CN106119292A - 一种沼气生产原料及其生产方法 - Google Patents

一种沼气生产原料及其生产方法 Download PDF

Info

Publication number
CN106119292A
CN106119292A CN201610748065.3A CN201610748065A CN106119292A CN 106119292 A CN106119292 A CN 106119292A CN 201610748065 A CN201610748065 A CN 201610748065A CN 106119292 A CN106119292 A CN 106119292A
Authority
CN
China
Prior art keywords
parts
raw material
biogas
weight
production raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610748065.3A
Other languages
English (en)
Inventor
徐庆富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Tower Technology Co Ltd
Original Assignee
Guangxi Tower Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Tower Technology Co Ltd filed Critical Guangxi Tower Technology Co Ltd
Priority to CN201610748065.3A priority Critical patent/CN106119292A/zh
Publication of CN106119292A publication Critical patent/CN106119292A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种沼气生产原料及其生产方法,属于生物质能源生产技术领域。其由如下重量份数的原料制成:猪粪10~30份、牛粪10~30份、水解酶5~15份、玉米秸秆10~20份、大豆秸秆10~20份、菌渣5~15份和沼渣5~15份。本发明的沼气生产原料可有效延长沼气的产气持续时间和提高沼气产气量,从而解决现有的国内沼气生产技术存在产气持续时间短,产气量低问题。

Description

一种沼气生产原料及其生产方法
技术领域
本发明涉及生物质能源生产技术领域,具体地说,是提供一种沼气生产原料及其生产方法。
背景技术
从长远考虑,利用石油、天然气和煤炭等化石燃料制取氢气,存在资源枯竭的问题,因此,开发新型燃料成为一个新的热点,沼气作为一种新型的可再生能源燃料,具有较高的热值,与其他燃料相比,其抗爆性能较好,是一种性能优良的清洁燃料,能够用来发电使用,随着沼气产量的不断提高,如何高效的利用沼气,成为本领域技术人员需要解决的技术问题。
发明内容
本发明的目的之一,是提供一种沼气生产原料。本发明的沼气生产原料可有效延长沼气的产气持续时间和提高沼气产气量,从而解决现有的国内沼气生产技术存在产气持续时间短,产气量低问题。
本发明解决上述技术问题的技术方案如下:一种沼气生产原料,由如下重量份数的原料制成:猪粪10~30份、牛粪10~30份、水解酶5~15份、玉米秸秆10~20份、大豆秸秆10~20份、菌渣5~15份和沼渣5~15份。
本发明的沼气生产原料,可有效延长沼气的产气持续时间和提高沼气产气量,且原料来源广泛,生产成本低。
上述技术方案的基础上,本发明还可以做如下改进。
进一步,由如下重量份数的原料制成:猪粪20份、牛粪20份、水解酶10份、玉米秸秆15份、大豆秸秆15份、菌渣10份和沼渣10份。
进一步,所述水解酶为β-琼脂水解酶、β-半乳糖苷酶、β-葡糖苷酶和纤维素酶中的一种或几种。
本发明的目的之二,是提供上述沼气生产原料的生产方法。本发明的生产方法简单,市场前景广阔,适合规模化推广。
本发明解决上述技术问题的技术方案如下:一种沼气生产原料的生产方法,包括如下工艺步骤:
(1)取玉米秸秆10~20重量份、大豆秸秆10~20重量份,分别粉碎,并加水调节其浓度至25~35%,然后在35~45℃下恒温酸化5~7天,得到酸化料液;
(2)在步骤(1)得到的酸化料液中,添加猪粪10~30重量份、牛粪10~30重量份、水解酶5~15重量份、菌渣5~15重量份和沼渣5~15重量份,混合均匀,并在50~60℃下恒温发酵6~10天;
(3)收集步骤(2)恒温发酵过程产生的气体。
本发明的生产方法简单,市场前景广阔,适合规模化推广。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,步骤(1)所述玉米秸秆为15重量份,所述大豆秸秆为15重量份。
进一步,步骤(2)所述猪粪为20重量份,所述牛粪为20重量份,所述水解酶为10份,所述菌渣为10重量份,所述沼渣为10重量份。
进一步,所述水解酶为β-琼脂水解酶、β-半乳糖苷酶、β-葡糖苷酶和纤维素酶中的一种或几种。
本发明的有益效果是:
(1)本发明的沼气生产原料,可有效延长沼气的产气持续时间和提高沼气产气量,且原料来源广泛,生产成本低。
(2)本发明的生产方法简单,市场前景广阔,适合规模化生产。
具体实施方式
以下结合具体实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1:
本实施例的沼气生产原料,由如下重量的原料制成:猪粪10kg、牛粪30kg、β-琼脂水解酶5kg、玉米秸秆20kg、大豆秸秆10kg、菌渣15kg和沼渣5kg。
上述沼气生产原料的生产方法,包括如下工艺步骤:
(1)取玉米秸秆20kg、大豆秸秆10kg,分别粉碎,并加水调节其浓度至25%,然后在35℃下恒温酸化7天,得到酸化料液;
(2)在步骤(1)得到的酸化料液中,添加猪粪10kg、牛粪30kg、β-琼脂水解酶5kg、菌渣15kg和沼渣5kg,混合均匀,并在50℃下恒温发酵10天;
(3)收集步骤(2)恒温发酵过程产生的气体。
本实施例比现有沼气生产原料产气时间延长35天,产气量提高了65%。
实施例2:
本实施例的沼气生产原料,由如下重量的原料制成:猪粪20kg、牛粪20kg、β-半乳糖苷酶5kg、β-葡糖苷酶5kg、玉米秸秆15kg、大豆秸秆15kg、菌渣10kg和沼渣10kg。
上述沼气生产原料的生产方法,包括如下工艺步骤:
(1)取玉米秸秆15kg、大豆秸秆15kg,分别粉碎,并加水调节其浓度至30%,然后在40℃下恒温酸化6天,得到酸化料液;
(2)在步骤(1)得到的酸化料液中,添加猪粪20kg、牛粪20kg、β-半乳糖苷酶5kg、β-葡糖苷酶5kg、菌渣10kg和沼渣10kg,混合均匀,并在55℃下恒温发酵8天;
(3)收集步骤(2)恒温发酵过程产生的气体。
本实施例比现有沼气生产原料产气时间延长40天,产气量提高了70%。
实施例3:
本实施例的沼气生产原料,由如下重量的原料制成:猪粪30kg、牛粪10kg、纤维素酶15kg、玉米秸秆10kg、大豆秸秆20kg、菌渣5kg和沼渣15kg。
上述沼气生产原料的生产方法,包括如下工艺步骤:
(1)取玉米秸秆10kg、大豆秸秆20kg,分别粉碎,并加水调节其浓度至25%,然后在35℃下恒温酸化7天,得到酸化料液;
(2)在步骤(1)得到的酸化料液中,添加猪粪10kg、牛粪30kg、β-琼脂水解酶5kg、菌渣15kg和沼渣5kg,混合均匀,并在50℃下恒温发酵10天;
(3)收集步骤(2)恒温发酵过程产生的气体。
本实施例比现有沼气生产原料产气时间延长38天,产气量提高了68%。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种沼气生产原料,其特征在于,由如下重量份数的原料制成:猪粪10~30份、牛粪10~30份、水解酶5~15份、玉米秸秆10~20份、大豆秸秆10~20份、菌渣5~15份和沼渣5~15份。
2.根据权利要求1所述的一种沼气生产原料,其特征在于,由如下重量份数的原料制成:猪粪20份、牛粪20份、水解酶10份、玉米秸秆15份、大豆秸秆15份、菌渣10份和沼渣10份。
3.根据权利要求1或2所述的一种沼气生产原料,其特征在于,所述水解酶为β-琼脂水解酶、β-半乳糖苷酶、β-葡糖苷酶和纤维素酶中的一种或几种。
4.一种沼气生产原料的生产方法,其特征在于,包括如下工艺步骤:
(1)取玉米秸秆10~20重量份、大豆秸秆10~20重量份,分别粉碎,并加水调节其浓度至25~35%,然后在35~45℃下恒温酸化5~7天,得到酸化料液;
(2)在步骤(1)得到的酸化料液中,添加猪粪10~30重量份、牛粪10~30重量份、水解酶5~15重量份、菌渣5~15重量份和沼渣5~15重量份,混合均匀,并在50~60℃下恒温发酵6~10天;
(3)收集步骤(2)恒温发酵过程产生的气体。
5.根据权利要求4所述的一种沼气生产原料的生产方法,其特征在于,步骤(1)所述玉米秸秆为15重量份,所述大豆秸秆为15重量份。
6.根据权利要求4所述的一种沼气生产原料的生产方法,其特征在于,步骤(2)所述猪粪为20重量份,所述牛粪为20重量份,所述水解酶为10份,所述菌渣为10重量份,所述沼渣为10重量份。
7.根据权利要求4或6所述的一种沼气生产原料的生产方法,其特征在于,所述水解酶为β-琼脂水解酶、β-半乳糖苷酶、β-葡糖苷酶和纤维素酶中的一种或几种。
CN201610748065.3A 2016-08-29 2016-08-29 一种沼气生产原料及其生产方法 Pending CN106119292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610748065.3A CN106119292A (zh) 2016-08-29 2016-08-29 一种沼气生产原料及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610748065.3A CN106119292A (zh) 2016-08-29 2016-08-29 一种沼气生产原料及其生产方法

