CN106128102B - 一种交通堵塞预警装置 - Google Patents

一种交通堵塞预警装置 Download PDF

Info

Publication number
CN106128102B
CN106128102B CN201610525447.XA CN201610525447A CN106128102B CN 106128102 B CN106128102 B CN 106128102B CN 201610525447 A CN201610525447 A CN 201610525447A CN 106128102 B CN106128102 B CN 106128102B
Authority
CN
China
Prior art keywords
traffic flow
data
module
magnitude
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610525447.XA
Other languages
English (en)
Other versions
CN106128102A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taixing science and technology incubator center
Original Assignee
Taixing Science And Technology Incubator Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taixing Science And Technology Incubator Center filed Critical Taixing Science And Technology Incubator Center
Priority to CN201610525447.XA priority Critical patent/CN106128102B/zh
Publication of CN106128102A publication Critical patent/CN106128102A/zh
Application granted granted Critical
Publication of CN106128102B publication Critical patent/CN106128102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块。本发明预测精度较高且构造的预测模型更有针对性。

Description

一种交通堵塞预警装置
技术领域
本发明涉及智能交通领域,具体涉及一种交通堵塞预警装置。
背景技术
交通流量是指单位时间内通过道路某一断面的实际车辆数,是描述交通状态的重要特征参数。交通流量的变化又是一个实时、高维、非线性、非平稳的随机过程,相关因素的变化都可能影响下一时刻的交通流量。相关技术中,关于短时的预测装置局限性强,预测精度较低,实时预测未能取得令人满意的结果,未能对人们的实时道路选择提供有效建议,从而交通流量预测大部分停留在交通流量的中长期预测。
发明内容
针对上述问题,本发明提供一种交通堵塞预警装置。
本发明的目的采用以下技术方案来实现:
一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成。
优选地,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
优选地,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
优选地,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本发明的有益效果为:
1、设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;
2、设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,其中预测因子直接影响预测精度,相关系数是测量随机变量相关性的指标,能够帮助选取与预测点密切相关的变量作为预测模型的训练样本,选取多个相关系数作为预测因子,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;
3、相关系数计算模块中的空间相关系数反映了路网的可达性对预测模型的影响,时间相关系数能够表达流量序列的时间顺序,反映两序列时间上的因果关系,从而提高预测因子选取的效率;由于交通流量的周相似性,引入历史相关系数矩阵生成模块的历史相关系数,同时间相关系数和空间相关系数配合使用,为准确预测提供更多的数据支持。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明预测装置各模块的连接示意图。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1
参见图1,本实施例一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成。
优选地,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
优选地,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
优选地,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=8,M=3,预测精度相对于相关技术提高了1.5%。
实施例2
参见图1,本实施例一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成。
优选地,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
优选地,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
优选地,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=9,M=3,预测精度相对于相关技术提高了2%。
实施例3
参见图1,本实施例一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成。
优选地,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
优选地,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
优选地,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=10,M=4,预测精度相对于相关技术提高了2.6%。
实施例4
参见图1,本实施例一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成。
优选地,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
优选地,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
优选地,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=11,M=5,预测精度相对于相关技术提高了3.2%。
实施例5
参见图1,本实施例一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成。
优选地,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
优选地,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
优选地,预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
优选地,预测装置还包括:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
其中,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阀值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
其中,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段的交通流量序列与预测路段的交通流量序列分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
本实施例设置数据分类模块和平稳性检验模块,增加了数据的准确度,且使构造的预测模型更有针对性;设置相关系数计算模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块,消除了最初预测因子选取的主观性,能够增加预测精度,使预测模型构造模块更加稳定和准确;本实施例取值L=12,M=5,预测精度相对于相关技术提高了3.5%。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (5)

