CN106156748A - 基于车载双目相机的交通场景参与者识别方法 - Google Patents

基于车载双目相机的交通场景参与者识别方法 Download PDF

Info

Publication number
CN106156748A
CN106156748A CN201610586193.2A CN201610586193A CN106156748A CN 106156748 A CN106156748 A CN 106156748A CN 201610586193 A CN201610586193 A CN 201610586193A CN 106156748 A CN106156748 A CN 106156748A
Authority
CN
China
Prior art keywords
barrier
vehicle
parallax
sub
binocular camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610586193.2A
Other languages
English (en)
Other versions
CN106156748B (zh
Inventor
缪其恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zero Run Technology Co Ltd
Original Assignee
Zhejiang Zero Run Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Zero Run Technology Co Ltd filed Critical Zhejiang Zero Run Technology Co Ltd
Priority to CN201610586193.2A priority Critical patent/CN106156748B/zh
Publication of CN106156748A publication Critical patent/CN106156748A/zh
Application granted granted Critical
Publication of CN106156748B publication Critical patent/CN106156748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/247Aligning, centring, orientation detection or correction of the image by affine transforms, e.g. correction due to perspective effects; Quadrilaterals, e.g. trapezoids

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于车载双目相机的交通场景参与者识别方法,解决了现有技术的不足,技术方案为:通过双目系统进行数据获取,其特征在于:包括以下步骤:步骤一:车载双目相机获取当前道路图像,精细图像预处理以及双目视差匹配代价计算;步骤二:进行纵向路面参数估计,获取地平线以及路面范围信息;步骤三:利用视差匹配代价确定潜在障碍物的位置以及尺寸信息;步骤四:利用深度卷积神经网络描述障碍物特征信息,在特征图谱的输出基础上利用softmax分类器验证障碍物检测区域并确定障碍物的种类。利用轮廓以及纹理信息之外,还可以额外利用视差信息,识别准确率远高于浅层识别方法。