Publications (1)

Publication Number Publication Date
CN106119292A true CN106119292A (zh) 2016-11-16

Family

ID=57272829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610748065.3A Pending CN106119292A (zh) 2016-08-29 2016-08-29 一种沼气生产原料及其生产方法

Country Status (1)

Country Link
CN (1) CN106119292A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807096A (zh) * 2022-05-13 2022-07-29 中国华电科工集团有限公司 一种促进剂及其应用和制备装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388470A (zh) * 2014-12-08 2015-03-04 柳州东侯生物能源科技有限公司 沼气的生产方法
CN104498530A (zh) * 2014-12-08 2015-04-08 柳州东侯生物能源科技有限公司 沼气生产原料
CN105506030A (zh) * 2016-01-27 2016-04-20 同济大学 一种木质纤维素厌氧产沼气预处理及发酵工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388470A (zh) * 2014-12-08 2015-03-04 柳州东侯生物能源科技有限公司 沼气的生产方法
CN104498530A (zh) * 2014-12-08 2015-04-08 柳州东侯生物能源科技有限公司 沼气生产原料
CN105506030A (zh) * 2016-01-27 2016-04-20 同济大学 一种木质纤维素厌氧产沼气预处理及发酵工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807096A (zh) * 2022-05-13 2022-07-29 中国华电科工集团有限公司 一种促进剂及其应用和制备装置

Similar Documents

Publication Publication Date Title
Suksong et al. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion
Ferreira et al. On the production cost of lignocellulose‐degrading enzymes
Feng et al. Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure
Jin et al. Performance enhancement by rumen cultures in anaerobic co-digestion of corn straw with pig manure
Xin et al. Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production
Krishania et al. Analysis of different techniques used for improvement of biomethanation process: a review
Bhujbal et al. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products
Lo et al. Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5
Cheng et al. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production
Ren et al. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16
Liang et al. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production
Wang et al. Improved biogas production and biodegradation of oilseed rape straw by using kitchen waste and duck droppings as co-substrates in two-phase anaerobic digestion
Zang et al. The distribution of active β-glucosidase-producing microbial communities in composting
Lo et al. Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil
Tapadia-Maheshwari et al. Illustration of the microbial community selected by optimized process and nutritional parameters resulting in enhanced biomethanation of rice straw without thermo-chemical pretreatment
Bohra et al. Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate
Zhang et al. Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity
CN102604999A (zh) 一种秸秆沼气发酵的原料预处理新方法
Di Pasqua et al. Influence of different lignocellulose sources on endo-1, 4-β-glucanase gene expression and enzymatic activity of Bacillus amyloliquefaciens B31C
Joseph et al. Two-stage thermophilic anaerobic co-digestion of corn stover and cattle manure to enhance biomethane production
Yang et al. Comparison of energy performance and environmental impacts of three corn stover-based bioenergy pathways
Wang et al. Isolation and characterization of Shigella flexneri G3, capable of effective cellulosic saccharification under mesophilic conditions
Li et al. Methane production from different parts of corn stover via a simple co-culture of an anaerobic fungus and methanogen
Anu et al. Optimization of cellulase production by Bacillus subtilis subsp. subtilis JJBS300 and biocatalytic potential in saccharification of alkaline-pretreated rice straw
Shen et al. Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication