CN106124036B - 一种新型拾振器及其优化设计方法 - Google Patents

一种新型拾振器及其优化设计方法 Download PDF

Info

Publication number
CN106124036B
CN106124036B CN201610680655.7A CN201610680655A CN106124036B CN 106124036 B CN106124036 B CN 106124036B CN 201610680655 A CN201610680655 A CN 201610680655A CN 106124036 B CN106124036 B CN 106124036B
Authority
CN
China
Prior art keywords
cantilever beam
twin tong
vibration pickup
fixture
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610680655.7A
Other languages
English (en)
Other versions
CN106124036A (zh
Inventor
刘伟群
刘丛志
任冰禹
祝乔
胡广地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201610680655.7A priority Critical patent/CN106124036B/zh
Publication of CN106124036A publication Critical patent/CN106124036A/zh
Application granted granted Critical
Publication of CN106124036B publication Critical patent/CN106124036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/02Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by magnetic means, e.g. reluctance

Abstract

本发明公开了一种新型拾振器及其优化方法,新型拾振器包括拾振系统和电磁式振动能量回收转化系统,拾振系统由双夹具、悬臂梁和永磁体组成,电磁式振动能量回收转化系统由悬臂梁、永磁体、线圈及储能元件组成。利用所公开的优化设计方法可以设计出不同的双夹具,并对系统进行优化匹配,以满足不同的应用需求。该新型拾振器结构简单、小巧,可用于振动能量回收、微型传感器等领域,运用于振动能量回收时其能量回收效率高、频带宽、输出电能平均功率高,尤其是该拾振器通过优化匹配后可适用于各种振动能量回收、微型传感器等场合。

