CN106127699B - A kind of road monitoring random motion blurred picture Fast Restoration analogue system - Google Patents
A kind of road monitoring random motion blurred picture Fast Restoration analogue system Download PDFInfo
- Publication number
- CN106127699B CN106127699B CN201610429164.5A CN201610429164A CN106127699B CN 106127699 B CN106127699 B CN 106127699B CN 201610429164 A CN201610429164 A CN 201610429164A CN 106127699 B CN106127699 B CN 106127699B
- Authority
- CN
- China
- Prior art keywords
- background
- monitoring
- target
- module
- camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 59
- 238000013519 translation Methods 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 21
- 238000004088 simulation Methods 0.000 abstract description 53
- 238000000034 method Methods 0.000 abstract description 10
- 238000012545 processing Methods 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/277—Analysis of motion involving stochastic approaches, e.g. using Kalman filters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20201—Motion blur correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30236—Traffic on road, railway or crossing
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Traffic Control Systems (AREA)
- Closed-Circuit Television Systems (AREA)
- Studio Devices (AREA)
- Image Processing (AREA)
Abstract
本发明道路监控随机运动模糊图像快速复原仿真系统属于图像处理技术领域;该仿真系统包括:目标仿真模块:由用于仿真路面图像的时不变场景和用于仿真先验目标的时变场景组成,所述时不变场景包括均匀背景和区别于背景并被背景包围的目标;监控摄像头仿真模块:为摄像头、CCD、CMOS或相机;悬臂梁仿真模块:由对称设置的两个立柱、水平支撑端和弹簧连接端组成,所述水平支撑端上方固定连接监控摄像头仿真模块,两侧通过弹簧连接端连接立柱中上方,在弹簧连接端的作用下,水平支撑端做三个方向的平动和一个方向的转动;本发明能够直接对应基于先验知识的道路监控模糊图像快速复原方法,快速复原道路监控随机运动模糊图像。
The simulation system for rapid restoration of road monitoring random motion blur images belongs to the technical field of image processing; the simulation system includes: a target simulation module: composed of a time-invariant scene for simulating road images and a time-varying scene for simulating a priori targets , the time-invariant scene includes a uniform background and a target that is different from the background and is surrounded by the background; the monitoring camera simulation module: a camera, CCD, CMOS or camera; the cantilever beam simulation module: two columns symmetrically arranged, horizontally supported end and a spring connection end, the top of the horizontal support end is fixedly connected to the monitoring camera simulation module, and the two sides are connected to the upper middle of the column through the spring connection end. Under the action of the spring connection end, the horizontal support end performs translation in three directions and a The rotation of the direction; the present invention can directly correspond to the method for fast restoration of blurred images of road monitoring based on prior knowledge, and quickly restore random motion blurred images of road monitoring.
Description
技术领域technical field
本发明道路监控随机运动模糊图像快速复原仿真系统属于图像处理技术领域。The invention discloses a road monitoring random motion blurred image rapid recovery simulation system, which belongs to the technical field of image processing.
背景技术Background technique
道路监控系统是路网信息化、智能化的有力保障。可以实现第一时间对交通违章、交通事故、交通堵塞以及其他突发事件做出判断,进而调整控制参数,制定调度策略。而实现上述功能的两个必要条件是:清晰成像和实时成像。The road monitoring system is a powerful guarantee for the informatization and intelligence of the road network. It can realize the judgment of traffic violations, traffic accidents, traffic jams and other emergencies at the first time, and then adjust the control parameters and formulate scheduling strategies. The two necessary conditions to realize the above functions are: clear imaging and real-time imaging.
现阶段,道路监控系统多采用将监控摄像头安装于悬臂梁的结构,如图1所示。这种结构的优势在于结构简单,安装和维护成本低,但缺点在于,受振动和气流的影响,摄像头会发生随机摇摆,造成图像模糊,使得道路监控系统不满足清晰成像条件,不利于路网的信息化和智能化。At this stage, the road monitoring system mostly adopts the structure of installing the monitoring camera on the cantilever beam, as shown in Figure 1. The advantage of this structure is that it is simple in structure, and the cost of installation and maintenance is low, but the disadvantage is that, affected by vibration and airflow, the camera will sway randomly, resulting in blurred images, which makes the road monitoring system not meet the clear imaging conditions, which is not conducive to the road network informatization and intelligence.
