CN106111212A - 一种纳米TiO2光催化剂及其制备方法 - Google Patents

一种纳米TiO2光催化剂及其制备方法 Download PDF

Info

Publication number
CN106111212A
CN106111212A CN201610442262.2A CN201610442262A CN106111212A CN 106111212 A CN106111212 A CN 106111212A CN 201610442262 A CN201610442262 A CN 201610442262A CN 106111212 A CN106111212 A CN 106111212A
Authority
CN
China
Prior art keywords
tio
nano
photocatalyst
carbon fiber
active carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610442262.2A
Other languages
English (en)
Inventor
孙振亚
周道坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610442262.2A priority Critical patent/CN106111212A/zh
Publication of CN106111212A publication Critical patent/CN106111212A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米TiO2光催化剂及其制备方法。为以活性炭纤维毡为基底贝塔‑环糊精修饰Fe3+掺杂的纳米TiO2光催化剂;包括以下步骤:将活性炭纤维毡用浓度30wt%的H2O2浸泡,使其表面羟基化,烘干;将预处理后的活性炭纤维毡浸入体积浓度0.5%~2%的硅烷偶联剂甲苯溶液,洗涤、烘干;向TiCl4‑HCl溶液中加入β‑CD和无机铁盐水溶液,然后再加入自组装单分子层,在70~80℃恒温搅拌4h~6h后取出,洗涤、烘干得到所述光催化剂。以活性炭纤维毡为基底,负载纳米TiO2半导体,从Fe3+掺杂与β‑CD对TiO2表面改性的角度优化TiO2光催化性能,并诱发吸附—光催化协同效应,大大提高TiO2的光催化效率。