Description

一种新型拾振器及其优化设计方法
技术领域
本发明属于微型传感器技术领域,具体涉及一种新型拾振器及其优化设计方法。
背景技术
振动机械能是一种最容易从周围环境中获得的能量源,广泛地存在于家用电器、工业工厂设备、各种可动物体以及人体运动等,这些不同方式的机械振动在频率和振幅等方面也各不相同。
拾振器是传感器的一种,将振动信号转为化学的、机械的或电学的信号,且所得信号的强度与所检测的振动量成比例的换能装置。按检测量的不同,可以分为加速度计、速度拾振器和位移拾振器等几种。按能量转化的原理来分,又有质量弹簧式、压电式、电动式、电磁式等许多种类。但是现有的拾振器的输出性能受系统结构和尺寸的限制,其工作带宽较窄,且输出功率随着系统体积的减小而大幅降低,为了改善系统的输出性能,扩展频带,就需要设计一种易于实现的新型拾振器及其优化设计方法。
发明内容
本发明的目的是解决上述问题,提供一种结构简单、能量回收效率高的新型拾振器。
本发明的另一目的,是提供一种上述新型拾振器的优化设计方法。
为解决上述技术问题,本发明的技术方案是:一种新型拾振器,包括支撑底座、双夹具、悬梁臂、永磁铁、线圈以及储能元件,所述双夹具包括相对设置且固定于支撑底座上的上夹具与下夹具,所述悬梁臂位于上夹具和下夹具之间且其一端与上夹具、下夹具的端部固定连接,所述永磁铁设置于悬臂梁另一端,所述线圈固定于支撑底座上且于永磁铁位置相对应,所述储能元件与线圈相连接,所述上夹具与下夹具的相对截面为沿悬臂梁延伸方向间距逐渐增加的平滑曲面,所述支撑底座、双夹具、线圈均与振动源固结。
优选地,所述永磁铁位于悬臂梁的末端。
优选地,所述悬臂梁采用不导磁材料制成。
一种如前所述的新型拾振器的优化设计方法,包括以下步骤:
S1、根据悬臂梁振动时与夹具的贴合情况,选定双夹具的截面曲线方程类型;
S2、电磁式振动能量回收转化系统计算悬臂梁的非线性刚度特性;
S3、建立电磁式振动能量回收转化系统的机电耦合模型;
S4、计算拾振器的最终输出平均功率,进而得到系统匹配优化模型;
S5、利用步长加速法对系统匹配优化模型进行优化求解;
S6、计算并输出系统参数;
其中,系统匹配优化模型和系统参数中的系统为新型拾振器系统。
优选地,所述步骤S1中的悬臂梁振动时与夹具的贴合情况共有三种,即完全贴合、临界贴合和不完全贴合。
优选地,所述步骤S2中的悬臂梁具有三种不同的非线性刚度特性。
优选地,所述步骤S6中的系统参数包括双夹具的截面曲线方程、悬臂梁的结构参数、永磁体质量、线圈的结构参数。
本发明的有益效果是:本发明所提出的新型拾振器以法拉第电磁感应定律为工作原理,即在外界振动激励作用下,永磁体和线圈之间产生相对运动,导致线圈中的磁通量发生变化,从而在线圈中产生感应电动势。该新型拾振器将振动机械能转换成电能并储存起来,进而全天候地为微型无线传感器、嵌入式传感器等各种低功耗的电子器件供电。总体而言,该新型拾振器结构简单、小巧,可用于振动能量回收、微型传感器等领域,运用于振动能量回收时,其能量回收效率高、频带宽、输出电能平均功率高,尤其是该拾振器通过优化匹配后可适用于各种振动能量回收、微型传感器等场合。
附图说明
图1为本发明提供的新型拾振器系统结构图;
图2为本发明提供的新型拾振器的优化设计方法流程图。
附图标记说明:1、支撑底座;2、双夹具;3、悬臂梁;4、永磁铁;5、线圈;6、储能元件。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的说明:
