CN106127882A - 基于obd的车损度评估方法及装置 - Google Patents

基于obd的车损度评估方法及装置 Download PDF

Info

Publication number
CN106127882A
CN106127882A CN201610481753.8A CN201610481753A CN106127882A CN 106127882 A CN106127882 A CN 106127882A CN 201610481753 A CN201610481753 A CN 201610481753A CN 106127882 A CN106127882 A CN 106127882A
Authority
CN
China
Prior art keywords
vehicle
operational factor
anxious
data
obd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610481753.8A
Other languages
English (en)
Other versions
CN106127882B (zh
Inventor
刘钊
于建文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Guanglian Digital Technology Co ltd
Original Assignee
SHENZHEN AUTONET Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN AUTONET Co Ltd filed Critical SHENZHEN AUTONET Co Ltd
Priority to CN201610481753.8A priority Critical patent/CN106127882B/zh
Publication of CN106127882A publication Critical patent/CN106127882A/zh
Application granted granted Critical
Publication of CN106127882B publication Critical patent/CN106127882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开一种基于OBD的车损度评估方法及装置,该方法包括如下步骤:利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。本发明的技术方案能够提高车损度预估的分析效率,并且能够提高车损度预估的精确性。

Description

基于OBD的车损度评估方法及装置
技术领域
本发明涉及车辆检测技术领域,尤其涉及一种基于OBD的车辆的车速度评估方法及装置。
背景技术
OBD(On-Board Diagnostic,车载诊断系统)接口已成为车辆标准配置。其作用是检测汽车各系统运行参数以及读取车辆运行数据,其设计的初衷就是用于尾气排放检测,以满足环境保护的要求。随着车辆的各种传感器及电子化程度的提高,OBD将各项检测功能都纳入自己的管辖范围。OBD接口检测多个系统和部件的参数,包括发动机、催化转化器、颗粒捕集器、氧传感器、排放控制系统、燃油系统、EGR(Exhaust Gas Recirculation,废气再循环)等系统的运行参数。OBD接口除了读取故障码供修车外,还可以提供车辆的各种性能数据。现有技术中的车损度计算中,需要检修人员需要将检测发送机的运行参数的传感数据进行导出,然后综合分析汽车行驶的距离进行车损度预估,操作繁琐,并且仅以上述的运行参数与里程数分析车辆的里程数导致车损度的精确性低。
发明内容
本发明的主要目的是提供一种基于OBD的车损度评估方法,能够提高车损度预估的分析效率,并且能够提高车损度预估的精确性。
为实现上述目的,本发明采用的一个技术方案为:提供一种基于OBD的车损度评估方法,应用于安装有OBD设备的车辆上,包括如下步骤:
利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,其中,所述运行参数包括点火提前角、燃油压力、电压及水温;急操作参数包括急加速数据、急减速数据及急转弯数据;
根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;
根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。