Description

一种纳米TiO2光催化剂及其制备方法
技术领域
本发明属于光催化技术领域,具体涉及一种活性炭纤维毡为基底纳米TiO2光催化剂及其制备方法。
背景技术
光催化技术是一种半导体光催化剂表面受光激发后产生电子e-和空穴h+使污染物发生氧化还原反应最终被降解而光催化剂本身性质不变的一种深度处理技术。纳米TiO2作为光催化领域内最为活跃的半导体材料,具有价廉、无毒、良好的化学稳定性等优点,但也存在光量子效率低,光生电子-空穴容易复合,光谱响应范围窄,粉体TiO2易团聚,难回收等缺点限制其在实际中的应用。为了抑制光生电子-空穴的复合,可通过过渡金属(Cr,Co,Ni,Fe,Mn等)元素的掺杂使TiO2形成晶格缺陷,更好的捕获和传递电子,提高TiO2的光催化活性。在工程技术领域,近年来研究人员运用粉体烧结、浸涂、气相沉积、溶胶一凝胶、磁控溅射、等技术方法将纳米TiO2负载到生物碳质、矿物、有机高分子聚合物等比表面积大、孔洞结构多的吸附剂中,在吸附剂和TiO2的协同作用下,污染物被不断地吸附到TiO2的活性位点,降解速率也大大提高。然而这些方法存在着制备工艺复杂,成本过高,复合材料中纳米TiO2结合不牢固分布不均匀,机械强度不高,粉体材料依旧难于回收利用等缺陷。
发明内容
本发明目的在于提供一种纳米TiO2光催化剂及其制备方法剂用于降解污染物的应用中,特别是针对含有水相的污染物处理。
为达到上述目的,采用技术方案如下:
一种纳米TiO2光催化剂,以活性炭纤维毡为基底贝塔-环糊精(β-CD)修饰Fe3+掺杂的纳米TiO2光催化剂;活性炭纤维毡的表面和孔隙结构中生长着5-20nm不等的针状纳米TiO2颗粒,纳米TiO2颗粒沿垂直方向堆积并形成新的微孔结构。
上述纳米TiO2光催化剂的制备方法,包括以下步骤:
1)活性炭纤维毡的预处理:将活性炭纤维毡用浓度30wt%的H2O2浸泡,使其表面羟基化,烘干;
2)自组装单分子层(巯基)(Self-assembled monolayers,SAMs)(-SH)的制备:将预处理后的活性炭纤维毡浸入体积浓度0.5%~2%的硅烷偶联剂甲苯溶液,洗涤、烘干;
3)贝塔-环糊精修饰Fe3+掺杂纳米TiO2的自组装:向TiCl4-HCl溶液中加入β-CD(C42H70O35)和无机铁盐水溶液,然后再加入步骤2所得自组装单分子层,在70~80℃恒温搅拌4h~6h后取出,洗涤、烘干得到所述光催化剂。
按上述方案,所述的活性炭纤维毡比表面积1400~1500m2/g,碘吸附量1300~1400mg/g。
按上述方案,硅烷偶联剂甲苯溶液是甲苯中加入3-巯基丙基三甲氧基硅烷得到。
按上述方案,所述的无机铁盐为Fe(NO3)3·9H2O或FeCl3·6H2O。
按上述方案,所述TiCl4-HCl溶液为TiCl4中加入盐酸制得,浓度为0.05~0.2mol/L。
按上述方案,步骤3中Ti与Fe元素的摩尔比为20:1~120:1。
按上述方案,所述贝塔-环糊精的加入量与溶液中Ti的摩尔比为1:200~1:1000。
光催化性能的评价:
光催化剂放入多功能光化学反应仪中,光源为低功率(350W)氙灯(模拟可见光)降解40mL(5mg/L)罗丹明B溶液,180min时间后,取少量反应液于5mL离心管中,离心10min(转速为6000r/min),取上清液在553nm处测其吸光度。降解率按式η=(A0-A1)/A0×100%计算得到,其中η为降解率,A0为光照前溶液的吸光度;A1为光照180min后溶液的吸光度。
活性炭纤维作为第三代高效吸附材料,因具有含碳量高,比表面积大,微孔丰富且结构致密,吸附速度和容量大等优点被用于溶剂回收、空气净化等工艺过程,且活性炭纤维不像传统活性炭只具有颗粒状表态,还具有毡、布等存在形式,因此其作为催化剂载体,更有利于回收利用。
环糊精是6~8个吡喃葡萄糖单元通过1,4-糖苷键以椅式构象相连,表观形态为上窄下宽的环状空腔结构的化合物,空腔因“外亲水、内疏水”的特性,能吸附芳环烃化合物、酯类有机物、大分子氨基酸等疏水性分子和一些重金属离子。近年来,研究人员发现贝塔-环糊精能够维持TiO2胶体在水溶液的分散性和稳定性并促进TiO2界面的电子转移,协同TiO2光催化降解有机物反应进行。利用这一性质,用自组装的方法将β-CD修饰Fe3+掺杂的纳米TiO2负载于活性炭纤维毡表面,制备具有吸附—光催化协同效应的光催化剂是本发明的创新之处。
本发明所采用的分子自组装技术是在热力学平衡条件下,原子和分子依赖分子间的作用力,自发连接成结构稳定、复杂有序且具有某种特定功能的分子聚集体或超分子结构的过程。该技术方法简单,操作简便,制备的复合材料具有结构稳定,空间排布有序,易控制等优点,现已成为纳米材料常用的制造技术之一。
本发明具有以下优点:
以活性炭纤维毡为基底,负载纳米TiO2半导体,从Fe3+掺杂与β-CD对TiO2表面改性的角度优化TiO2光催化性能,并诱发吸附—光催化协同效应,大大提高TiO2的光催化效率。
特别适用于毒性大、低浓度难降解的化学染料、抗生素等有机废水的处理。
制备工艺简单易行、条件温和、原料廉价易得,且所光催化剂环境友好,易于回收利用、催化性能优异。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
活性炭纤维毡的预处理:
取面积为1cm2,厚度为3mm的活性炭纤维毡,用质量浓度30%的H2O2进行表面预处理1h,使其表面羟基化,置于80℃烘箱干燥待用;