Description

基于车载双目相机的交通场景参与者识别方法
技术领域
本发明涉及一种车辆周围障碍物的精确识别方法,特别涉及一种利用双目系统提供的视差信息,确定障碍物位置,高度以及距离信息的基于车载双目相机的交通场景参与者识别方法。
背景技术
现有视觉系统障碍物识别的方法多利用车辆模板信息或几何以及边缘特征信息(如车辆对称性、车牌、车灯、底部阴影等),各现有方法均有很强的局限性。并且对应的距离信息由障碍物尺度变化比例或障碍物与路面交线信息获得,准确性不高且应用场景受限。车辆识别方法多基于浅层图像梯度信息的分类器,对于车辆特征的描述不具有普遍性,识别率较低,且不适用于复杂多变的行驶环境。
现有技术:车载相机系统包括双目系统和单目系统,一般以单目系统为主。
现有技术存在的问题包括:1.基于视觉的障碍物检测:不同的方法适用于不同的障碍物类别。以车辆检测为例,此类方法多利用车辆模板信息或几何以及边缘特征信息(如车辆对称性、车牌、车灯、底部阴影等),受车辆角度、光照等因素影响,局限性较大,且通用性不强(如不适用于其他道路使用者,如行人,自行车)。2.基于浅层机器学习的障碍物识别:基于梯度的车辆特征提取方法无法描述各种类型、角度的交通场景参与者特征。例如,对于车辆的有效特征提取方法不适用于行人的特征描述。另外,此类方法在复杂行驶环境中识别效果较差。
发明内容
本发明的目的在于解决上述现有技术车辆特征的描述不具有普遍性,识别率较低,且不适用于复杂多变的行驶环境的问题,提供了一种基于车载双目相机的交通场景参与者识别方法。
本发明解决其技术问题所采用的技术方案是:一种基于车载双目相机的交通场景参与者识别方法,包括以下步骤:
步骤一:车载双目相机获取当前道路图像,精细图像预处理以及双目视差匹配代价计算;
步骤二:进行纵向路面参数估计,获取地平线以及路面范围信息;
步骤三:利用视差匹配代价确定潜在障碍物的位置以及尺寸信息;
步骤四:利用深度卷积神经网络描述障碍物特征信息,在特征图谱的输出基础上利用softmax分类器验证障碍物检测区域并确定障碍物的种类。
本方法发明了一种新的基于双目视觉的障碍物区域检测方法以及基于深度卷积神经网络的障碍物识别方法,双目系统除了可以利用单目系统所能提供的轮廓以及纹理信息之外,还可以额外利用视差信息,可以提升障碍物区域检测的鲁棒性。基于深度卷积神经网络的特征提取方法适用于各种障碍物类别,并且识别准确率远高于浅层识别方法。
作为优选,在所述步骤一中,车载双目相机获取RGB格式双目图像,对图像进行预处理,主要包括降噪、除畸变以及立体矫正,对预处理后的图片中每个像素点(u,v)对应的视差d,计算基于灰度值绝对值之差(SAD)的匹配代价Cm(u,v,d),其中u,v,d的范围均为设定参数。
作为优选,在所述步骤二中,进行纵向路面参数估计,包括以下子步骤:
纵向路面参数估计子步骤一:对视差匹配代价向图像纵轴即v轴进行投影求和,计算图像每一行v值对应视差代价之和的最小值Cv;
纵向路面参数估计子步骤二:通过设定视差代价阈值Td,得出每行对应视差代价之和小于Cv加Td所对应的视差值d,通过v-d映射得到v-视差图;
纵向路面参数估计子步骤三:将v-视差图投影到现实坐标系高度与深度的映射,利用B-样条曲线拟合路面高度与深度关系,最后逆映射回v-视差图平面,获得纵向道路平面对应的v-视差图;
v-视差图中,通过视差d=0得到地平线vo,通过视差d>0对应的图像区域为纵向路面的路面范围参数。
作为优选,在所述步骤三中,包括以下子步骤:
障碍物区域提取子步骤一:在确定的路面范围内,利用v-视差图中每一行v值与对应路面视差d的双向映射关系,计算障碍物-道路交线匹配代价CBoundary;障碍物-道路交线匹配代价由道路匹配代价与物体匹配代价两部分组成,其中道路匹配代价v与d符合v-视差图的映射关系(f:v<->d)而物体匹配代价每一行则对应相同的视差d,其具体计算公式如下:
C B o u n d a r y ( u i , v i ) = &Sigma; v = v i h C m ( u i , v , f ( v ) ) + &Sigma; v = v 0 v i C m ( u i , v , f ( v 1 ) ) ;
其中,h为图像高度;利用2维动态规划法确定障碍物-道路交线匹配代价CBoundary最小值所对应的像素值(ubot,vbot)集合即为障碍物与道路的交线,每一列u值对应的视差值为dBoundary(u);
障碍物区域提取子步骤二:在障碍物-道路交线以上部分,计算障碍物高度匹配代价CHeight,通过概率函数m(u,v)计算Cm(u,v,dBoundary(u))为区域极值的可能性,该值介于-1与1之间,通过障碍物高度匹配代价计算式:
C H e i g h t ( u i , v i ) = &Sigma; v = v i v b o t , u i | m ( u i , v ) - 1 | + &Sigma; v = 0 v i | m ( u i , v ) + 1 |
利用2维动态规划方法确定障碍物高度匹配代价CHeight最小值所对应的像素值(ui,vi)集合即为与障碍物与道路的交线对应的障碍物高度信息;
障碍物区域提取子步骤三:过滤障碍物的高度、宽度以及深度信息:设置障碍物宽度,高度,深度阈值模块,过滤图像中相邻的障碍物区域,确定属于同一障碍物的图像区域。
作为优选,在所述步骤四中包括以下子步骤:
障碍物区域验证子步骤一:建立深度卷积神经网络,深度卷积神经网络由1个输入层,8个卷积层,4个池化层以及3个全连接层;
障碍物区域验证子步骤二:建立数据库,采集地点、天候和天气的行车记录仪数据作为标定样本,标定内容包括类别信息以及对应图像中的矩形区域对角线信息(x1,y1,x2,y2);
障碍物区域验证子步骤三:利用障碍物区域验证子步骤二中所标定样本训练深度卷积神经网络,获得最优深度卷积神经网络权重;
障碍物区域验证子步骤三:利用训练所得的最优深度卷积神经网络权重,将通过双目系统获得的障碍物区域范围归一化到设定的尺寸,输入到训练好的深度神经网络中,深化神经网络输出障碍物的种类。
作为优选,深度神经网络输出障碍物的种类的同时,同时还根据步骤三的计算结果输出障碍物尺寸以及距离信息。
作为优选,所述深度卷积神经网络包括:
图像输入层:RGB格式图片,大小为128*128*3。
卷积层:对于任意卷积操作,均采用3*3尺寸的卷积滑窗,以及‘0’像素值边缘填充,步长为1,
激活层:应用于每个卷积层后,所使用的激活方程为修正线性单元(ReLu),其表达式为:max(0,x),其中,x为该神经元输入,
池化层:对于此网络内任意池化操作,采用2*2大小滑窗尺寸,取最大值滑窗内4个数值的最大值,步长为2,
全连接层:前两层为dropout层,防止模型过拟合,自动丢弃该全连接层内一定比例的神经元,参数设置为0.5,最后一层为用于障碍物类别检测的输出为7维向量的softmax分类器。
作为优选,训练深度卷积神经网络采用基于迷你批量方式的梯度下降方法:每个循环内,基于反向递推的方法对softmax损失求最优解来优化网络权重参数,直至设定的循环迭代次数完成;
softmax损失计算公式为:
&sigma; ( z j ) = e z j &Sigma;e z j
其中,zj为输出向量的每个元素,用户设置参数有迷你批量样本大小n、学习速率1r、权重衰退系数wd以及动量系数m。
本发明的实质性效果是:本方法发明了一种新的基于双目视觉的障碍物区域检测方法以及基于深度卷积神经网络的障碍物识别方法,双目系统除了可以利用单目系统所能提供的轮廓以及纹理信息之外,还可以额外利用视差信息,可以提升障碍物区域检测的鲁棒性。基于深度卷积神经网络的特征提取方法适用于各种障碍物类别,并且识别准确率远高于浅层识别方法。
附图说明
图1为本发明的一种流程示意图;
图2为本发明中深度卷积神经网络架构的示意图。
具体实施方式
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体说明。
实施例:
一种基于车载双目相机的交通场景参与者识别方法(参见附图1和附图2),包括以下步骤:
步骤一:车载双目相机获取当前道路图像,精细图像预处理以及双目视差匹配代价计算;
车载双目相机获取RGB格式双目图像,对图像进行预处理,主要包括降噪、除畸变以及立体矫正,对预处理后的图片中每个像素点(u,v)对应的视差d,计算基于灰度值绝对值之差(SAD)的匹配代价Cm(u,v,d),其中u,v,d的范围均为设定参数。
步骤二:进行纵向路面参数估计,获取地平线以及路面范围信息;纵向路面参数估计子步骤一:对视差匹配代价向图像纵轴即v轴进行投影求和,计算图像每一行v值对应视差代价之和的最小值Cv;
纵向路面参数估计子步骤二:通过设定视差代价阈值Td,得出每行对应视差代价之和小于Cv加Td所对应的视差值d,通过v-d映射得到v-视差图;
纵向路面参数估计子步骤三:将v-视差图投影到现实坐标系高度与深度的映射,利用B-样条曲线拟合路面高度与深度关系,最后逆映射回v-视差图平面,获得纵向道路平面对应的v-视差图;