优选地,所述根据发动机的运行参数与该型号发动机的运行参数正常值计算出运行参数损耗度的步骤,具体包括:
获取存储的海量数据的车辆运行参数;
根据聚类算法及随机森林算法分析出该型号发动机的运行参数正常值;
根据获取的设定周期内的车辆发动机的运行参数与该型号发动机的运行参数正常值得出标准差。
优选地,所述根据车辆实时位置计算出设定周期内车辆行驶的里程数的步骤,具体包括:
根据车辆上一位置的位置数据与该车辆当前位置的位置数据采用ApacheStorm流式算法计算出该车辆里程数。
优选地,所述车辆当前位置与该车辆上一位置的时间间隔为1S。
为实现上述目的,本发明采用的一个技术方案为:提供一种基于OBD的车损度评估装置,包括:
获取模块,用于利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,其中,所述运行参数包括点火提前角、燃油压力、电压及水温;急操作参数包括急加速数据、急减速数据及急转弯数据;
处理模块,用于根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;
评价模块,用于根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。
优选地,所述处理模块包括:
调用单元,用于获取存储的海量数据的车辆运行参数;
分析单元,用于根据聚类算法及随机森林算法分析出该型号发动机的运行参数正常值;
标准差计算单元,用于根据获取的设定周期内的车辆发动机的运行参数与该型号发动机的运行参数正常值得出标准差。
优选地,所述处理模块还包括:
里程计算单元,用于根据车辆上一位置的位置数据与该车辆当前位置的位置数据采用Apache Storm流式算法计算出该车辆里程数。
优选地,所述车辆当前位置与该车辆上一位置的时间间隔为1S。
本发明的技术方案主要采用OBD设备能够获取车辆发动机的运行参数(如点火提前角、燃油压力、电压及水温)、点火数据、急操作参数(急加速数据、急减速数据及急转弯数据)以及记录该车辆的实时位置,并且上述的各数据实时传递至后台,无需检修人员对数据的导出,能够提高车损度预估的计算效率;并且通过发动机的运行参数、里程数、点火数据、急操作参数作为车损度预估综合分析参数,能够增加车损度预估的精确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明基于OBD的车损度评估方法一实施例的方法流程图;
图2为图1中步骤S20一实施例的方法流程图;
图3为本发明基于OBD的车损度评估装置一实施例的模块方框图;
图4为图3中处理模块一实施例的模块方框图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明的关键点在于:利用OBD(On-Board Diagnostic,车载诊断装置)采集设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,然后通过云服务器或者云平台对数据进行综合处理,以对车辆的车损度进行评估。
请参照图1,在本发明实施例中,基于OBD的车损度评估方法,应用于安装有OBD设备的车辆上,包括如下步骤:
步骤S10、利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,其中,所述运行参数包括点火提前角、燃油压力、电压及水温;急操作参数包括急加速数据、急减速数据及急转弯数据;
步骤S20、根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;
步骤S30、根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。
本发明中,OBD设备将所采集的数据传送至云服务器中,该云服务器可以分为数据存储层、通用逻辑层、业务处理层,是数据存储、处理和控制的核心。该云服务器汇聚并管理海量的车辆原始性能数据并进行计算分析,采用批处理、流处理、机器学习、SQL查询交互式定制分析等多种处理模型。通过云服务器能够完成运行参数标准差、点火次数及急操作次数的统计和计算,以及车辆里程数(欧式距离)的计算。需要指出的是,上述的标准差、车辆里程数、点火次数及急操作次数都可以根据实际的要求乘以设定的参数因子,以提高车损度预估的精确性。
本发明的技术方案主要采用OBD设备能够获取车辆发动机的运行参数(如点火提前角、燃油压力、电压及水温)、点火数据、急操作参数(急加速数据、急减速数据及急转弯数据)以及记录该车辆的实时位置,并且上述的各数据实时传递至后台,无需检修人员对数据的导出,能够提高车损度预估的计算效率;并且通过发动机的运行参数、里程数、点火数据、急操作参数作为车损度预估综合分析参数,能够增加车损度预估的精确性。