针对道路监控摄像头摇摆造成图像模糊的问题,并兼顾道路监控系统清晰成像和实时成像两项技术需求,黑龙江省大学生创新创业训练计划项目《基于先验知识的道路监控模糊图像快速复原》(项目编号201510214056)拟研究一种随机运动模糊图像快速复原方法,该方法的原理在于首先建立随机运动动态光学传递函数(DOTF)模型,然后利用先验知识从运动模糊图像中快速提取DOTF,最后将DOTF与线性复原算法相结合,实现随机运动模糊图像快速复原。这种方法可以在不改变现有摄像头安装方式的前提下,快速复原因摄像头摇摆而形成的随机运动模糊图像,对实现路网信息化和智能化起到促进作用。Aiming at the blurred image caused by the swaying of the road monitoring camera, and taking into account the two technical requirements of clear imaging and real-time imaging of the road monitoring system, the Heilongjiang Province College Students Innovation and Entrepreneurship Training Program Project "Rapid Restoration of Road Monitoring Blurred Images Based on Prior Knowledge" (Project No. 201510214056) intends to study a method for fast restoration of random motion blurred images. The principle of this method is to first establish a random motion dynamic optical transfer function (DOTF) model, then use prior knowledge to quickly extract DOTF from the motion blurred image, and finally combine DOTF with The combination of linear restoration algorithm realizes fast restoration of random motion blurred images. This method can quickly restore the random motion blurred image caused by the camera swing without changing the existing camera installation method, and promotes the realization of road network informatization and intelligence.
在项目进行当中,需要搭建道路监控随机运动模糊图像快速复原仿真系统来对项目提出的方法进行验证,然而,还没有发现有适用于本项目方法的现成系统可以借鉴。During the project, it is necessary to build a simulation system for rapid restoration of random motion blurred images in road monitoring to verify the method proposed by the project. However, no ready-made system suitable for this project method has been found for reference.
发明内容Contents of the invention
为了解决上述问题,本发明设计了一种道路监控随机运动模糊图像快速复原仿真系统,该系统能够直接对应项目提出的方法,快速复原道路监控随机运动模糊图像。In order to solve the above problems, the present invention designs a fast restoration simulation system for road monitoring random motion blurred images, which can directly correspond to the method proposed by the project, and quickly restore road monitoring random motion blurred images.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
一种道路监控随机运动模糊图像快速复原仿真系统,包括:A road monitoring random motion blurred image rapid restoration simulation system, including:
目标仿真模块:由用于仿真路面图像的时不变场景和用于仿真先验目标的时变场景组成,所述时不变场景包括均匀背景和区别于背景并被背景包围的目标;Target simulation module: composed of a time-invariant scene for simulating road images and a time-varying scene for simulating a priori target, the time-invariant scene includes a uniform background and a target that is different from the background and surrounded by the background;
监控摄像头仿真模块:为摄像头、CCD、CMOS或相机;Surveillance camera simulation module: camera, CCD, CMOS or camera;
悬臂梁仿真模块:由对称设置的两个立柱、水平支撑端和弹簧连接端组成,所述水平支撑端上方固定连接监控摄像头仿真模块,两侧通过弹簧连接端连接立柱中上方,在弹簧连接端的作用下,水平支撑端做三个方向的平动和一个方向的转动。Cantilever beam simulation module: It consists of two symmetrically arranged columns, a horizontal support end and a spring connection end. The monitoring camera simulation module is fixedly connected above the horizontal support end. Under the action, the horizontal support end performs translation in three directions and rotation in one direction.
上述道路监控随机运动模糊图像快速复原仿真系统,所述的目标仿真模块为显示器,所述显示器显示的图像一部分具有时变特性,一部分具有时不变特性,具有时不变特性的部分包括均匀背景和区别于背景并被背景包围的目标。In the above road monitoring random motion blurred image rapid restoration simulation system, the target simulation module is a display, and part of the images displayed on the display have time-varying characteristics, and a part has time-invariant characteristics, and the part with time-invariant characteristics includes a uniform background and objects that are distinct from and surrounded by the background.
上述道路监控随机运动模糊图像快速复原仿真系统,以光轴所在方向为起点,向垂直光轴的x方向,目标的宽度为a,背景的宽度为b,目标仿真模块到监控摄像头仿真模块的距离为l,监控摄像头仿真模块的监视时不变场景的视场角为α,并且满足:The above-mentioned road monitoring random motion blurred image rapid recovery simulation system starts from the direction of the optical axis, goes to the x direction of the vertical optical axis, the width of the target is a, the width of the background is b, and the distance between the target simulation module and the surveillance camera simulation module is l, the field of view angle of the monitoring time-invariant scene of the surveillance camera simulation module is α, and satisfies:
a<l·tanα<ba<l·tanα<b
所述监控摄像头在x方向的旋转角度满足以下条件:The rotation angle of the monitoring camera in the x direction satisfies the following conditions:
顺着x方向的旋转角度不超过arctan(b/l)-α;The rotation angle along the x direction does not exceed arctan(b/l)-α;
逆着x方向的旋转角度不超过α-arctan(a/l)。The angle of rotation against the x direction does not exceed α-arctan(a/l).
进一步地,所述x方向分布在垂直光轴的平面内。Further, the x-direction is distributed in a plane perpendicular to the optical axis.
再进一步地,以光轴所在方向为起点,Furthermore, taking the direction of the optical axis as the starting point,
向垂直光轴的x方向,目标的宽度为a1,背景的宽度为b1,目标仿真模块到监控摄像头仿真模块的距离为l,监控摄像头仿真模块的监视时不变场景的视场角为α1,并且满足:In the x direction of the vertical optical axis, the width of the target is a 1 , the width of the background is b 1 , the distance from the target simulation module to the surveillance camera simulation module is l, and the field of view angle of the monitoring time-invariant scene of the surveillance camera simulation module is α 1 , and satisfy:
a1<l·tanα1<b1 a 1 <l·tanα 1 <b 1
向垂直光轴的-x方向,目标的宽度为a2,背景的宽度为b2,目标仿真模块到监控摄像头仿真模块的距离为l,监控摄像头仿真模块的监视时不变场景的视场角为α2,并且满足:In the -x direction of the vertical optical axis, the width of the target is a 2 , the width of the background is b 2 , the distance from the target simulation module to the monitoring camera simulation module is l, and the field of view angle of the monitoring time-invariant scene of the monitoring camera simulation module is α 2 , and satisfies:
a2<l·tanα2<b2 a 2 <l·tanα 2 <b 2
所述监控摄像头在x方向的旋转角度满足以下条件:The rotation angle of the monitoring camera in the x direction satisfies the following conditions:
顺着x方向的旋转角度不超过min[arctan(b1/l)-α1,α2-arctan(a2/l)];The rotation angle along the x direction does not exceed min[arctan(b 1 /l)-α 1 ,α 2 -arctan(a 2 /l)];
顺着-x方向的旋转角度不超过min[α1-arctan(a1/l),arctan(b2/l)-α2]。The rotation angle along the -x direction does not exceed min[α 1 -arctan(a 1 /l), arctan(b 2 /l)-α 2 ].
有益效果:Beneficial effect:
第一、由于设置有目标仿真模块、监控摄像头仿真模块、以及悬臂梁仿真模块,因此直接对应道路监控系统多采用将监控摄像头安装于悬臂梁的结构,适用于模拟道路监控系统,对道路监控随机运动模糊图像进行快速复原;First, since there are target simulation modules, monitoring camera simulation modules, and cantilever beam simulation modules, the structure directly corresponding to the road monitoring system mostly adopts the structure that the monitoring camera is installed on the cantilever beam, which is suitable for simulating the road monitoring system. Motion blurred images for fast recovery;
第二、由于目标仿真模块由用于仿真路面图像的时不变场景和用于仿真先验目标的时变场景组成,同时时不变场景包括均匀背景和区别于背景并被背景包围的目标,因此可以将时不变场景作为先验知识,进而直接与图像快速复原方法(利用先验知识从运动模糊图像中快速提取DOTF,最后将DOTF与线性复原算法相结合,实现随机运动模糊图像快速复原)相对应,提供一种道路监控随机运动模糊图像快速复原仿真系统。Second, since the target simulation module is composed of a time-invariant scene for simulating road images and a time-varying scene for simulating prior targets, while the time-invariant scene includes a uniform background and a target that is different from the background and surrounded by the background, Therefore, the time-invariant scene can be used as prior knowledge, and then directly combined with the image fast restoration method (use prior knowledge to quickly extract DOTF from motion blurred images, and finally combine DOTF with linear restoration algorithm to achieve fast restoration of random motion blurred images ) Correspondingly, a fast recovery simulation system for road monitoring random motion blurred images is provided.
附图说明Description of drawings
图1是安装在悬臂梁结构上的道路监控摄像头。Figure 1 is a road surveillance camera installed on a cantilever beam structure.
图2是悬臂梁仿真模块与监控摄像头仿真模块的连接结构示意图。Fig. 2 is a schematic diagram of the connection structure between the cantilever beam simulation module and the monitoring camera simulation module.
图3是具体实施例三中各个角度之间的关系图。Fig. 3 is a diagram of the relationship between various angles in the third embodiment.
具体实施方式Detailed ways
下面结合附图对本发明具体实施方式作进一步详细描述。The specific embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
具体实施例一Specific embodiment one
本实施例的道路监控随机运动模糊图像快速复原仿真系统,包括:The road monitoring random motion blurred image rapid restoration simulation system of this embodiment includes:
目标仿真模块:由用于仿真路面图像的时不变场景和用于仿真先验目标的时变场景组成,所述时不变场景包括均匀背景和区别于背景并被背景包围的目标;Target simulation module: composed of a time-invariant scene for simulating road images and a time-varying scene for simulating a priori target, the time-invariant scene includes a uniform background and a target that is different from the background and surrounded by the background;
监控摄像头仿真模块:为摄像头、CCD、CMOS或相机;Surveillance camera simulation module: camera, CCD, CMOS or camera;
悬臂梁仿真模块:由对称设置的两个立柱、水平支撑端和弹簧连接端组成,所述水平支撑端上方固定连接监控摄像头仿真模块,两侧通过弹簧连接端连接立柱中上方,在弹簧连接端的作用下,水平支撑端做三个方向的平动和一个方向的转动。Cantilever beam simulation module: It consists of two symmetrically arranged columns, a horizontal support end and a spring connection end. The monitoring camera simulation module is fixedly connected above the horizontal support end. Under the action, the horizontal support end performs translation in three directions and rotation in one direction.
悬臂梁仿真模块与监控摄像头仿真模块的连接结构示意图如图2所示。The schematic diagram of the connection structure between the cantilever beam simulation module and the surveillance camera simulation module is shown in Figure 2.
具体实施例二Specific embodiment two
本实施例的道路监控随机运动模糊图像快速复原仿真系统,在具体实施例一的基础上,进一步限定目标仿真模块为显示器,所述显示器显示的图像一部分具有时变特性,一部分具有时不变特性,具有时不变特性的部分包括均匀背景和区别于背景并被背景包围的目标。The road monitoring random motion blurred image rapid recovery simulation system of this embodiment, on the basis of the specific embodiment 1, further defines the target simulation module as a display, and part of the images displayed on the display have time-varying characteristics, and some have time-invariant characteristics , the parts with time-invariant properties include the uniform background and the objects that are different from the background and surrounded by the background.
具体实施例三Specific embodiment three
本实施例的道路监控随机运动模糊图像快速复原仿真系统,在具体实施例一或具体实施例二的基础上,进一步限定以光轴所在方向为起点,向垂直光轴的x方向,目标的宽度为a,背景的宽度为b,目标仿真模块到监控摄像头仿真模块的距离为l,监控摄像头仿真模块的监视时不变场景的视场角为α,并且满足:The road monitoring random motion blurred image fast restoration simulation system of this embodiment, on the basis of the specific embodiment 1 or the specific embodiment 2, further defines the width of the target starting from the direction where the optical axis is located, to the x direction perpendicular to the optical axis is a, the width of the background is b, the distance from the target simulation module to the surveillance camera simulation module is l, the field of view angle of the monitoring time-invariant scene of the surveillance camera simulation module is α, and satisfies:
a<l·tanα<ba<l·tanα<b
所述监控摄像头在x方向的旋转角度满足以下条件:The rotation angle of the monitoring camera in the x direction satisfies the following conditions:
顺着x方向的旋转角度不超过arctan(b/l)-α;The rotation angle along the x direction does not exceed arctan(b/l)-α;
逆着x方向的旋转角度不超过α-arctan(a/l)。The angle of rotation against the x direction does not exceed α-arctan(a/l).
各个角度之间的关系,如图3所示。The relationship between the various angles is shown in Figure 3.
在本实施例中,所述x方向分布在垂直光轴的平面内。In this embodiment, the x-direction is distributed in a plane perpendicular to the optical axis.
具体实施例四Specific embodiment four
本实施例的道路监控随机运动模糊图像快速复原仿真系统,在具体实施例三的基础上,进一步限定以下内容:The road monitoring random motion blurred image fast recovery simulation system of this embodiment, on the basis of the specific embodiment three, further defines the following content:
以光轴所在方向为起点,Starting from the direction of the optical axis,
向垂直光轴的x方向,目标的宽度为a1,背景的宽度为b1,目标仿真模块到监控摄像头仿真模块的距离为l,监控摄像头仿真模块的监视时不变场景的视场角为α1,并且满足:In the x direction of the vertical optical axis, the width of the target is a 1 , the width of the background is b 1 , the distance from the target simulation module to the surveillance camera simulation module is l, and the field of view angle of the monitoring time-invariant scene of the surveillance camera simulation module is α 1 , and satisfy:
a1<l·tanα1<b1 a 1 <l·tanα 1 <b 1
向垂直光轴的-x方向,目标的宽度为a2,背景的宽度为b2,目标仿真模块到监控摄像头仿真模块的距离为l,监控摄像头仿真模块的监视时不变场景的视场角为α2,并且满足:In the -x direction of the vertical optical axis, the width of the target is a 2 , the width of the background is b 2 , the distance from the target simulation module to the monitoring camera simulation module is l, and the field of view angle of the monitoring time-invariant scene of the monitoring camera simulation module is α 2 , and satisfies:
a2<l·tanα2<b2 a 2 <l·tanα 2 <b 2
所述监控摄像头在x方向的旋转角度满足以下条件:The rotation angle of the monitoring camera in the x direction satisfies the following conditions:
顺着x方向的旋转角度不超过min[arctan(b1/l)-α1,α2-arctan(a2/l)];The rotation angle along the x direction does not exceed min[arctan(b 1 /l)-α 1 ,α 2 -arctan(a 2 /l)];
顺着-x方向的旋转角度不超过min[α1-arctan(a1/l),arctan(b2/l)-α2]。The rotation angle along the -x direction does not exceed min[α 1 -arctan(a 1 /l), arctan(b 2 /l)-α 2 ].
本实施例,考虑到了x方向分布在垂直光轴的平面内,那么在包括光轴的平面内,就会存在x方向和-x方向两个方向的同时限定,进而给出了综合两个方向限定后的结果。In this embodiment, considering that the x direction is distributed in the plane perpendicular to the optical axis, then in the plane including the optical axis, there will be two directions of the x direction and the -x direction simultaneously defined, and then the combination of the two directions is given. Qualified results.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810539837.1A CN108765469B (en) | 2016-06-16 | 2016-06-16 | Simulation System for Fast Restoration of Random Motion Blur Image in Road Surveillance |
CN201610429164.5A CN106127699B (en) | 2016-06-16 | 2016-06-16 | A kind of road monitoring random motion blurred picture Fast Restoration analogue system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610429164.5A CN106127699B (en) | 2016-06-16 | 2016-06-16 | A kind of road monitoring random motion blurred picture Fast Restoration analogue system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810539837.1A Division CN108765469B (en) | 2016-06-16 | 2016-06-16 | Simulation System for Fast Restoration of Random Motion Blur Image in Road Surveillance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106127699A CN106127699A (en) | 2016-11-16 |
CN106127699B true CN106127699B (en) | 2018-10-19 |
Family
ID=57469649
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810539837.1A Active CN108765469B (en) | 2016-06-16 | 2016-06-16 | Simulation System for Fast Restoration of Random Motion Blur Image in Road Surveillance |
CN201610429164.5A Active CN106127699B (en) | 2016-06-16 | 2016-06-16 | A kind of road monitoring random motion blurred picture Fast Restoration analogue system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810539837.1A Active CN108765469B (en) | 2016-06-16 | 2016-06-16 | Simulation System for Fast Restoration of Random Motion Blur Image in Road Surveillance |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN108765469B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112365416B (en) * | 2020-11-10 | 2025-01-14 | 浙江大华技术股份有限公司 | Image occlusion processing method and device, storage medium and electronic device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103679652A (en) * | 2013-11-29 | 2014-03-26 | 北京空间机电研究所 | Image restoration system capable of improving imaging quality greatly |
CN104899843A (en) * | 2015-06-30 | 2015-09-09 | 西南石油大学 | Real-time haze-eliminating displayer and haze-eliminating display method thereof |
CN105163032A (en) * | 2015-09-22 | 2015-12-16 | 哈尔滨理工大学 | Road monitoring camera anti-shake device and method based on two-dimensional motion compensation |
CN105163031A (en) * | 2015-09-22 | 2015-12-16 | 哈尔滨理工大学 | Road monitoring camera anti-shake device and method for compensating for swinging of cantilever beam |
CN204906537U (en) * | 2015-09-22 | 2015-12-23 | 哈尔滨理工大学 | A road monitoring camera anti -shake device for compensating cantilever beam sways |
CN204948209U (en) * | 2015-09-22 | 2016-01-06 | 哈尔滨理工大学 | Based on the road monitoring camera anti-shake apparatus of two dimensional motion compensation |
CN105389794A (en) * | 2015-10-08 | 2016-03-09 | 西安电子科技大学 | Synthetic aperture radar (SAR) target detection false alarm elimination method based on priori scene knowledge |
CN205880921U (en) * | 2016-06-16 | 2017-01-11 | 哈尔滨理工大学 | Road monitoring random motion blurred image recovers simulation system fast |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5624258B2 (en) * | 2007-04-26 | 2014-11-12 | 株式会社東芝 | Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program |
CN103902972A (en) * | 2014-03-21 | 2014-07-02 | 哈尔滨工程大学 | Water surface moving platform visual system image analyzing and processing method |
-
2016
- 2016-06-16 CN CN201810539837.1A patent/CN108765469B/en active Active
- 2016-06-16 CN CN201610429164.5A patent/CN106127699B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103679652A (en) * | 2013-11-29 | 2014-03-26 | 北京空间机电研究所 | Image restoration system capable of improving imaging quality greatly |
CN104899843A (en) * | 2015-06-30 | 2015-09-09 | 西南石油大学 | Real-time haze-eliminating displayer and haze-eliminating display method thereof |
CN105163032A (en) * | 2015-09-22 | 2015-12-16 | 哈尔滨理工大学 | Road monitoring camera anti-shake device and method based on two-dimensional motion compensation |
CN105163031A (en) * | 2015-09-22 | 2015-12-16 | 哈尔滨理工大学 | Road monitoring camera anti-shake device and method for compensating for swinging of cantilever beam |
CN204906537U (en) * | 2015-09-22 | 2015-12-23 | 哈尔滨理工大学 | A road monitoring camera anti -shake device for compensating cantilever beam sways |
CN204948209U (en) * | 2015-09-22 | 2016-01-06 | 哈尔滨理工大学 | Based on the road monitoring camera anti-shake apparatus of two dimensional motion compensation |
CN105389794A (en) * | 2015-10-08 | 2016-03-09 | 西安电子科技大学 | Synthetic aperture radar (SAR) target detection false alarm elimination method based on priori scene knowledge |
CN205880921U (en) * | 2016-06-16 | 2017-01-11 | 哈尔滨理工大学 | Road monitoring random motion blurred image recovers simulation system fast |
Non-Patent Citations (2)
Title |
---|
Simulation Design of Piezoelectric Cantilever Beam Applied on Railway Track;Hui Zheng 等;《The 19th International Conference on Industrial Engineering and Engineering Management》;20130614;1335-1344 * |
基于动态光学传递函数的随机运动模糊图像快速复原方法;赵烟桥;《中国博士学位论文全文数据库 信息科技辑》;20160315(第03期);正文第49页第2段,第92页第4段,第93页第2-3段 * |
Also Published As
Publication number | Publication date |
---|---|
CN108765469A (en) | 2018-11-06 |
CN106127699A (en) | 2016-11-16 |
CN108765469B (en) | 2022-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6636163B2 (en) | Image display method, method of generating shaped sledge curtain, and head mounted display device | |
CN202693991U (en) | Panoramic holographic projection device | |
NZ751602A (en) | Display system and method | |
CN105137705A (en) | Method and device for creating virtual dome screen | |
US20150334301A1 (en) | System and method for generating a surround view | |
CN106991706B (en) | A shooting calibration method and system | |
CN106127699B (en) | A kind of road monitoring random motion blurred picture Fast Restoration analogue system | |
CN104113747A (en) | Image acquisition and pseudo 3D display system based on binocular vision | |
CN103995426B (en) | A kind of stereo projection display apparatus | |
CN205880921U (en) | Road monitoring random motion blurred image recovers simulation system fast | |
CN104208870A (en) | Coordinate matching method based on projection of projection type billiard system and image collection | |
CN102621796B (en) | Three-dimensional display device with adaptive aperture diaphragms and method | |
CN103544713B (en) | A kind of human-body projection interaction method based on rigid-body physical simulation system | |
CN104635405A (en) | Hemispherical screen projection system | |
CN106910240B (en) | Real-time shadow generation method and device | |
CN202143785U (en) | Adjustable seat system capable of being interactive with content of film | |
CN203551936U (en) | Hemispherical screen projection system | |
CN103077266A (en) | Simulation method used for projection three-dimensional display | |
CN103096107A (en) | Three-dimensional display system and control method thereof | |
CN202067070U (en) | Multifunctional immersive dome screen display device and system | |
CN104599237B (en) | Ball curtain multichannel geometric correction method | |
CN204948209U (en) | Based on the road monitoring camera anti-shake apparatus of two dimensional motion compensation | |
CN208506472U (en) | A kind of immersion hemispheric projection system | |
CN202856870U (en) | Panoramic image-capturing apparatus | |
RU105843U1 (en) | VIRTUAL ATTRACTION 5D WITH THREE PROJECTIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190123 Address after: Room 6113, 6th floor, 999 Changning Road, Changning District, Shanghai 200050 Patentee after: Deep blue Technology (Shanghai) Co., Ltd. Address before: 150080 Harbin University of Science and Technology, 52, Xuefu Road, Nangang District, Harbin, Heilongjiang Patentee before: Harbin University of Science and Technology |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210806 Address after: 277300 No. 3859, Changbaishan Road, Zaozhuang high tech Industrial Development Zone, Zaozhuang City, Shandong Province Patentee after: Shandong automatic driving Research Institute Co.,Ltd. Address before: 200050 room 6113, 6th floor, 999 Changning Road, Changning District, Shanghai Patentee before: DEEPBLUE TECHNOLOGY (SHANGHAI) Co.,Ltd. |