如图1所示,本发明的新型拾振器的结构示意图,包括支撑底座1、双夹具2、悬臂梁3、永磁体4、线圈5及储能元件6。双夹具2包括上夹具与下夹具,上夹具和下夹具相对设置且固定于支撑底座上。悬梁臂3位于上夹具和下夹具之间,且悬臂梁3的一端与上夹具、下夹具的端部固定连接。永磁铁4设置于悬臂梁另一端。线圈5固定于支撑底座1上且于永磁铁4相对应。储能元件6与线圈5相连接。上夹具与下夹具的相对截面为沿悬臂梁2延伸方向间距逐渐增加的平滑曲面。支撑底座1、双夹具2、线圈5均与振动源固结。
在本实施例中,支撑底座1位于其他零部件的下方(图中未完全示出支撑底座),上夹具、悬梁臂3以及下夹具的端部通过螺栓固定在一起,且同时通过该螺栓固定在支撑底座1上。需要说明的是,支撑底座1的形状,设置方向并没有特殊的限制,可根据实际情况及设计需求进行相应的设计,只要满足对其它零部件有支撑固定作用即可。显然,悬臂梁3与双夹具2之间、双夹具2与支撑底座1之间也不限于螺栓的连接方式,采用其他任何可实现固定连接的方式均可。悬臂梁3采用不导磁材料制成。悬梁臂也可采用导磁材料。当采用不导磁材料时,回收电能的效果更佳。此外,在本实施例中,永磁铁4位于悬臂梁3的末端下表面。永磁铁4位于悬臂梁3的具体位置方向并没有特殊的限制,也可位于悬臂梁3的上表面、侧面、正中等位置,近末端位置均可,只要与线圈5位置相对应、组成能量转换单元即可。本发明人经过大量的实验发现,当永磁铁4在悬臂梁3上的位置与振动源的振动方向一致时,拾振器将具有更好的效能。
进一步值得说明的是,上夹具与下夹具可采用形状相同完全对称的夹具,也可采用非对称形状不相同的夹具。上夹具和下夹具具体形状是否完全相同对本发明并没有实质性的影响。本发明的发明点之一在于上夹具与下夹具的相对截面,即双夹具的截面,为沿悬臂梁2延伸方向间距逐渐增加的平滑曲面。至于具体上夹具和下夹具各自的平滑曲面是否完全对称以及平滑曲面的弯曲程度均没有特殊的限制,可完全根据实际情况进行相应设计。在本实施例中,上夹具和下夹具的相对截面采用完全对称。
双夹具2、悬臂梁3和永磁体4组成拾振系统,悬臂梁3、永磁体4、线圈5及储能元件6组成电磁式振动能量回收转化系统。在外界振动激励作用下,支撑底座1、线圈5随着振动源上下振动,悬臂梁3和永磁体4也随之振动。由于悬臂梁3不是绝对刚性的,所以永磁体4和线圈5之间就会发生相对运动,导致线圈5中的磁通量发生变化,从而在线圈5中产生感应电动势,进而将振动能量转化为电能并储存在储能元件6中或为外接负载供电。在双夹具2、悬臂梁3和永磁体4组成的拾振系统中,利用双夹具2改变悬臂梁3的非线性刚度特性,进而改善拾振器的最终输出性能。由悬臂梁3、永磁体4、线圈5及储能元件6组成的电磁式振动能量回收转化系统中,利用电磁感应效应将振动能量转化为电能并储存在储能元件中。选择合适的双夹具2的非线性截面特性,以及与之相匹配的拾振器系统参数,可以实现系统输出电能的最大化。
本发明提供的一种新型拾振器的优化设计方法,如图2所示,包括以下步骤:
S1、根据悬臂梁振动时与双夹具的贴合情况,选定双夹具的截面曲线方程类型。
悬臂梁3振动时与双夹具2的贴合情况共有三种,即完全贴合、临界贴合和不完全贴合。双夹具2的上下截面曲线方程为可以根据用户需求定制的非线性单调递增函数,本实施例中采用双夹具2上下截面曲线方程为上下完全对称且为四阶多项式函数为实施例,对本发明所提供的优化设计方法加以说明。设双夹具2的截面曲线方程为:
y(s)=a1s+a2s2+a3s3+a4s4(0≤s≤s0) (1)
其中,s和y分别为双夹具2的截面曲线的横纵坐标,ai(i=1,2,3,4)表示多项式函数的系数,s0为双夹具2的横向长度(可取为悬臂梁3长度的3/4)。