v-视差图中,通过视差d=0得到地平线vo,通过视差d>0对应的图像区域为纵向路面的路面范围参数。
步骤三:利用视差匹配代价确定潜在障碍物的位置以及尺寸信息;
障碍物区域提取子步骤一:在确定的路面范围内,利用v-视差图中每一行v值与对应路面视差d的双向映射关系,计算障碍物-道路交线匹配代价CBoundary;障碍物-道路交线匹配代价由道路匹配代价与物体匹配代价两部分组成,其中道路匹配代价v与d符合v-视差图的映射关系(f:v<->d)而物体匹配代价每一行则对应相同的视差d,其具体计算公式如下:
其中,h为为图像高度;利用2维动态规划法确定障碍物-道路交线匹配代价CBoundary最小值所对应的像素值(ubot,vbot)集合即为障碍物与道路的交线,每一列u值对应的视差值为dBoundary(u);
障碍物区域提取子步骤二:在障碍物-道路交线以上部分,计算障碍物高度匹配代价CHeight,通过概率函数m(u,v)计算Gm(u,v,dBoundary(u))为区域极值的可能性,该值介于-1与1之间,通过障碍物高度匹配代价计算式:
C H e i g h t ( u i , v i ) = &Sigma; v = v i v b o t , u i | m ( u i , v ) - 1 | + &Sigma; v = 0 v i | m ( u i , v ) + 1 |
利用2维动态规划方法确定障碍物高度匹配代价CHeight最小值所对应的像素值(ui,vi)集合即为与障碍物与道路的交线对应的障碍物高度信息;
障碍物区域提取子步骤三:过滤障碍物的高度、宽度以及深度信息:设置障碍物宽度,高度,深度阈值模块,过滤图像中相邻的障碍物区域,确定属于同一障碍物的图像区域。
步骤四:利用深度卷积神经网络描述障碍物特征信息,在特征图谱的输出基础上利用softmax分类器验证障碍物检测区域并确定障碍物的种类,在输出障碍物的种类的同时,同时还根据步骤三的计算结果输出障碍物尺寸以及距离信息。
障碍物区域验证子步骤一:建立深度卷积神经网络,深度卷积神经网络由1个输入层,8个卷积层,4个池化层以及3个全连接层;
障碍物区域验证子步骤二:建立数据库,采集不同地点、天候、天气的行车记录仪数据200余万张,按照1行人、2自行车、3摩托车、4三轮车以及5小型车、6大型车以及7背景共七类人工筛选、标定数据样本。标定内容包括类别信息(1-7)以及对应图像中的矩形区域对角线信息(x1,y1,x2,y2)。
障碍物区域验证子步骤三:利用障碍物区域验证子步骤二中所标定样本训练深度卷积神经网络,获得最优深度卷积神经网络权重;其中,所述深度卷积神经网络包括:
图像输入层:RGB格式图片,大小为128*128*3。
卷积层:对于任意卷积操作,均采用3*3尺寸的卷积滑窗,以及‘0’像素值边缘填充,步长为1,
激活层:应用于每个卷积层后,所使用的激活方程为修正线性单元(ReLu),其表达式为:max(0,x),其中,x为该神经元输入,
池化层:对于此网络内任意池化操作,采用2*2大小滑窗尺寸,取最大值滑窗内4个数值的最大值,步长为2,
全连接层:前两层为dropout层,防止模型过拟合,自动丢弃该全连接层内一定比例的神经元,参数设置为0.5,最后一层为用于障碍物类别检测的输出为7维向量的softmax分类器。
训练深度卷积神经网络采用基于迷你批量方式的梯度下降方法:每个循环内,基于反向递推的方法对softmax损失求最优解来优化网络权重参数,直至设定的循环迭代次数完成;
softmax损失计算公式为:
&sigma; ( z j ) = e z j &Sigma;e z j
其中,zj为输出向量的每个元素,用户设置参数有迷你批量样本大小n、学习速率lr、权重衰退系数wd以及动量系数m。
障碍物区域验证子步骤三:利用训练所得的最优深度卷积神经网络权重,将通过双目系统获得的障碍物区域范围归一化到设定的尺寸,输入到训练好的深度神经网络中,深化神经网络输出障碍物的种类。
本实施例为一种新的基于双目视觉的障碍物区域检测方法以及基于深度卷积神经网络的障碍物识别方法,双目系统除了可以利用单目系统所能提供的轮廓以及纹理信息之外,还可以额外利用视差信息,可以提升障碍物区域检测的鲁棒性。基于深度卷积神经网络的特征提取方法适用于各种障碍物类别,并且识别准确率远高于浅层识别方法。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (8)