请参照图2,在一具体的实施例中,所述根据发动机的运行参数与该型号发动机的运行参数正常值计算出运行参数损耗度的步骤,具体包括:
步骤S21、获取存储的海量数据的车辆运行参数;
步骤S22、根据聚类算法及随机森林算法分析出该型号发动机的运行参数正常值;
步骤S23、根据获取的设定周期内的车辆发动机的运行参数与该型号发动机的运行参数正常值得出标准差。
本实施例中,可以通过不同的OBD设备获取不同类型的车辆的发动机的运行参数、点火数据、急操作次数以及行驶里程数,由于发动机的运行参数可以在适当的范围内均可保证发动的正常运行,因此,本实施例中采用聚类算法及随机森林算法分析出该型号发动机的运行参数正常值,如此,可以根据大数据的发动机的运行参数的均值与当前的发动机运行参数相减,得出两者的标准差,该标准差即可作为该车辆运行参数的损耗度。该损耗度可以乘以一个因子作为车损度的一个预估指标,当然,该因子可以根据实际的要求来设计。
在一具体的实施例中,所述根据车辆实时位置计算出设定周期内车辆行驶的里程数的步骤,具体包括:
根据车辆上一位置的位置数据与该车辆当前位置的位置数据采用ApacheStorm流式算法计算出该车辆里程数。
本实施例中,采用Apache Storm流式算法计算出相邻两个坐标欧式距离,并以此计算出设定周期内车辆行驶的里程数,以提高里程数的计算精度。
在一实施例中,所述车辆当前位置与该车辆上一位置的时间间隔为1S。本实施例中,OBD设备中自带有GPS模板,该GPS模板可以以设定间隔采集该测试车辆的实时位置点。当然,除了上述优选地的1S的时间间隔外,还可以根据具体的要求来设定采集的车辆行驶的实时位置点。
请参照图3,在本发明实施例中,一种基于OBD的车损度评估装置,包括:
获取模块10,用于利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,其中,所述运行参数包括点火提前角、燃油压力、电压及水温;急操作参数包括急加速数据、急减速数据及急转弯数据;
处理模块20,用于根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;
评价模块30,用于根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。
本发明中,OBD设备将所采集的数据传送至云服务器中,该云服务器可以分为数据存储层、通用逻辑层、业务处理层,是数据存储、处理和控制的核心。该云服务器汇聚并管理海量的车辆原始性能数据并进行计算分析,采用批处理、流处理、机器学习、SQL查询交互式定制分析等多种处理模型。通过云服务器能够完成运行参数标准差、点火次数及急操作次数的统计和计算,以及车辆里程数(欧式距离)的计算。需要指出的是,上述的标准差、车辆里程数、点火次数及急操作次数都可以根据实际的要求乘以设定的参数因子,以提高车损度预估的精确性。本发明基于OBD的车损度评估装置可以通过云服务器或云服务平台来完成。
请参照图4,在一具体的实施例中,所述处理模块20包括:
调用单元21,用于获取存储的海量数据的车辆运行参数;
分析单元22,用于根据聚类算法及随机森林算法分析出该型号发动机的运行参数正常值;
标准差计算单元23,用于根据获取的设定周期内的车辆发动机的运行参数与该型号发动机的运行参数正常值得出标准差。
本实施例中,可以通过不同的OBD设备获取不同类型的车辆的发动机的运行参数、点火数据、急操作次数以及行驶里程数,由于发动机的运行参数可以在适当的范围内均可保证发动的正常运行,因此,本实施例中通过分析单元22采用聚类算法及随机森林算法分析出该型号发动机的运行参数正常值,如此,可以根据大数据的发动机的运行参数的均值与当前的发动机运行参数相减,得出两者的标准差,该标准差即可作为该车辆运行参数的损耗度。该损耗度可以乘以一个参数因子作为车损度的一个预估指标,当然,该参数因子可以根据实际的要求来设计。
在一具体的实施例中,所述处理模块20还包括:
里程计算单元,用于根据车辆上一位置的位置数据与该车辆当前位置的位置数据采用Apache Storm流式算法计算出该车辆里程数。本实施例中,采用Apache Storm流式算法计算出相邻两个坐标欧式距离,并以此计算出设定周期内车辆行驶的里程数,以提高里程数的计算精度。
进一步的,所述车辆当前位置与该车辆上一位置的时间间隔为1S。本实施例中,OBD设备中自带有GPS模板,该GPS模板可以以设定间隔采集该测试车辆的实时位置点。当然,除了上述优选地的1S的时间间隔外,还可以根据具体的要求来设定采集的车辆行驶的实时位置点。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (8)