SAMs(-SH)单层的制备:
将预处理后的活性炭纤维毡浸入含有体积浓度1%的MPTMS甲苯溶液,20℃水浴搅拌器中搅拌4h。再先后用甲苯、乙醇、蒸馏水洗涤,放入110℃烘箱干燥。
β-CD修饰Fe3+掺杂纳米TiO2的自组装:
用蒸馏水配制pH=3的稀盐酸100mL,向稀盐酸中加入1.1mL的TiCl4(低温,无水通风状态,边滴TiCl4边搅拌),配置浓度为0.1mol/L TiCl4-HCl溶液,并取40mL于烧杯中。再向烧杯中加入0.1mmol的β-CD(C42H70O35)和浓度为5mmol/L FeCl3溶液6.85mL(此时烧杯里溶液中的Fe/Ti质量比为1%)。将镀上SAMs(-SH)的活性炭纤维毡放入烧杯中,在80℃水浴锅中恒温搅拌6h后取出,蒸馏水洗涤,110℃烘箱干燥得到所述光催化剂。
光催化性能的评价:
所得光催化剂放入多功能光化学反应仪中,光源为低功率(350W)氙灯(模拟可见光)降解40mL(5mg/L)罗丹明B溶液,180min时间后,取少量反应液于5mL离心管中,离心10min(转速为6000r/min),取上清液在553nm处测其吸光度。降解率按式η=(A0-A1)/A0×100%计算得到,其中η为降解率,A0为光照前溶液的吸光度;A1为光照180min后溶液的吸光度。40mL(5mg/L)罗丹明B溶液经降解后测吸光度变化并计算η为80.35%。
实施例2
活性炭纤维毡的预处理:
取面积为1cm2,厚度为3mm的活性炭纤维毡,用质量浓度30%的H2O2进行表面预处理1h,使其表面羟基化,置于80℃烘箱干燥待用;
SAMs(-SH)单层的制备:
将预处理后的活性炭纤维毡浸入含有体积浓度1%的MPTMS甲苯溶液,20℃水浴搅拌器中搅拌4h。再先后用甲苯、乙醇、蒸馏水洗涤,放入110℃烘箱干燥。
β-CD修饰Fe3+掺杂纳米TiO2的自组装:
用蒸馏水配制pH=2的稀盐酸100mL,向稀盐酸中加入1.1mL的TiCl4(低温,无水通风状态,边滴TiCl4边搅拌),配置浓度为0.1mol/L TiCl4-HCl溶液,并取35mL于烧杯中。再向烧杯中加入0.2mmol的β-CD(C42H70O35)和浓度为5mmol/L FeCl3溶液12mL(此时烧杯里溶液中的Fe/Ti质量比为2%)。将镀上SAMs(-SH)的活性炭纤维毡放入烧杯中,在80℃水浴锅中恒温搅拌4h后取出,蒸馏水洗涤,110℃烘箱干燥得到所述光催化剂。
光催化活性的评价:
采用与实施例1相同的光催化性能评价方法,40mL(5mg/L)罗丹明B溶液经降解后测吸光度变化并计算η为87.09%。
实施例3
活性炭纤维毡的预处理:
取面积为1cm2,厚度为3mm的活性炭纤维毡,用质量浓度30%的H2O2进行表面预处理1h,使其表面羟基化,置于80℃烘箱干燥待用;
SAMs(-SH)单层的制备:
将预处理后的活性炭纤维毡浸入含有体积浓度1%的MPTMS甲苯溶液,20℃水浴搅拌器中搅拌4h。再先后用甲苯、乙醇、蒸馏水洗涤,放入110℃烘箱干燥。
β-CD修饰Fe3+掺杂纳米TiO2的自组装:
用蒸馏水配制pH=1的稀盐酸100mL,向稀盐酸中加入1.1mL的TiCl4(低温,无水通风状态,边滴TiCl4边搅拌),配置浓度为0.1mol/L TiCl4-HCl溶液,并取25mL于烧杯中。再向烧杯中加入0.5mmol的β-CD(C42H70O35)和浓度为5mmol/L Fe(NO3)3溶液24.5mL(此时烧杯里溶液中的Fe/Ti质量比为5%)。将镀上SAMs(-SH)的活性炭纤维毡放入烧杯中,在70℃水浴锅中恒温搅拌5h后取出,蒸馏水洗涤,110℃烘箱干燥得到所述光催化剂。
光催化活性的评价:
采用与实施例一相同的光催化性能评价方法,40mL(5mg/L)罗丹明B溶液经降解后测吸光度变化并计算η为81.96%。
实施例4
活性炭纤维毡的预处理:
取面积为1cm2,厚度为3mm的活性炭纤维毡,用质量浓度30%的H2O2进行表面预处理1h,使其表面羟基化,置于80℃烘箱干燥待用;
SAMs(-SH)单层的制备:
将预处理后的活性炭纤维毡浸入含有体积浓度1%的MPTMS甲苯溶液,20℃水浴搅拌器中搅拌4h。再先后用甲苯、乙醇、蒸馏水洗涤,放入110℃烘箱干燥。
β-CD修饰Fe3+掺杂纳米TiO2的自组装:
用蒸馏水配制pH=2的稀盐酸100mL,向稀盐酸中加入1.1mL的TiCl4(低温,无水通风状态,边滴TiCl4边搅拌),配置浓度为0.1mol/L TiCl4-HCl溶液,并取35mL于烧杯中。再向烧杯中加入0.3mmol的β-CD(C42H70O35)和浓度为5mmol/L Fe(NO3)3溶液12mL(此时烧杯里溶液中的Fe/Ti质量比为2%)。将镀上SAMs(-SH)的活性炭纤维毡放入烧杯中,在70℃水浴锅中恒温搅拌5h后取出,蒸馏水洗涤,110℃烘箱干燥得到所述光催化剂。
光催化活性的评价:
采用与实施例一相同的光催化性能评价方法,40mL(5mg/L)罗丹明B溶液经降解后测吸光度变化并计算η为82.65%。
需要强调指出的是,上述实施例仅仅是为了清楚地说明本发明所作的举例,而并非对实施方式的完全限定。所属领域的普通技术人员在上述实施例的基础上还可以做出其它不同形式的变动,这里无法也无需对所有实施方式给出实施例,但由此而引申出的显而易见的变动仍处于本发明的保护范围。

