CN106127730B - 使用机器学习和扩展的霍夫变换的自动化感兴趣区域检测 - Google Patents
使用机器学习和扩展的霍夫变换的自动化感兴趣区域检测 Download PDFInfo
- Publication number
- CN106127730B CN106127730B CN201610409186.5A CN201610409186A CN106127730B CN 106127730 B CN106127730 B CN 106127730B CN 201610409186 A CN201610409186 A CN 201610409186A CN 106127730 B CN106127730 B CN 106127730B
- Authority
- CN
- China
- Prior art keywords
- region
- interest
- image
- superpixel
- edge map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010801 machine learning Methods 0.000 title claims abstract description 24
- 238000001514 detection method Methods 0.000 title abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 68
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 29
- 238000007637 random forest analysis Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 description 24
- 230000015654 memory Effects 0.000 description 18
- 238000012545 processing Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 5
- 230000011218 segmentation Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000003708 edge detection Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/143—Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/48—Extraction of image or video features by mapping characteristic values of the pattern into a parameter space, e.g. Hough transformation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20061—Hough transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20092—Interactive image processing based on input by user
- G06T2207/20104—Interactive definition of region of interest [ROI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20132—Image cropping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/22—Cropping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/033—Recognition of patterns in medical or anatomical images of skeletal patterns
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Probability & Statistics with Applications (AREA)
- Software Systems (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
Abstract
Description
Claims (17)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562139833P | 2015-03-30 | 2015-03-30 | |
US62/139833 | 2015-03-30 | ||
US15/068896 | 2016-03-14 | ||
US15/068,896 US9972093B2 (en) | 2015-03-30 | 2016-03-14 | Automated region of interest detection using machine learning and extended Hough transform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106127730A CN106127730A (zh) | 2016-11-16 |
CN106127730B true CN106127730B (zh) | 2020-06-26 |
Family
ID=57017684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610409186.5A Active CN106127730B (zh) | 2015-03-30 | 2016-03-30 | 使用机器学习和扩展的霍夫变换的自动化感兴趣区域检测 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9972093B2 (zh) |
CN (1) | CN106127730B (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015215938A1 (de) * | 2015-08-20 | 2017-02-23 | Siemens Healthcare Gmbh | Verfahren zur lokalen Verbesserung der Bildqualität |
JP2018028766A (ja) * | 2016-08-16 | 2018-02-22 | 富士通株式会社 | 制御プログラム、制御装置、及び制御方法 |
US10134163B2 (en) * | 2016-10-18 | 2018-11-20 | Autodesk, Inc. | Dynamic detection of an object framework in a mobile device captured image |
EP3555851B1 (en) * | 2016-12-14 | 2021-09-22 | Eyes Ltd | Edge detection in digitized images |
WO2018163644A1 (ja) * | 2017-03-07 | 2018-09-13 | ソニー株式会社 | 情報処理装置、支援システム及び情報処理方法 |
CN108665495B (zh) * | 2017-03-30 | 2021-11-26 | 展讯通信(上海)有限公司 | 图像处理方法及装置、移动终端 |
US20180336454A1 (en) * | 2017-05-19 | 2018-11-22 | General Electric Company | Neural network systems |
CN107833229A (zh) * | 2017-11-02 | 2018-03-23 | 上海联影医疗科技有限公司 | 信息处理方法、装置及系统 |
EP3704669A4 (en) | 2017-11-02 | 2020-12-30 | Shanghai United Imaging Healthcare Co., Ltd. | SYSTEMS AND METHODS FOR GENERATING SEMANTIC INFORMATION FOR A SCAN IMAGE |
GB2569103A (en) * | 2017-11-16 | 2019-06-12 | Univ Oslo Hf | Histological image analysis |
US11006926B2 (en) | 2018-02-27 | 2021-05-18 | Siemens Medical Solutions Usa, Inc. | Region of interest placement for quantitative ultrasound imaging |
US10095925B1 (en) * | 2017-12-18 | 2018-10-09 | Capital One Services, Llc | Recognizing text in image data |
US10885331B2 (en) * | 2018-01-23 | 2021-01-05 | X Development Llc | Crop boundary detection in images |
WO2019243910A1 (en) * | 2018-06-21 | 2019-12-26 | International Business Machines Corporation | Segmenting irregular shapes in images using deep region growing |
EP3598474A1 (en) * | 2018-07-19 | 2020-01-22 | FEI Company | Adaptive specimen image acquisition using an artificial neural network |
CN109285172B (zh) * | 2018-09-28 | 2022-05-27 | 中国科学院长春光学精密机械与物理研究所 | 图像中的直线参数计算方法、装置、设备及可读存储介质 |
US10853704B2 (en) * | 2018-12-18 | 2020-12-01 | Clarifai, Inc. | Model-based image labeling and/or segmentation |
CN111652221B (zh) * | 2019-06-29 | 2022-11-01 | 浙江大学 | 一种用于usb插头表面缺陷检测的roi提取方法和系统 |