1.一种基于OBD的车损度评估方法,应用于安装有OBD设备的车辆上,其特征在于,包括如下步骤:
利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,其中,所述运行参数包括点火提前角、燃油压力、电压及水温;急操作参数包括急加速数据、急减速数据及急转弯数据;
根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;
根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。
2.如权利要求1所述的基于OBD的车损度评估方法,其特征在于,所述根据发动机的运行参数与该型号发动机的运行参数正常值计算出运行参数损耗度的步骤,具体包括:
获取存储的海量数据的车辆运行参数;
根据聚类算法及随机森林算法分析出该型号发动机的运行参数正常值;
根据获取的设定周期内的车辆发动机的运行参数与该型号发动机的运行参数正常值得出标准差。
3.如权利要求1所述的基于OBD的车损度评估方法,其特征在于,所述根据车辆实时位置计算出设定周期内车辆行驶的里程数的步骤,具体包括:
根据车辆上一位置的位置数据与该车辆当前位置的位置数据采用Apache Storm流式算法计算出该车辆里程数。
4.如权利要求3所述的基于OBD的车损度评估方法,其特征在于,所述车辆当前位置与该车辆上一位置的时间间隔为1S。
5.一种基于OBD的车损度评估装置,其特征在于,包括:
获取模块,用于利用OBD设备获取设定周期内该车辆的实时位置与车辆发动机的运行参数、点火数据以及急操作参数,其中,所述运行参数包括点火提前角、燃油压力、电压及水温;急操作参数包括急加速数据、急减速数据及急转弯数据;
处理模块,用于根据发动机的运行参数与该型号车辆的运行参数正常值计算出标准差,根据点火数据及急操作参数统计出设定周期内车辆发动机的点火次数及急操作次数,以及根据车辆实时位置计算出设定周期内车辆行驶的里程数;
评价模块,用于根据车辆运行参数损耗度、点火次数、急操作次数以及里程数,加权计算出该车辆的车损度。
6.如权利要求5所述的基于OBD的车损度评估装置,其特征在于,所述处理模块包括:
调用单元,用于获取存储的海量数据的车辆运行参数;
分析单元,用于根据聚类算法及随机森林算法分析出该型号发动机的运行参数正常值;
标准差计算单元,用于根据获取的设定周期内的车辆发动机的运行参数与该型号发动机的运行参数正常值得出标准差。
7.如权利要求5所述的基于OBD的车损度评估装置,其特征在于,所述处理模块还包括:
里程计算单元,用于根据车辆上一位置的位置数据与该车辆当前位置的位置数据采用Apache Storm流式算法计算出该车辆里程数。
8.如权利要求7所述的基于OBD的车损度评估装置,其特征在于,所述车辆当前位置与该车辆上一位置的时间间隔为1S。
CN201610481753.8A 2016-06-27 2016-06-27 基于obd的车损度评估方法及装置 Active CN106127882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610481753.8A CN106127882B (zh) 2016-06-27 2016-06-27 基于obd的车损度评估方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610481753.8A CN106127882B (zh) 2016-06-27 2016-06-27 基于obd的车损度评估方法及装置