Claims (8)

1.一种纳米TiO2光催化剂,其特征在于以活性炭纤维毡为基底贝塔-环糊精修饰Fe3+掺杂的纳米TiO2光催化剂;活性炭纤维毡的表面和孔隙结构中生长着5-20nm不等的针状纳米TiO2颗粒,纳米TiO2颗粒沿垂直方向堆积并形成新的微孔结构。
2.权利要求1所述纳米TiO2光催化剂的制备方法,其特征在于包括以下步骤:
1)活性炭纤维毡的预处理:将活性炭纤维毡用浓度30wt%的H2O2浸泡,使其表面羟基化,烘干;
2)自组装单分子层(巯基的制备:将预处理后的活性炭纤维毡浸入体积浓度0.5%~2%的硅烷偶联剂甲苯溶液,洗涤、烘干;
3)贝塔-环糊精修饰Fe3+掺杂纳米TiO2的自组装:向TiCl4-HCl溶液中加入贝塔-环糊精和无机铁盐水溶液,然后再加入步骤2所得自组装单分子层,在70~80℃恒温搅拌4h~6h后取出,洗涤、烘干得到所述光催化剂。
3.如权利要求2所述纳米TiO2光催化剂的制备方法,其特征在于所述的活性炭纤维毡比表面积1400~1500m2/g,碘吸附量1300~1400mg/g。
4.如权利要求2所述纳米TiO2光催化剂的制备方法,其特征在于硅烷偶联剂甲苯溶液是甲苯中加入3-巯基丙基三甲氧基硅烷得到。
5.如权利要求2所述纳米TiO2光催化剂的制备方法,其特征在于所述的无机铁盐为Fe(NO3)3·9H2O或FeCl3·6H2O。
6.如权利要求2所述纳米TiO2光催化剂的制备方法,其特征在于所述TiCl4-HCl溶液为TiCl4中加入盐酸制得,浓度为0.05~0.2mol/L。
7.如权利要求2所述纳米TiO2光催化剂的制备方法,其特征在于步骤3中Ti与Fe元素的摩尔比为20:1~120:1。
8.如权利要求2所述纳米TiO2光催化剂的制备方法,其特征在于所述贝塔-环糊精的加入量与溶液中Ti的摩尔比为1:200~1:1000。
CN201610442262.2A 2016-06-17 2016-06-17 一种纳米TiO2光催化剂及其制备方法 Pending CN106111212A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610442262.2A CN106111212A (zh) 2016-06-17 2016-06-17 一种纳米TiO2光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610442262.2A CN106111212A (zh) 2016-06-17 2016-06-17 一种纳米TiO2光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN106111212A true CN106111212A (zh) 2016-11-16

Family

ID=57470182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610442262.2A Pending CN106111212A (zh) 2016-06-17 2016-06-17 一种纳米TiO2光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106111212A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620062A (zh) * 2018-04-25 2018-10-09 武汉理工大学 一种高活性含铁光催化剂的制备方法
CN108706644A (zh) * 2018-05-06 2018-10-26 安徽乐金环境科技有限公司 一种环糊精/光触媒复合改性碳基净水剂
CN108726620A (zh) * 2018-05-06 2018-11-02 安徽乐金环境科技有限公司 一种复合改性碳基净水滤芯及其制备方法
CN108751319A (zh) * 2018-05-06 2018-11-06 安徽乐金环境科技有限公司 一种环糊精/光触媒复合改性碳基净水剂的制备方法
CN109759021A (zh) * 2019-02-02 2019-05-17 哈尔滨工业大学 一种用于处理再生水中ppcps的环糊精基-Cu2O共混膜的制备方法
CN110592933A (zh) * 2019-09-23 2019-12-20 南通大学 一种基于低温多层自组装的功能纺织品及其制备方法
CN113083261A (zh) * 2021-05-24 2021-07-09 南昌师范学院 一种活性炭纤维材料的改性方法
CN113457646A (zh) * 2021-07-13 2021-10-01 长沙经济技术开发区水质净化工程有限公司 一种改性纤维球的制备方法及改性纤维球吸收刚果红的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002232A1 (en) * 2000-06-30 2002-01-10 Ecole Polytechnique Federale De Lausanne (Epfl) Carboxylate-containing photocatalytic body, manufacture and use thereof
CN101011654A (zh) * 2007-01-29 2007-08-08 中国石油大学(华东) 活性炭纤维负载氧化钛薄膜的制备方法及其应用方法
CN101185879A (zh) * 2007-09-21 2008-05-28 武汉理工大学 分子自组装单层膜/石英砂吸附剂的制备方法及其应用
CN102659185A (zh) * 2012-04-27 2012-09-12 武汉理工大学 分子自组装单层针铁矿纳米材料的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002232A1 (en) * 2000-06-30 2002-01-10 Ecole Polytechnique Federale De Lausanne (Epfl) Carboxylate-containing photocatalytic body, manufacture and use thereof
CN101011654A (zh) * 2007-01-29 2007-08-08 中国石油大学(华东) 活性炭纤维负载氧化钛薄膜的制备方法及其应用方法
CN101185879A (zh) * 2007-09-21 2008-05-28 武汉理工大学 分子自组装单层膜/石英砂吸附剂的制备方法及其应用
CN102659185A (zh) * 2012-04-27 2012-09-12 武汉理工大学 分子自组装单层针铁矿纳米材料的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘畅,等: "环糊精介入与TiO2光催化应用研究进展", 《广东化工》 *
和娇娇,等: "天然炭纤维负载二氧化钛颗粒的制备与光催化活性", 《硅酸盐通报》 *
李青霞,等: "掺铁二氧化钛薄膜的自组装制备、表征与光催化性能研究", 《矿物学报》 *
杨颖,等: "活性炭表面官能团的氧化改性及其吸附机理的研究", 《科学技术与工程》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108620062A (zh) * 2018-04-25 2018-10-09 武汉理工大学 一种高活性含铁光催化剂的制备方法
CN108706644A (zh) * 2018-05-06 2018-10-26 安徽乐金环境科技有限公司 一种环糊精/光触媒复合改性碳基净水剂
CN108726620A (zh) * 2018-05-06 2018-11-02 安徽乐金环境科技有限公司 一种复合改性碳基净水滤芯及其制备方法
CN108751319A (zh) * 2018-05-06 2018-11-06 安徽乐金环境科技有限公司 一种环糊精/光触媒复合改性碳基净水剂的制备方法
CN109759021A (zh) * 2019-02-02 2019-05-17 哈尔滨工业大学 一种用于处理再生水中ppcps的环糊精基-Cu2O共混膜的制备方法
CN110592933A (zh) * 2019-09-23 2019-12-20 南通大学 一种基于低温多层自组装的功能纺织品及其制备方法
CN113083261A (zh) * 2021-05-24 2021-07-09 南昌师范学院 一种活性炭纤维材料的改性方法
CN113083261B (zh) * 2021-05-24 2023-02-07 南昌师范学院 一种活性炭纤维材料的改性方法
CN113457646A (zh) * 2021-07-13 2021-10-01 长沙经济技术开发区水质净化工程有限公司 一种改性纤维球的制备方法及改性纤维球吸收刚果红的应用

Similar Documents

Publication Publication Date Title
CN106111212A (zh) 一种纳米TiO2光催化剂及其制备方法
Karthik et al. π–π interaction between metal–organic framework and reduced graphene oxide for visible-light photocatalytic H2 production
Shen et al. Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water
Subudhi et al. HPW-anchored UiO-66 metal–organic framework: a promising photocatalyst effective toward tetracycline hydrochloride degradation and H2 evolution via Z-scheme charge dynamics
Tatykayev et al. Synthesis of core/shell ZnO/rGO nanoparticles by calcination of ZIF-8/rGO composites and their photocatalytic activity
Li et al. Direct Z-scheme WO3/graphitic carbon nitride nanocomposites for the photoreduction of CO2
Wang et al. Formation of quasi-core-shell In2S3/anatase TiO2@ metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance
Liu et al. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZIF-8 nanoclusters
He et al. Mechanistic insight into photocatalytic pathways of MIL-100 (Fe)/TiO2 composites
Tan et al. High-performance coral reef-like carbon nitrides: synthesis and application in photocatalysis and heavy metal ion adsorption
Zhao et al. Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water
He et al. Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity
Monama et al. Palladium deposition on copper (II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction
Fronczak et al. Extraordinary adsorption of methyl blue onto sodium-doped graphitic carbon nitride
Chen et al. Atomic heterojunction-induced electron interaction in P-doped g-C3N4 nanosheets supported V-based nanocomposites for enhanced oxidative desulfurization
Guan et al. Fabrication of Ag/AgCl/ZIF-8/TiO 2 decorated cotton fabric as a highly efficient photocatalyst for degradation of organic dyes under visible light
Xu et al. A nanocubicle-like 3D adsorbent fabricated by in situ growth of 2D heterostructures for removal of aromatic contaminants in water
Wang et al. Convenient and recyclable TiO2/g-C3N4 photocatalytic coating: layer-by-layer self-assembly construction on cotton fabrics leading to improved catalytic activity under visible light
Wang et al. Recent advances on porous materials for synergetic adsorption and photocatalysis
Zhu et al. Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‐Tunable Coordination Polymers for Enhanced Solar Hydrogen Production
Ahmad et al. Carbon-integrated semiconductor photocatalysts for removal of volatile organic compounds in indoor environments
Modi et al. Facile one-step synthesis of nitrogen-doped carbon nanofibers for the removal of potentially toxic metals from water
Wang et al. Easy synthesis of ordered mesoporous carbon–carbon nanotube nanocomposite as a promising support for CO2 photoreduction
Li et al. Self-supported CsPbBr3/Ti3C2Tx MXene aerogels towards efficient photocatalytic CO2 reduction
Wang et al. Porous oxygen-doped carbon nitride: supramolecular preassembly technology and photocatalytic degradation of organic pollutants under low-intensity light irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116