1.一种基于车载双目相机的交通场景参与者识别方法,通过双目系统进行数据获取,其特征在于:包括以下步骤:
步骤一:车载双目相机获取当前道路图像,精细图像预处理以及双目视差匹配代价计算;
步骤二:进行纵向路面参数估计,获取地平线以及路面范围信息;
步骤三:利用视差匹配代价确定潜在障碍物的位置以及尺寸信息;
步骤四:利用深度卷积神经网络描述障碍物特征信息,在特征图谱的输出基础上利用softmax分类器验证障碍物检测区域并确定障碍物的种类。
2.根据权利要求1所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:在所述步骤一中,车载双目相机获取RGB格式双目图像,对图像进行预处理,主要包括降噪、除畸变以及立体矫正,对预处理后的图片中每个像素点(u,v)对应的视差d,计算基于灰度值绝对值之差(SAD)的匹配代价Cm(u,v,d),其中u,v,d的范围均为设定参数。
3.根据权利要求1所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:在所述步骤二中,进行纵向路面参数估计,包括以下子步骤:
纵向路面参数估计子步骤一:对视差匹配代价向图像纵轴即v轴进行投影求和,计算图像每一行v值对应视差代价之和的最小值Cv;
纵向路面参数估计子步骤二:通过设定视差代价阈值Td,得出每行对应视差代价之和小于Cv加Td所对应的视差值d,通过v-d映射得到v-视差图;
纵向路面参数估计子步骤三:将v-视差图投影到现实坐标系高度与深度的映射,利用B-样条曲线拟合路面高度与深度关系,最后逆映射回v-视差图平面,获得纵向道路平面对应的v-视差图;
v-视差图中,通过视差d=0得到地平线vo,通过视差d>0对应的图像区域为纵向路面的路面范围参数。
4.根据权利要求3所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:在所述步骤三中,包括以下子步骤:
障碍物区域提取子步骤一:在确定的路面范围内,利用v-视差图中每一行v值与对应路面视差d的双向映射关系,计算障碍物-道路交线匹配代价CBoundary;障碍物-道路交线匹配代价由道路匹配代价与物体匹配代价两部分组成,其中道路匹配代价v与d符合v-视差图的映射关系(f:v<->d)而物体匹配代价每一行则对应相同的视差d,其具体计算公式如下:
其中,h为图像高度;利用2维动态规划法确定障碍物-道路交线匹配代价CBoundary最小值所对应的像素值(ubot,vbot)集合即为障碍物与道路的交线,每一列u值对应的视差值为dBoundary(u);
障碍物区域提取子步骤二:在障碍物-道路交线以上部分,计算障碍物高度匹配代价CHeight,通过概率函数m(u,v)计算Cm(u,v,dBoundary(u))为区域极值的可能性,该值介于-1与1之间,通过障碍物高度匹配代价计算式:
C H e i g h t ( u i , v i ) = &Sigma; v = v i v b o t , u i | m ( u i , v ) - 1 | + &Sigma; v = 0 v i | m ( u i , v ) + 1 |
利用2维动态规划方法确定障碍物高度匹配代价CHeight最小值所对应的像素值(ui,vi)集合即为与障碍物与道路的交线对应的障碍物高度信息;
障碍物区域提取子步骤三:过滤障碍物的高度、宽度以及深度信息:设置障碍物宽度,高度,深度阈值模块,过滤图像中相邻的障碍物区域,确定属于同一障碍物的图像区域。
5.根据权利要求4所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:在所述步骤四中包括以下子步骤:
障碍物区域验证子步骤一:建立深度卷积神经网络,深度卷积神经网络由1个输入层,8个卷积层,4个池化层以及3个全连接层;
障碍物区域验证子步骤二:建立数据库,采集地点、天候和天气的行车记录仪数据作为标定样本,标定内容包括类别信息以及对应图像中的矩形区域对角线信息(x1,y1,x2,y2);
障碍物区域验证子步骤三:利用障碍物区域验证子步骤二中所标定样本训练深度卷积神经网络,获得最优深度卷积神经网络权重;
障碍物区域验证子步骤三:利用训练所得的最优深度卷积神经网络权重,将通过双目系统获得的障碍物区域范围归一化到设定的尺寸,输入到训练好的深度神经网络中,深化神经网络输出障碍物的种类。
6.根据权利要求1或2或3或4或5所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:深度神经网络输出障碍物的种类的同时,同时还根据步骤三的计算结果输出障碍物尺寸以及距离信息。
7.根据权利要求5所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:
所述深度卷积神经网络包括:
图像输入层:RGB格式图片,大小为128*128*3。
卷积层:对于任意卷积操作,均采用3*3尺寸的卷积滑窗,以及‘0’像素值边缘填充,步长为1,
激活层:应用于每个卷积层后,所使用的激活方程为修正线性单元(ReLu),其表达式为:max(0,x),其中,x为该神经元输入,
池化层:对于此网络内任意池化操作,采用2*2大小滑窗尺寸,取最大值滑窗内4个数值的最大值,步长为2,
全连接层:前两层为dropout层,防止模型过拟合,自动丢弃该全连接层内一定比例的神经元,参数设置为0.5,最后一层为用于障碍物类别检测的输出为7维向量的softmax分类器。
8.根据权利要求5所述的基于车载双目相机的交通场景参与者识别方法,其特征在于:
训练深度卷积神经网络采用基于迷你批量方式的梯度下降方法:每个循环内,基于反向递推的方法对softmax损失求最优解来优化网络权重参数,直至设定的循环迭代次数完成;
softmax损失计算公式为:
&sigma; ( z j ) = e z j &Sigma;e z j
其中,zj为输出向量的每个元素,用户设置参数有迷你批量样本大小n、学习速率1r、权重衰退系数wd以及动量系数m。
CN201610586193.2A 2016-07-22 2016-07-22 基于车载双目相机的交通场景参与者识别方法 Active CN106156748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610586193.2A CN106156748B (zh) 2016-07-22 2016-07-22 基于车载双目相机的交通场景参与者识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610586193.2A CN106156748B (zh) 2016-07-22 2016-07-22 基于车载双目相机的交通场景参与者识别方法

Publications (2)

Publication Number Publication Date
CN106156748A true CN106156748A (zh) 2016-11-23
CN106156748B CN106156748B (zh) 2019-03-29

Family

ID=58060004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610586193.2A Active CN106156748B (zh) 2016-07-22 2016-07-22 基于车载双目相机的交通场景参与者识别方法

Country Status (1)

Country Link
CN (1) CN106156748B (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599832A (zh) * 2016-12-09 2017-04-26 重庆邮电大学 一种基于卷积神经网络的多类障碍物检测与识别方法
CN106683182A (zh) * 2017-01-12 2017-05-17 南京大学 一种权衡立体匹配和视觉外形的三维重建方法
CN106952303A (zh) * 2017-03-09 2017-07-14 北京旷视科技有限公司 车距检测方法、装置和系统
CN107092862A (zh) * 2017-03-16 2017-08-25 浙江零跑科技有限公司 一种基于卷积神经网络的车道边缘检测方法
CN107203134A (zh) * 2017-06-02 2017-09-26 浙江零跑科技有限公司 一种基于深度卷积神经网络的前车跟随方法
CN107273816A (zh) * 2017-05-24 2017-10-20 浙江零跑科技有限公司 基于车载前视单目相机的交通限速标识检测识别方法
CN108154153A (zh) * 2016-12-02 2018-06-12 北京市商汤科技开发有限公司 场景分析方法和系统、电子设备
CN108197569A (zh) * 2017-12-29 2018-06-22 驭势科技(北京)有限公司 障碍物识别方法、装置、计算机存储介质和电子设备
CN108734715A (zh) * 2017-04-24 2018-11-02 成都唐源电气股份有限公司 一种自适应学习的接触网刚性导线识别方法及装置
CN108764213A (zh) * 2018-06-18 2018-11-06 宁波市鄞州智伴信息科技有限公司 用于车门锁止的控制方法
CN108798305A (zh) * 2018-06-18 2018-11-13 宁波市鄞州智伴信息科技有限公司 基于雷达的车门安全预警方法
CN108805882A (zh) * 2018-05-29 2018-11-13 杭州视氪科技有限公司 一种水面和水坑检测方法
CN108790741A (zh) * 2018-06-18 2018-11-13 宁波市鄞州智伴信息科技有限公司 车门安全预警方法
CN108819842A (zh) * 2018-06-18 2018-11-16 宁波市鄞州智伴信息科技有限公司 用于车门锁止的控制系统
CN108825007A (zh) * 2018-06-18 2018-11-16 宁波市鄞州智伴信息科技有限公司 基于雷达的车门安全预警系统
CN108868388A (zh) * 2018-06-18 2018-11-23 宁波市鄞州智伴信息科技有限公司 车门安全预警系统
CN109035322A (zh) * 2018-07-17 2018-12-18 重庆大学 一种基于双目视觉的障碍物检测与识别方法
CN109291929A (zh) * 2017-07-24 2019-02-01 通用汽车环球科技运作有限责任公司 用于自动驾驶系统的深度集成融合架构
CN109657581A (zh) * 2018-12-07 2019-04-19 南京高美吉交通科技有限公司 基于双目相机行为检测的城市轨道交通闸机通行控制方法
CN110060486A (zh) * 2018-01-19 2019-07-26 Zf腓德烈斯哈芬股份公司 借助噪声来识别和定位非机动车交通参与者的车辆系统
CN110321828A (zh) * 2019-06-27 2019-10-11 四川大学 一种基于双目摄像机和车底阴影的前方车辆检测方法
CN110400333A (zh) * 2019-07-26 2019-11-01 中国安全生产科学研究院 教练式双目立体视觉装置及高精度立体视觉图像获取方法
CN110799982A (zh) * 2017-06-06 2020-02-14 智加科技公司 用于自动驾驶车辆中的以物体为中心的立体视觉的方法和系统
CN111114541A (zh) * 2019-12-31 2020-05-08 华为技术有限公司 车辆控制方法、装置、控制器和智能车
CN111209770A (zh) * 2018-11-21 2020-05-29 北京三星通信技术研究有限公司 一种车道线识别方法及装置
CN111382591A (zh) * 2018-12-27 2020-07-07 海信集团有限公司 一种双目相机测距校正方法及车载设备
CN111991198A (zh) * 2020-08-14 2020-11-27 天津唯拓科技有限责任公司 头戴式避障设备的控制方法与头戴式避障设备
CN112017986A (zh) * 2020-10-21 2020-12-01 季华实验室 半导体产品缺陷检测方法、装置、电子设备及存储介质
CN113014899A (zh) * 2019-12-20 2021-06-22 杭州海康威视数字技术股份有限公司 一种双目图像的视差确定方法、装置及系统
US11062453B2 (en) 2016-12-02 2021-07-13 Beijing Sensetime Technology Development Co., Ltd. Method and system for scene parsing and storage medium
CN113128347A (zh) * 2021-03-24 2021-07-16 北京中科慧眼科技有限公司 基于rgb-d融合信息的障碍物目标分类方法、系统和智能终端
CN113515661A (zh) * 2021-07-16 2021-10-19 广西师范大学 一种基于过滤深度卷积特征的图像检索方法
CN113911112A (zh) * 2021-09-08 2022-01-11 浙江零跑科技股份有限公司 一种基于曲线拟合的车道偏离辅助方法及系统
CN114664090A (zh) * 2022-04-14 2022-06-24 山东大学 基于循环神经网络的交通数据填补方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231708A (zh) * 2013-04-12 2013-08-07 安徽工业大学 一种基于双目视觉的智能车辆避障方法
CN103325120A (zh) * 2013-06-30 2013-09-25 西南交通大学 一种快速自适应支持权值双目视觉立体匹配方法
CN103679707A (zh) * 2013-11-26 2014-03-26 西安交通大学 基于双目相机视差图的道路障碍物检测系统及检测方法
CN103714543A (zh) * 2013-12-26 2014-04-09 南京理工大学 基于不变矩空间信息的简单树动态规划的双目立体匹配方法
CN104463194A (zh) * 2014-11-04 2015-03-25 深圳市华尊科技有限公司 一种人车分类方法及装置
CN105528785A (zh) * 2015-12-03 2016-04-27 河北工业大学 一种双目视觉图像立体匹配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231708A (zh) * 2013-04-12 2013-08-07 安徽工业大学 一种基于双目视觉的智能车辆避障方法
CN103325120A (zh) * 2013-06-30 2013-09-25 西南交通大学 一种快速自适应支持权值双目视觉立体匹配方法
CN103679707A (zh) * 2013-11-26 2014-03-26 西安交通大学 基于双目相机视差图的道路障碍物检测系统及检测方法
CN103714543A (zh) * 2013-12-26 2014-04-09 南京理工大学 基于不变矩空间信息的简单树动态规划的双目立体匹配方法
CN104463194A (zh) * 2014-11-04 2015-03-25 深圳市华尊科技有限公司 一种人车分类方法及装置
CN105528785A (zh) * 2015-12-03 2016-04-27 河北工业大学 一种双目视觉图像立体匹配方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
卢宏涛 等: "深度卷积神经网络在计算机视觉中的应用研究综述", 《数据采集与处理》 *
李宇: "基于双目视觉的障碍物识别研究", 《中国优秀硕士学位论文全文数据库》 *
林川 等: "基于双目视觉的障碍物检测算法", 《电视技术》 *

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154153A (zh) * 2016-12-02 2018-06-12 北京市商汤科技开发有限公司 场景分析方法和系统、电子设备
US11062453B2 (en) 2016-12-02 2021-07-13 Beijing Sensetime Technology Development Co., Ltd. Method and system for scene parsing and storage medium
CN106599832A (zh) * 2016-12-09 2017-04-26 重庆邮电大学 一种基于卷积神经网络的多类障碍物检测与识别方法
CN106683182A (zh) * 2017-01-12 2017-05-17 南京大学 一种权衡立体匹配和视觉外形的三维重建方法
CN106683182B (zh) * 2017-01-12 2019-09-20 南京大学 一种权衡立体匹配和视觉外形的三维重建方法
CN106952303A (zh) * 2017-03-09 2017-07-14 北京旷视科技有限公司 车距检测方法、装置和系统
CN106952303B (zh) * 2017-03-09 2020-04-24 北京旷视科技有限公司 车距检测方法、装置和系统
CN107092862A (zh) * 2017-03-16 2017-08-25 浙江零跑科技有限公司 一种基于卷积神经网络的车道边缘检测方法
CN108734715A (zh) * 2017-04-24 2018-11-02 成都唐源电气股份有限公司 一种自适应学习的接触网刚性导线识别方法及装置
CN107273816A (zh) * 2017-05-24 2017-10-20 浙江零跑科技有限公司 基于车载前视单目相机的交通限速标识检测识别方法
CN107273816B (zh) * 2017-05-24 2019-11-05 浙江零跑科技有限公司 基于车载前视单目相机的交通限速标识检测识别方法
CN107203134B (zh) * 2017-06-02 2020-08-18 浙江零跑科技有限公司 一种基于深度卷积神经网络的前车跟随方法
CN107203134A (zh) * 2017-06-02 2017-09-26 浙江零跑科技有限公司 一种基于深度卷积神经网络的前车跟随方法
US11790551B2 (en) 2017-06-06 2023-10-17 Plusai, Inc. Method and system for object centric stereo in autonomous driving vehicles
CN110799982A (zh) * 2017-06-06 2020-02-14 智加科技公司 用于自动驾驶车辆中的以物体为中心的立体视觉的方法和系统
CN109291929B (zh) * 2017-07-24 2021-07-13 通用汽车环球科技运作有限责任公司 用于自动驾驶系统的深度集成融合架构
CN109291929A (zh) * 2017-07-24 2019-02-01 通用汽车环球科技运作有限责任公司 用于自动驾驶系统的深度集成融合架构
CN108197569A (zh) * 2017-12-29 2018-06-22 驭势科技(北京)有限公司 障碍物识别方法、装置、计算机存储介质和电子设备
CN110060486A (zh) * 2018-01-19 2019-07-26 Zf腓德烈斯哈芬股份公司 借助噪声来识别和定位非机动车交通参与者的车辆系统
CN108805882A (zh) * 2018-05-29 2018-11-13 杭州视氪科技有限公司 一种水面和水坑检测方法
CN108805882B (zh) * 2018-05-29 2021-09-03 杭州视氪科技有限公司 一种水面和水坑检测方法
CN108790741A (zh) * 2018-06-18 2018-11-13 宁波市鄞州智伴信息科技有限公司 车门安全预警方法
CN108764213A (zh) * 2018-06-18 2018-11-06 宁波市鄞州智伴信息科技有限公司 用于车门锁止的控制方法
CN108825007A (zh) * 2018-06-18 2018-11-16 宁波市鄞州智伴信息科技有限公司 基于雷达的车门安全预警系统
CN108798305A (zh) * 2018-06-18 2018-11-13 宁波市鄞州智伴信息科技有限公司 基于雷达的车门安全预警方法
CN108819842A (zh) * 2018-06-18 2018-11-16 宁波市鄞州智伴信息科技有限公司 用于车门锁止的控制系统
CN108868388A (zh) * 2018-06-18 2018-11-23 宁波市鄞州智伴信息科技有限公司 车门安全预警系统
CN109035322A (zh) * 2018-07-17 2018-12-18 重庆大学 一种基于双目视觉的障碍物检测与识别方法
CN111209770A (zh) * 2018-11-21 2020-05-29 北京三星通信技术研究有限公司 一种车道线识别方法及装置
CN111209770B (zh) * 2018-11-21 2024-04-23 北京三星通信技术研究有限公司 一种车道线识别方法及装置
CN109657581B (zh) * 2018-12-07 2023-06-09 南京高美吉交通科技有限公司 基于双目相机行为检测的城市轨道交通闸机通行控制方法
CN109657581A (zh) * 2018-12-07 2019-04-19 南京高美吉交通科技有限公司 基于双目相机行为检测的城市轨道交通闸机通行控制方法
CN111382591A (zh) * 2018-12-27 2020-07-07 海信集团有限公司 一种双目相机测距校正方法及车载设备
CN111382591B (zh) * 2018-12-27 2023-09-29 海信集团有限公司 一种双目相机测距校正方法及车载设备
CN110321828A (zh) * 2019-06-27 2019-10-11 四川大学 一种基于双目摄像机和车底阴影的前方车辆检测方法
CN110400333B (zh) * 2019-07-26 2020-06-26 中国安全生产科学研究院 教练式双目立体视觉装置及高精度立体视觉图像获取方法
CN110400333A (zh) * 2019-07-26 2019-11-01 中国安全生产科学研究院 教练式双目立体视觉装置及高精度立体视觉图像获取方法
CN113014899A (zh) * 2019-12-20 2021-06-22 杭州海康威视数字技术股份有限公司 一种双目图像的视差确定方法、装置及系统
CN111114541B (zh) * 2019-12-31 2021-08-20 华为技术有限公司 车辆控制方法、装置、控制器和智能车
CN111114541A (zh) * 2019-12-31 2020-05-08 华为技术有限公司 车辆控制方法、装置、控制器和智能车
CN111991198A (zh) * 2020-08-14 2020-11-27 天津唯拓科技有限责任公司 头戴式避障设备的控制方法与头戴式避障设备
CN112017986A (zh) * 2020-10-21 2020-12-01 季华实验室 半导体产品缺陷检测方法、装置、电子设备及存储介质
CN113128347A (zh) * 2021-03-24 2021-07-16 北京中科慧眼科技有限公司 基于rgb-d融合信息的障碍物目标分类方法、系统和智能终端
CN113128347B (zh) * 2021-03-24 2024-01-16 北京中科慧眼科技有限公司 基于rgb-d融合信息的障碍物目标分类方法、系统和智能终端
CN113515661A (zh) * 2021-07-16 2021-10-19 广西师范大学 一种基于过滤深度卷积特征的图像检索方法
CN113515661B (zh) * 2021-07-16 2022-03-11 广西师范大学 一种基于过滤深度卷积特征的图像检索方法
CN113911112A (zh) * 2021-09-08 2022-01-11 浙江零跑科技股份有限公司 一种基于曲线拟合的车道偏离辅助方法及系统
CN114664090B (zh) * 2022-04-14 2023-07-04 山东大学 基于循环神经网络的交通数据填补方法及系统
CN114664090A (zh) * 2022-04-14 2022-06-24 山东大学 基于循环神经网络的交通数据填补方法及系统

