameter value of the physical parameter; 在所述参数值到达预设范围的最大值时,对第二类储能器件进行充电,使得所述参数值维持在预设范围的最大值;When the parameter value reaches the maximum value of the preset range, charging the second type of energy storage device, so that the parameter value is maintained at the maximum value of the preset range; 在所述参数值到达预设范围的最小值时,对第二类储能器件进行放电,使得所述参数值维持在预设范围的最小值。When the parameter value reaches the minimum value of the preset range, the second type of energy storage device is discharged, so that the parameter value is maintained at the minimum value of the preset range. 9.如权利要求1所述的系统,其特征在于,所述母线为直流母线,所述母线上的物理参数为所述母线上的电压。9. The system according to claim 1, wherein the bus is a DC bus, and the physical parameter on the bus is the voltage on the bus. 10.如权利要求1所述的系统,其特征在于,所述母线为交流母线,所述母线上的物理参数为所述母线上的电压的有效值,或者为所述母线上的电压的峰值,或者为所述母线上的电压的频率。10. The system according to claim 1, wherein the bus is an AC bus, and the physical parameter on the bus is the effective value of the voltage on the bus, or the peak value of the voltage on the bus , or the frequency of the voltage on the bus. 11.一种微电网系统,其特征在于,包括如权利要求1-10任一项所述的混合储能系统。11. A microgrid system, characterized by comprising the hybrid energy storage system according to any one of claims 1-10.
CN201510178136.6A 2015-04-15 2015-04-15 A kind of mixed energy storage system and micro-grid system Active CN106159981B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510178136.6A CN106159981B (en) 2015-04-15 2015-04-15 A kind of mixed energy storage system and micro-grid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510178136.6A CN106159981B (en) 2015-04-15 2015-04-15 A kind of mixed energy storage system and micro-grid system

Publications (2)

Publication Number Publication Date
CN106159981A true CN106159981A (en) 2016-11-23
CN106159981B CN106159981B (en) 2018-12-25

Family

ID=58057421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510178136.6A Active CN106159981B (en) 2015-04-15 2015-04-15 A kind of mixed energy storage system and micro-grid system

Country Status (1)

Country Link
CN (1) CN106159981B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787088A (en) * 2017-01-18 2017-05-31 西北工业大学 It is applied to the self powered supply management circuit of discontinuous piezoelectric energy acquisition system
CN113437753A (en) * 2021-08-25 2021-09-24 广州乐盈信息科技股份有限公司 Energy storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377192A (en) * 2011-10-31 2012-03-14 清华大学 Direct-driving wave power-generating and energy-storing device and control method
CN202817783U (en) * 2012-09-27 2013-03-20 广东易事特电源股份有限公司 A supercapacitor and battery hybrid energy storage energy management circuit for photovoltaic grid-connected power generation
CN103701144A (en) * 2013-12-11 2014-04-02 清华大学 Power distribution method for hybrid energy storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377192A (en) * 2011-10-31 2012-03-14 清华大学 Direct-driving wave power-generating and energy-storing device and control method
CN202817783U (en) * 2012-09-27 2013-03-20 广东易事特电源股份有限公司 A supercapacitor and battery hybrid energy storage energy management circuit for photovoltaic grid-connected power generation
CN103701144A (en) * 2013-12-11 2014-04-02 清华大学 Power distribution method for hybrid energy storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787088A (en) * 2017-01-18 2017-05-31 西北工业大学 It is applied to the self powered supply management circuit of discontinuous piezoelectric energy acquisition system
CN106787088B (en) * 2017-01-18 2019-04-19 西北工业大学 Self-powered power management circuit for discontinuous piezoelectric energy harvesting system
CN113437753A (en) * 2021-08-25 2021-09-24 广州乐盈信息科技股份有限公司 Energy storage system

Also Published As

Publication number Publication date
CN106159981B (en) 2018-12-25

Similar Documents

Publication Publication Date Title
Ma et al. Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems
US10545552B2 (en) HESM parallel response mode
CN105098807B (en) Complementary optimal control method in energy-storage system between multiple hybrid accumulators
US9362745B2 (en) Power storage module and power storage device
CN103904766B (en) The control device of a kind of ultracapacitor and accumulator hybrid energy-storing and method
Jing et al. Battery lifetime enhancement via smart hybrid energy storage plug-in module in standalone photovoltaic power system
Lahyani et al. Optimal hybridization and amortized cost study of battery/supercapacitors system under pulsed loads
CN107222013A (en) Independent photovoltaic mixed energy storage system energy control method
CN203800680U (en) Large power bidirectional deflector capable of supporting access of multiple cell groups
Jing et al. Cost analysis of battery-supercapacitor hybrid energy storage system for standalone PV systems
CN103606715B (en) In conjunction with the constant amplitude pulse current charges method of positive negative pulse stuffing
CN104283298A (en) Storage battery and super-capacitor hybrid energy storage charging and discharging current control method
CN102522767A (en) Schedulable-type photovoltaic energy storage grid-connected power generation system and operating method thereof
CN103683315A (en) Method and system for controlling hybrid energy storage type photovoltaic power generation
CN106786485A (en) For the mains ripple suppressing method of direct-current grid under unbalanced load
CN102118063B (en) Solar energy power storage system and method
CN104993506A (en) Hybrid energy storage device of distributed power generation system
Chiu et al. Design and implementation of a high‐efficiency bidirectional DC‐DC Converter for DC micro‐grid system applications
CN109038629A (en) Micro-capacitance sensor mixed energy storage system optimized power allocation method
Azmi et al. Photovoltaic based active generator: Energy control system using stateflow analysis
CN106159981A (en) A kind of mixed energy storage system and micro-grid system
CN103501022A (en) Hybrid energy storage system power distribution method based on states of charge
Park et al. Maximum power transfer tracking in a solar USB charger for smartphones
CN113381496A (en) Hybrid energy storage system limit value management control method
CN111900712A (en) Direct-current micro-grid energy balance control method and system based on hybrid energy storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Nanshan District Xueyuan Road in Shenzhen city of Guangdong province 518055 No. 1001 Nanshan Chi Park building B2

Applicant after: Vitamin Technology Co., Ltd.

Address before: Nanshan District Xueyuan Road in Shenzhen city of Guangdong province 518055 No. 1001 Nanshan Chi Park building B2

Applicant before: Aimosheng Network Energy Source Co., Ltd.

GR01 Patent grant
GR01 Patent grant