完全贴合时,悬臂梁3与双夹具2由悬臂梁3的始端开始渐近贴合,即悬臂梁3有一微小弯曲时就与双夹具2贴合,且悬臂梁3的弯曲变形量越大,贴合区也越大,此时,悬臂梁3具有完全非线性刚度特性,双夹具2的截面曲线方程(1)满足:
a1=a2=0,a3>0,a4≥0 (2)
临界贴合时,悬臂梁3在其弯曲变形量达到一定值后与双夹具2的始端开始渐近贴合,而悬臂梁3的弯曲变形量较小时两者是相互分离的,此时,悬臂梁3的刚度特性由一小段线性区与一段非线性区组成,双夹具2的截面曲线方程(1)满足:
a1=a4=0,a2>0,a2+3a3L>0 (3)
其中,L为悬臂梁3的长度。
不完全贴合时,悬臂梁3的弯曲变形量达到一定值后才与双夹具2开始贴合,但双夹具2的始端与悬臂梁3是始终分离的,此时,悬臂梁3的非线性刚度特性也包含一小段线性区,双夹具2的截面曲线方程(1)满足:
S2、计算悬臂梁的非线性刚度特性。
根据悬臂梁3振动时与双夹具2的贴合情况,悬臂梁3具有三种不同的非线性刚度特性。
完全贴合时,悬臂梁3的非线性刚度特性为:
其中,x和F分别表示悬臂梁3末端的变形量和弹性力,E为悬臂梁3的弹性模量(可查表获得),为悬臂梁3的截面惯性矩,b和h分别为悬臂梁3的宽度和高度,L为悬臂梁3的长度。
临界贴合时,悬臂梁3的非线性刚度特性为:
其中,
不完全贴合时,悬臂梁3的非线性刚度特性为:
其中,
S3、建立电磁式震动能量回收转化系统的机电耦合模型。
由悬臂梁3、永磁体4、线圈5和储能元件6组成的电磁式振动能量回收转化系统,将悬臂梁3振动产生的机械能转化为电能,考虑到双夹具的对称性,该系统的机电耦合模型为:
其中,m=m0+0.2235ρL为拾振系统在悬臂梁3末端处的等效质量,m0为永磁体4的质量,ρ为悬臂梁3的密度,c为悬臂梁3的等效阻尼,β为机电耦合系数,i为系统所回收电能的电流,Li为线圈5的等效电感,RL为负载电阻,r0为线圈5的等效内阻,γ为外界振动激励加速度(设计和实验时可取为幅值为g=9.8m/s^2的扫频信号)。
S4、计算拾振器的最终输出平均功率,进而得到系统匹配优化模型。
拾振器的最终输出平均功率为:
其中,u为系统的输出电压,T为优化仿真的时间,p为拾振器的最终输出平均功率。
对拾振器的优化设计,就是通过选择合适的夹具截面曲线以及机电系统参数以得到该系统的最大输出平均功率,即系统匹配优化模型为:
max p (10)
S5、利用步长加速法对系统匹配优化模型进行优化求解。
该系统匹配优化设计问题是一个无约束的非线性优化问题,而系统匹配优化模型(10)的目标函数p的显式的解析表达式难以获得,所以利用步长加速法对该优化模型进行优化求解。
S6、计算并输出系统参数。
系统参数包括图1中的双夹具2的截面曲线方程(1)的系数ai(i=1,2,3,4),悬臂梁3的长度L、宽度b、高度h,永磁体4的质量m0,悬臂梁3的等效阻尼c,机电耦合系数β,线圈5的等效内阻r0、等效电感Li,负载电阻RL
由所提出的优化设计方法优化设计后的拾振器系统,在外界振动激励作用下,利用电磁感应效应将振动能量转化为电能,并储存在储能元件中或为各种低功耗的电子器件供电。该新型拾振器结构简单、小巧,可用于振动能量回收、微型传感器等领域,运用于振动能量回收时其能量回收效率高、频带宽、输出电能平均功率高,尤其是该拾振器通过优化匹配后可适用于各种振动能量回收、微型传感器等场合。
本领域的普通技术人员将会意识到,这里的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (7)