CN110659692B (zh) * | 2019-09-26 | 2023-04-18 | 重庆大学 | 基于强化学习和深度神经网络的病理图像自动标注方法 |
CN112164087B (zh) * | 2020-10-13 | 2023-12-08 | 北京无线电测量研究所 | 基于边缘约束和分割边界搜索的超像素分割方法及装置 |
CN112802054B (zh) * | 2021-02-04 | 2023-09-01 | 重庆大学 | 一种融合图像分割的混合高斯模型前景检测方法 |
US12015870B2 (en) | 2022-08-03 | 2024-06-18 | BAE Systems Imaging Solutions Inc. | X-ray onset detector for intraoral dental sensor |
CN116664664B (zh) * | 2023-08-01 | 2023-11-10 | 苏州高视半导体技术有限公司 | 用于检测衬底暗线长度的方法、电子设备及存储介质 |
CN116758071B (zh) * | 2023-08-17 | 2023-11-03 | 青岛冠宝林活性炭有限公司 | 一种视觉辅助下碳电极脏污智能检测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101689298A (zh) * | 2006-12-22 | 2010-03-31 | 皇家飞利浦电子股份有限公司 | 用于对对象成像的成像系统和成像方法 |
WO2014113786A1 (en) * | 2013-01-18 | 2014-07-24 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Quantitative predictors of tumor severity |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113705586A (zh) * | 2013-03-07 | 2021-11-26 | 飞利浦影像引导治疗公司 | 血管内图像中的多模态分割 |
US9389311B1 (en) * | 2015-02-19 | 2016-07-12 | Sandia Corporation | Superpixel edges for boundary detection |
-
2016
- 2016-03-14 US US15/068,896 patent/US9972093B2/en active Active
- 2016-03-30 CN CN201610409186.5A patent/CN106127730B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101689298A (zh) * | 2006-12-22 | 2010-03-31 | 皇家飞利浦电子股份有限公司 | 用于对对象成像的成像系统和成像方法 |
WO2014113786A1 (en) * | 2013-01-18 | 2014-07-24 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Quantitative predictors of tumor severity |
Non-Patent Citations (5)
Title |
---|
Collimation Detection in Digital Radiographs Using Plane Detection Hough Transform;Ikuo Kawashita et al.;《Springer Berlin Heidelberg》;20031231;第395页 * |
Improved lane detection system using Hough transform with Super-Resolution Reconstruction Algorithm and multi-ROI;JH Cho et al.;《International Conference on Electronics》;20141231;第1-4页 * |
Multi-view learning based robust collimation detection in digital radiographs;Hongda Mao et al.;《SPIE Medical Imaging》;20141231;第903421-2页 * |
Region of interest identification in collimated x-ray images utilizing nonlinear preprocessing and the Radon transform;Rishit Sheth et al.;《Journal of Electronic Imaging 》;20050930;第14卷(第3期);第033011-1-033011-13页 * |
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods;Radhakrishna Achanta et al.;《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》;20121130;第34卷(第11期);摘要 * |
Also Published As
Publication number | Publication date |
---|---|
US9972093B2 (en) | 2018-05-15 |
US20160292876A1 (en) | 2016-10-06 |
CN106127730A (zh) | 2016-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106127730B (zh) | 使用机器学习和扩展的霍夫变换的自动化感兴趣区域检测 | |
US11379975B2 (en) | Classification and 3D modelling of 3D dento-maxillofacial structures using deep learning methods | |
US9801601B2 (en) | Method and system for performing multi-bone segmentation in imaging data | |
US9659364B2 (en) | Probabilistic refinement of model-based segmentation | |
EP3164852B1 (en) | User-guided shape morphing in bone segmentation for medical imaging | |
WO2017063569A1 (en) | System and method for image correction | |
EP3188127B1 (en) | Method and system for performing bone multi-segmentation in imaging data | |
US9659390B2 (en) | Tomosynthesis reconstruction with rib suppression | |
KR20160110194A (ko) | 의료 이미지들의 분할 불확실성의 계산 및 시각화를 위한 시스템들 및 방법들 | |
US12106533B2 (en) | Method and system for segmenting interventional device in image | |
US9082193B2 (en) | Shape-based image segmentation | |
US20100284579A1 (en) | Abnormal shadow candidate detecting method and abnormal shadow candidate detecting apparatus | |
CN111568451A (zh) | 一种曝光剂量调节方法和系统 | |
US9672600B2 (en) | Clavicle suppression in radiographic images | |
US9286688B2 (en) | Automatic segmentation of articulated structures | |
JP5383486B2 (ja) | 脳出血部位セグメンテーションする装置の作動方法および装置 | |
JP6642048B2 (ja) | 医療画像表示システム、医療画像表示プログラム及び医療画像表示方法 | |
US11295451B2 (en) | Robust pulmonary lobe segmentation | |
JP6397453B2 (ja) | 画像処理装置、画像処理方法およびプログラム | |
Gleason et al. | Automatic screening of polycystic kidney disease in x-ray CT images of laboratory mice | |
WO2008041228A2 (en) | Robust segmentation of a mass candidate in digital mammography images | |
US20180025491A1 (en) | Medical image processing apparatus | |
CN117670906A (zh) | 一种图像分割方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180321 Address after: Erlangen, Germany Applicant after: SIEMENS HEALTHCARE GmbH Address before: American Pennsylvania Applicant before: SIEMENS MEDICAL SOLUTIONS USA, Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240902 Address after: German Phu F Haim Patentee after: Siemens Medical AG Country or region after: Germany Address before: Erlangen, Germany Patentee before: SIEMENS HEALTHCARE GmbH Country or region before: Germany |