Publications (2)

Publication Number Publication Date
CN106127882A true CN106127882A (zh) 2016-11-16
CN106127882B CN106127882B (zh) 2018-03-30

Family

ID=57266536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610481753.8A Active CN106127882B (zh) 2016-06-27 2016-06-27 基于obd的车损度评估方法及装置

Country Status (1)

Country Link
CN (1) CN106127882B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401465A (zh) * 2018-02-28 2018-08-14 深圳市元征软件开发有限公司 车辆损伤检测方法、车辆损伤检测装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194764A (ja) * 1998-12-28 2000-07-14 Tsubasa System Co Ltd 車両修理費計算システム
JP2003228634A (ja) * 2002-02-05 2003-08-15 Mazda Motor Corp 製品の損害度判定装置、その方法、及び製品の損害度判定プログラムを記録した記録媒体
CN101301872A (zh) * 2008-06-26 2008-11-12 徐立 车辆保养提醒系统
CN104079650A (zh) * 2014-06-30 2014-10-01 清华大学苏州汽车研究院(吴江) 一种基于车载智能网关设备的车联网信息服务系统和方法
CN104092736A (zh) * 2014-06-25 2014-10-08 国信彩石(北京)科技股份有限公司 车联网设备、服务器和系统、评分方法和数据收集方法
CN104181881A (zh) * 2014-08-06 2014-12-03 天津诺顿创新科技有限公司 一种车联网智慧诊断设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000194764A (ja) * 1998-12-28 2000-07-14 Tsubasa System Co Ltd 車両修理費計算システム
JP2003228634A (ja) * 2002-02-05 2003-08-15 Mazda Motor Corp 製品の損害度判定装置、その方法、及び製品の損害度判定プログラムを記録した記録媒体
CN101301872A (zh) * 2008-06-26 2008-11-12 徐立 车辆保养提醒系统
CN104092736A (zh) * 2014-06-25 2014-10-08 国信彩石(北京)科技股份有限公司 车联网设备、服务器和系统、评分方法和数据收集方法
CN104079650A (zh) * 2014-06-30 2014-10-01 清华大学苏州汽车研究院(吴江) 一种基于车载智能网关设备的车联网信息服务系统和方法
CN104181881A (zh) * 2014-08-06 2014-12-03 天津诺顿创新科技有限公司 一种车联网智慧诊断设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401465A (zh) * 2018-02-28 2018-08-14 深圳市元征软件开发有限公司 车辆损伤检测方法、车辆损伤检测装置及电子设备

Also Published As

Publication number Publication date
CN106127882B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
US11887414B2 (en) Telematically monitoring a condition of an operational vehicle component
CN109613905B (zh) 一种动态识别重型商用车实际运行高油耗恶劣工况的方法和装置
US20200355108A1 (en) Vehicle pollutant emissions measurement method using an on-board system
CN105069860B (zh) 一种车辆油耗的统计方法
CN103863220A (zh) 机动车数据的监测方法和系统
CN103426281A (zh) 试验车远程监测管理系统及其控制方法
CN110243384B (zh) 实际行驶排放试验路线的确定方法、装置、设备和介质
CN102435441B (zh) 运动车辆排放参数数据采集系统
CN106127882A (zh) 基于obd的车损度评估方法及装置
CN116956044A (zh) 自动驾驶车辆及其性能评估方法、评估系统
CN112699490B (zh) 一种车辆维修结果验证方法和装置
Krobot et al. Analysis of the Euro 7 emission standard
CN116861199B (zh) 一种燃油清净增效剂的减排测评方法、设备和存储介质
CN107085074A (zh) 一种分类监测机动车尾气的方法
Loman et al. Determination of the deviation of the on-board computer in the vehicle when determining the average fuel consumption
CN115796720A (zh) 重型车排放评价方法及存储介质
CN114822724A (zh) 一种柴油发动机NOx比排放的检测方法及装置
CN114239680A (zh) 基于机器学习算法的新能源网约车识别方法及系统
CN116740841A (zh) 剩余里程准确度评估方法与系统
CN110310475A (zh) 一种车辆行驶工况的采集、处理的方法及设备
CN105791378A (zh) 呈现污染证书

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 518000 1402, building 1, Chongwen Park, Nanshan wisdom Park, 3370 Liuxian Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Guanglian Saixun Co.,Ltd.

Address before: Room 701, unit 3, building C, Kexing Science Park, No. 15, Keyuan Road, high tech park, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN AUTONET Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220809

Address after: 518000 1404, building 1, Chongwen Park, Nanshan Zhiyuan, No. 3370 Liuxian Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong

Patentee after: Shenzhen Guanglian Digital Technology Co.,Ltd.

Address before: 518000 1402, building 1, Chongwen Park, Nanshan wisdom Park, 3370 Liuxian Avenue, Fuguang community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong Province

Patentee before: Shenzhen Guanglian Saixun Co.,Ltd.