1.一种新型拾振器,其特征在于:包括支撑底座(1)、双夹具(2)、悬梁臂(3)、永磁铁(4)、线圈(5)以及储能元件(6),所述双夹具(2)包括相对设置且固定于支撑底座(1)上的上夹具与下夹具,所述悬梁臂(3)位于上夹具和下夹具之间且其一端与上夹具、下夹具的端部固定连接,所述永磁铁(4)设置于悬臂梁(3)另一端,所述线圈(5)固定于支撑底座(1)上且于永磁铁(4)位置相对应,所述储能元件(6)与线圈(5)相连接,所述上夹具与下夹具的相对截面为沿悬臂梁(3)延伸方向间距逐渐增加的平滑曲面,所述支撑底座(1)、双夹具(2)、线圈(5)均与振动源固结;
悬臂梁(3)振动时与双夹具(2)的贴合情况共有三种,即完全贴合、临界贴合和不完全贴合,双夹具(2)上下截面曲线方程为上下完全对称且为四阶多项式函数,双夹具(2)上下截面曲线方程如下:
y(s)=a1s+a2s2+a3s3+a4s4(0≤s≤s0)
其中,s和y分别为双夹具(2)的截面曲线的横纵坐标,ai(i=1,2,3,4)表示多项式函数的系数,s0为双夹具(2)的横向长度;
完全贴合时,悬臂梁(3)与双夹具(2)由悬臂梁(3)的始端开始渐近贴合,即悬臂梁(3)有一微小弯曲时就与双夹具(2)贴合,且悬臂梁(3)的弯曲变形量越大,贴合区也越大,此时,悬臂梁(3)具有完全非线性刚度特性,双夹具(2)的截面曲线方程(1)满足:
a1=a2=0,a3>0,a4≥0
临界贴合时,悬臂梁(3)在其弯曲变形量达到一定值后与双夹具(2)的始端开始渐近贴合,而悬臂梁(3)的弯曲变形量较小时两者是相互分离的,此时,悬臂梁(3)的刚度特性由一小段线性区与一段非线性区组成,双夹具(2)的截面曲线方程(1)满足:
a1=a4=0,a2>0,a2+3a3L>0
其中,L为悬臂梁(3)的长度;
不完全贴合时,悬臂梁(3)的弯曲变形量达到一定值后才与双夹具(2)开始贴合,但双夹具(2)的始端与悬臂梁(3)是始终分离的,此时,悬臂梁(3)的非线性刚度特性也包含一小段线性区,双夹具(2)的截面曲线方程(1)满足:
其中,L为悬臂梁(3)的长度。
2.根据权利要求1所述的新型拾振器,其特征在于:所述永磁铁(4)设置于悬臂梁(3)的末端。
3.根据权利要求1或2所述的新型拾振器,其特征在于:所述悬臂梁(3)采用不导磁材料制成。
4.一种如权利要求1-3任一所述的新型拾振器的优化设计方法,其特征在于:包括以下步骤:
S1、根据悬臂梁(3)振动时与夹具的贴合情况,选定双夹具(2)的截面曲线方程类型;
S2、计算悬臂梁(3)的非线性刚度特性;
S3、建立电磁式振动能量回收转化系统的机电耦合模型;
S4、计算拾振器的最终输出平均功率,进而得到系统匹配优化模型;
S5、利用步长加速法对系统匹配优化模型进行优化求解;
S6、计算并输出系统参数;
其中,所述系统匹配优化模型和所述系统参数中的系统为新型拾振器系统。
5.根据权利要求4所述的新型拾振器的优化设计方法,其特征在于:所述步骤S1中的悬臂梁振动时与夹具的贴合情况共有三种,即完全贴合、临界贴合和不完全贴合。
6.根据权利要求5所述的新型拾振器的优化设计方法,其特征在于:所述步骤S2中的悬臂梁具有三种不同的非线性刚度特性。
7.根据权利要求5所述的新型拾振器的优化设计方法,其特征在于:所述步骤S6中的系统参数包括双夹具的截面曲线方程、悬臂梁的结构参数、永磁体质量、线圈的结构参数。
CN201610680655.7A 2016-08-17 2016-08-17 一种新型拾振器及其优化设计方法 Active CN106124036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610680655.7A CN106124036B (zh) 2016-08-17 2016-08-17 一种新型拾振器及其优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610680655.7A CN106124036B (zh) 2016-08-17 2016-08-17 一种新型拾振器及其优化设计方法