1.一种交通堵塞预警装置,包括预警装置和与预警装置相连的预测装置,所述预警装置由LED电源、上触片、下触片、光电感应器、预警器、衔铁触片、蓄电池、衔铁主体、衔铁触片、衔铁接触片、线圈、微型电源、LED灯和导线组成;
所述预测装置包括依次连接的采集模块、数据预处理模块、数据分类模块、平稳性检验模块、相关系数计算模块、阈值设定模块、时空相关系数矩阵生成模块、历史相关系数矩阵生成模块、预测因子选取模块和预测模型构造模块:
(1)采集模块,用于采集路网S内观测路段Si、预测路段Sj对应各时间段的交通流量数据和通行情况;
(2)数据预处理模块,用于对所述交通流量数据进行数据预处理,并剔除不符合交通实际情况的数据;
(3)数据分类模块,用于对经过数据预处理的交通流量数据进行类型分类,所述类型包括节假日交通流量数据、周末交通流量数据和工作日交通流量数据;
(4)平稳性检验模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验,检验平稳性的自相关函数为:
其中,Xx表示待检验交通流量序列,νi表示待检验交通流量序列的均值,Xx+τ表示Xx在时间延迟τ后的交通流量序列,νx+τ为Xx+τ的均值,σ2为Xx与Xx+τ之间的方差;
当自相关函数P(τ)能快速衰减趋近于0或在0附近波动,则所述待检验交通流量序列通过平稳性检验;当自相关函数P(τ)不能快速衰减趋近于0或在0附近波动,则对所述待检验交通流量序列进行平稳处理后继续进行平稳性检验;
(5)相关系数计算模块,用于计算通过平稳性检验的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj在时间延迟τ下的时间相关系数ρij(τ)和空间相关系数ρij(w),设路网S内有N个路段,交通流量序列Xi=[xi(1),xi(2),...,xi(n)],交通流量序列xi(t)表示观测路段Si在t时刻的流量,xj(t)表示预测路段Sj在t时刻的流量,t=1,2,...n,时间相关系数ρij(τ)的计算公式为:
空间相关系数ρij(w)的计算公式为:
(6)阈值设定模块,用于设定各路段之间的时间延迟最大值L、时空相关系数阈值T1和历史相关系数阈值T2
(7)时空相关系数矩阵生成模块,用于根据各路段的时间相关系数ρij(τ)和空间相关系数ρij(w)构建各观测路段Si与预测路段Sj在不同时间延迟τ下的时空相关系数矩阵ρ(τ)',并计算各路段的时空相关系数ρij(τ)',其中i∈[1,N]且τ∈[0,L],L的取值范围为[8,12],时空相关系数矩阵ρ(τ)'的计算公式为:
时空相关系数ρij(τ)'的计算公式为:
ρij(τ)'=ρij(τ)ρij(w);
(8)历史相关系数矩阵生成模块,用于生成预测路段Sj的历史相关系数矩阵ρ(t):
其中,选取近M周的同期且同一类型的历史流量作为交通流量序列Xj的历史相关序列,记为m=1,2,...M,M的取值范围为[3,5],所述历史相关系数ρjm(t)的计算公式为:
(9)预测因子选取模块,用于根据所述时空相关系数阈值T1和历史相关系数阈值T2选取与预测目标点相关的预测因子,并按照其所选空间位置j与时间延迟τ进行矩阵重构,选取原则为:
若ρij(τ)'>T1,则将观测路段Si的交通流量序列Xi中满足条件的交通流量组成新的序列并作为第一预测因子,记做X',X'=(x1',x2',...,xp'),其中p为所述满足条件的交通流量个数,设L1为第一预测因子中时间延迟的最大值,L1=max{τ|τ∈[0,L]andρij(τ)'>T1},则第一预测因子X'可表述成如下矩阵形式:
若ρjm(t)>T2,则将所有满足条件的历史相关序列Xjm(t)作为第二预测因子,记作Y',Y'={y1',y2',...,yq'},其中q为满足条件的历史流量个数,第二预测因子Y'可表述成如下矩阵形式:
(10)预测模型构造模块,其通过将第一预测因子和第二预测因子作为训练样本来构造可预测路段在下一时刻的交通流量的预测模型。
2.根据权利要求1所述的一种交通堵塞预警装置,其特征是,所述上触片和下触片平行放置,上触片通过导线和蓄电池相连接,所述蓄电池通过导线和预警器相连接,所述预警器通过导线和衔铁触片相连接,所述衔铁触片置于衔铁主体一侧,所述衔铁接触片置于衔铁主体另一侧,且通过导线和下触片相连接,所述线圈置于衔铁主体上。
3.根据权利要求2所述的一种交通堵塞预警装置,其特征是,所述LED电源通过导线和LED灯相连接,所述LED灯和光电感应器平行放置,所述光电感应器和线圈并联且通过导线和微型电源相连接。
4.根据权利要求3所述的一种交通堵塞预警装置,其特征是,所述数据预处理模块中,剔除所述不符合交通实际情况的数据的规则为:在一个数据更新周期内,分别设定各路段的总交通流量数据的阈值范围,若采集到的某路段的总交通流量数据落在对应的阈值范围内,则表明该组数据可靠,保留该组数据;若采集到的某路段的总交通流量数据落不在对应的阈值范围内,则表明该组数据不可靠,并将其剔除。
5.根据权利要求4所述的一种交通堵塞预警装置,其特征是,所述平稳性检验模块包括以下子模块:
(1)检验子模块,用于对处于同一类型的观测路段Si的交通流量序列Xi与预测路段Sj的交通流量序列Xj分别进行平稳性检验;
(2)连续性检查子模块,与检验子模块连接,用于对不通过平稳性检验的待检验交通流量序列进行连续性检查,若不符合连续性,所述连续性检查子模块采用平均插值法对数据进行补齐;
(3)排错子模块,与连续性检查子模块连接,用于删除明显错误的数据,同时采用平均插值法对数据进行补齐;
(4)差分处理子模块,连接排错子模块和检验子模块,用于对补齐后的数据进行差分处理,并将差分处理后的数据传送到检验子模块。
CN201610525447.XA 2016-06-29 2016-06-29 一种交通堵塞预警装置 Active CN106128102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610525447.XA CN106128102B (zh) 2016-06-29 2016-06-29 一种交通堵塞预警装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610525447.XA CN106128102B (zh) 2016-06-29 2016-06-29 一种交通堵塞预警装置

Publications (2)

Publication Number Publication Date
CN106128102A CN106128102A (zh) 2016-11-16
CN106128102B true CN106128102B (zh) 2018-11-20

Family

ID=57282286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610525447.XA Active CN106128102B (zh) 2016-06-29 2016-06-29 一种交通堵塞预警装置

Country Status (1)

Country Link
CN (1) CN106128102B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673463A (zh) * 2009-09-17 2010-03-17 北京世纪高通科技有限公司 一种基于时间序列的交通信息预测方法及装置
CN104899663A (zh) * 2015-06-17 2015-09-09 北京奇虎科技有限公司 一种数据预测方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755991B2 (en) * 2007-01-24 2014-06-17 Tomtom Global Assets B.V. Method and structure for vehicular traffic prediction with link interactions and missing real-time data
DE102012024166A1 (de) * 2012-12-08 2013-07-11 Daimler Ag Warnen eines Fahrers eines Kraftfahrzeugs vor einer Staufront mit Hilfe einer korrigierten Prognosefunktion
CN202995958U (zh) * 2012-12-16 2013-06-12 赵志鹏 一种双重触发式光电预警装置
CN104506378B (zh) * 2014-12-03 2019-01-18 上海华为技术有限公司 一种预测数据流量的装置及方法
CN105225496A (zh) * 2015-09-02 2016-01-06 上海斐讯数据通信技术有限公司 道路交通预警系统
CN105405294A (zh) * 2015-12-30 2016-03-16 杭州中奥科技有限公司 道路拥堵路段的预警方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673463A (zh) * 2009-09-17 2010-03-17 北京世纪高通科技有限公司 一种基于时间序列的交通信息预测方法及装置
CN104899663A (zh) * 2015-06-17 2015-09-09 北京奇虎科技有限公司 一种数据预测方法和装置

Also Published As

Publication number Publication date
CN106128102A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CA3101276C (en) System and method for real time prediction of water level and hazard level of a dam
CN105913664B (zh) 一种交通流量监控预测系统
CN106157616B (zh) 一种交通流量短时预测装置
CN109614997A (zh) 一种基于深度学习的窃电风险预测方法及装置
Istomin et al. Risk management method in parametric geosystems
CN108320043A (zh) 一种基于电力大数据的配电网设备状态诊断预测方法
CN105913654B (zh) 一种智能交通管理系统
CN107992968A (zh) 基于集成时间序列分析技术的电能表计量误差预测方法
CN106128122B (zh) 一种智能交通信号灯
CN207741811U (zh) 河道流量实时在线监测装置
CN109615169A (zh) 一种基于MEA-IElman神经网络的配电网可靠性评估方法
CN108960927A (zh) 一种基于网络爬虫和经济统计学的网络零售发展指数系统
CN110111885A (zh) 属性预测方法、装置、计算机设备及计算机可读存储介质
CN106097712B (zh) 一种交通流优化引导系统
CN114743010A (zh) 基于深度学习的超高压输电线路点云数据语义分割方法
Roy et al. Demand forecasting in smart grid using long short-term memory
CN107194507A (zh) 一种基于组合支持向量机的风电场短期风速预测方法
CN106128102B (zh) 一种交通堵塞预警装置
CN106128142B (zh) 一种机动车导航系统
CN106157615B (zh) 一种交通流量信息管理手持终端
CN107480703A (zh) 交易故障检测方法及装置
CN106128098B (zh) 一种能够进行交通流量预测的多屏显示装置
CN105957329B (zh) 一种公路信息化智能系统
CN106128101A (zh) 交通流量短时预测结果的可视化装置
CN106128139B (zh) 一种自动躲避拥堵路线的无人车

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181011

Address after: 225400 west side of Dai Wang Road, Taixing hi tech Industrial Development Zone, Taizhou, Jiangsu

Applicant after: Taixing science and technology incubator center

Address before: No. 372, Zhenhai District, Ningbo, Zhejiang, Zhejiang

Applicant before: Xiao Rui

GR01 Patent grant
GR01 Patent grant