Also Published As

Publication number Publication date
CN106156748B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN106156748A (zh) 基于车载双目相机的交通场景参与者识别方法
CN107576960B (zh) 视觉雷达时空信息融合的目标检测方法及系统
CN111832655B (zh) 一种基于特征金字塔网络的多尺度三维目标检测方法
CN113936139B (zh) 一种视觉深度信息与语义分割相结合的场景鸟瞰图重构方法及系统
CN108694386B (zh) 一种基于并联卷积神经网络的车道线检测方法
CN104700414B (zh) 一种基于车载双目相机的前方道路行人快速测距方法
CN107862293A (zh) 基于对抗生成网络的雷达生成彩色语义图像系统及方法
CN107633220A (zh) 一种基于卷积神经网络的车辆前方目标识别方法
CN109460709A (zh) 基于rgb和d信息融合的rtg视觉障碍物检测的方法
CN107092862A (zh) 一种基于卷积神经网络的车道边缘检测方法
CN106595659A (zh) 城市复杂环境下多无人机视觉slam的地图融合方法
CN113705636B (zh) 一种自动驾驶车辆轨迹预测方法、装置及电子设备
CN106127137A (zh) 一种基于3d轨迹分析的目标检测识别算法
CN107397658B (zh) 一种多尺度全卷积网络及视觉导盲方法和装置
US20190188862A1 (en) A perception device for obstacle detection and tracking and a perception method for obstacle detection and tracking
CN110516633B (zh) 一种基于深度学习的车道线检测方法及系统
CN107220603A (zh) 基于深度学习的车辆检测方法及装置
CN109961013A (zh) 车道线的识别方法、装置、设备及计算机可读存储介质
CN109919026A (zh) 一种水面无人艇局部路径规划方法
Xu et al. BANet: A balanced atrous net improved from SSD for autonomous driving in smart transportation
CN104700105A (zh) 非结构化室外地形全局检测方法
CN116222577B (zh) 闭环检测方法、训练方法、系统、电子设备及存储介质
CN107808140A (zh) 一种基于图像融合的单目视觉道路识别算法
CN114299405A (zh) 一种无人机图像实时目标检测方法
CN116051758A (zh) 一种用于室外机器人的含有高度信息的地貌地图构建方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 6 / F, Xintu building, 451 Internet of things street, Binjiang District, Hangzhou City, Zhejiang Province, 310051

Patentee after: Zhejiang Zero run Technology Co.,Ltd.

Address before: 6 / F, Xintu building, 451 Internet of things street, Binjiang District, Hangzhou City, Zhejiang Province, 310051

Patentee before: ZHEJIANG LEAPMOTOR TECHNOLOGY Co.,Ltd.