Publications (2)

Publication Number Publication Date
CN106124036A CN106124036A (zh) 2016-11-16
CN106124036B true CN106124036B (zh) 2019-06-07

Family

ID=57278657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610680655.7A Active CN106124036B (zh) 2016-08-17 2016-08-17 一种新型拾振器及其优化设计方法

Country Status (1)

Country Link
CN (1) CN106124036B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367322A (zh) * 2017-07-18 2017-11-21 杨松 微动传感装置和床垫
CN108860215A (zh) * 2018-09-12 2018-11-23 湖南磁浮技术研究中心有限公司 一种中低速磁浮轨道振动衰减与感应装置
CN109036048A (zh) * 2018-10-13 2018-12-18 苏州科技大学 一种法拉第电磁感应定律的实验装置及其实验方法
CN110375844A (zh) * 2019-06-21 2019-10-25 国网江苏省电力有限公司泰州供电分公司 一种被动式配变设备振动监测装置
CN110567573A (zh) * 2019-09-26 2019-12-13 成都凯天电子股份有限公司 高灵敏度输出压电振动传感器被测激振力信号的方法
CN111122903A (zh) * 2020-01-09 2020-05-08 华中科技大学 一种自供能的电磁运动感知传感器
CN111953230B (zh) * 2020-07-31 2023-05-09 江苏大学 一种双稳态能量收集器离心距离优化匹配方法
GB2603033A (en) * 2020-07-31 2022-07-27 Univ Jiangsu Bistable energy collector centrifugal distance optimal matching method
CN114485908B (zh) * 2022-01-27 2023-08-15 上海智元信息科技有限公司 一种基于微机电系统的振动测量ic芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201212871Y (zh) * 2008-04-30 2009-03-25 中国科学院金属研究所 薄膜材料动态弯曲疲劳性能测试系统
CN101441104A (zh) * 2007-11-21 2009-05-27 中国科学院半导体研究所 一种电磁阻尼光纤振动传感器
WO2010151738A2 (en) * 2009-06-26 2010-12-29 Virginia Tech Intellectual Properties, Inc. Piezomagnetoelastic structure for broadband vibration energy harvesting
CN102185523A (zh) * 2011-05-30 2011-09-14 华北电力大学 微型复合式振动发电机
CN104821743A (zh) * 2015-04-22 2015-08-05 北京工业大学 一种多模式振动发电装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039293A1 (en) * 2007-09-18 2009-03-26 University Of Florida Research Foundation, Inc. Dul-mode piezoelectric/magnetic vibrational energy harvester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441104A (zh) * 2007-11-21 2009-05-27 中国科学院半导体研究所 一种电磁阻尼光纤振动传感器
CN201212871Y (zh) * 2008-04-30 2009-03-25 中国科学院金属研究所 薄膜材料动态弯曲疲劳性能测试系统
WO2010151738A2 (en) * 2009-06-26 2010-12-29 Virginia Tech Intellectual Properties, Inc. Piezomagnetoelastic structure for broadband vibration energy harvesting
CN102185523A (zh) * 2011-05-30 2011-09-14 华北电力大学 微型复合式振动发电机
CN104821743A (zh) * 2015-04-22 2015-08-05 北京工业大学 一种多模式振动发电装置

Also Published As

Publication number Publication date
CN106124036A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106124036B (zh) 一种新型拾振器及其优化设计方法
Cepnik et al. Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling
Williams et al. Development of an electromagnetic micro-generator
Erturk et al. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling
Zhang et al. Vibration energy harvesting based on magnet and coil arrays for watt-level handheld power source
Ooi et al. Design of wideband vibration-based electromagnetic generator by means of dual-resonator
CN104978463B (zh) 一种振动压电俘能系统耦合建模方法
Siddique et al. Energy conversion by ‘T-shaped’cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources
Aravind Kumar et al. Piezomagnetoelastic broadband energy harvester: Nonlinear modeling and characterization
Saha Modelling theory and applications of the electromagnetic vibrational generator
CN106230341A (zh) 监控系统及其控制方法
CN103787266B (zh) 机械部件、机械系统和用于运行机械部件的方法
Niu et al. A new electromagnetic shunt damping treatment and vibration control of beam structures
Olaru et al. Generator with levitated magnet for vibration energy harvesting
CN108832842A (zh) 一种用于收集水平方向超低频振动能的升频式压电发电器
CN106803726B (zh) 低频振动电磁能量收集器
Edwards et al. Hybrid electromagnetic-piezoelectric transduction for a frequency up-converted energy harvester
Liu et al. Effects analysis of bias and excitation conditions on power output of an environmental vibration energy harvesting device using Fe-Ga slice
Wischke et al. A hybrid generator for virbration energy harvesting applications
CN109067243A (zh) 一种压电振动发电机等效电路参数确定方法
CN108828444A (zh) 一种基于电信号测量的压电发电机等效电路参数确定方法
CN201742320U (zh) 频率可自动跟踪的振动装置
Lee et al. Low-frequency driven energy harvester with multi-pole magnetic structure
Bondar Research of the magnetoelectric linear oscillatory motor characteristics during operation on elastoviscous loading
Tardiveau et al. Power consideration in a piezoelectric generator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant